Чем опасен квантовый компьютер

Обновлено: 07.07.2024

К омпьютерные технологии неустанно развиваются. Обычные смартфоны теперь способны выполнять задачи, на решение которых в прошлом требовалась мощность огромных вычислительных машин. Впрочем, человечество стоит на пороге куда более масштабного технологического скачка. Он произойдет с появлением полноценного квантового компьютера. Всего за несколько минут он сможет решить задачу, на которую даже у самых мощных суперкомпьютеров уйдут десятилетия и даже столетия вычислений. Пока существуют только прототипы квантовых компьютеров, однако технологии с каждым годом совершенствуются. «Лента.ру» и Homo Science рассказывают, что такое квантовые технологии и каким образом они могут изменить мир.

Одним из первых о создании квантового компьютера заговорил американский физик Ричард Фейнман в 1982 году. По мысли ученого, такие машины способны моделировать сложные квантовые системы, например, атомы, что не по силам обычному, классическому компьютеру, которому для этого требуется колоссальный объем вычислительных ресурсов. Стало ясно, что квантовые компьютеры — хотя на тот момент не существовало даже их прототипов — способны на то, на что не способны даже мощнейшие суперкомпьютеры.

В 1996 году американский математик Лов Гровер предложил квантовый алгоритм решения задачи перебора, который теоретически способен ускорить поиск внутри гигантских баз неупорядоченных данных. Этот алгоритм был реализован в 1998 году с помощью компьютера, состоящего из двух кубитов на базе ядерного магнитного резонанса (ЯМР) — того же самого явления, что стало основой для магнитно-резонансных томографов. Годом позже было показано, что ЯМР-компьютеры не имеют никакого преимущества перед обычными компьютерами, поскольку в них не реализуется особый феномен, называемый квантовой запутанностью.

Пока одни ученые искали алгоритмы, которые можно реализовать на квантовом компьютере, другие занимались физической реализацией квантовых вычислений. В 1995 году физики Сирак и Цоллер предложили ионную ловушку для создания кубитов, а в 1999 году японский физик Ясунобу Накамура продемонстрировал рабочий кубит на основе сверхпроводников.

Технологии стремительно развивались, и в 2009 году была опубликована работа, в которой исследователи использовали два запутанных фотона для вычисления энергии молекулы водорода, что слишком сложно для классических компьютеров. Это была первая демонстрация того, что квантовые вычисления способны привести к полезному результату.

Спустя десять лет, в 2019 году, Google объявила о достижении квантового превосходства: всего за 200 секунд их компьютер выполнил серию вычислений, на которую у суперкомпьютера ушло бы десять тысяч лет. А всего через год о достижении квантового превосходства сообщили китайские ученые: их компьютер на запутанных фотонах Jiuzhang за 200 секунд решил задачу, которая потребовала бы у самого мощного суперкомпьютера до 2,5 миллиардов лет вычислений.

Сейчас уже ведется работа по подготовке человеческого общества к появлению полноценных квантовых компьютеров: разрабатываются новые стандарты, создаются дорожные карты, стратегии выхода на рынок и сфера применения квантовых вычислений.

В России дорожная карта развития квантовых вычислений разработана совместными усилиями Росатома и Российского квантового центра.

На создание квантовых компьютеров и облачной платформы для доступа к ним планируется потратить 23,6 миллиарда рублей.

Квантовое превосходство — это свойство квантовых компьютеров решать задачи, которые не способны решить классические компьютеры за обозримый период времени. Сейчас ученые рассматривают это достижение больше как доказательство принципа, чем то, что может повлиять на будущую коммерческую жизнеспособность таких вычислений.

В России под эгидой Росатома создана Национальная квантовая лаборатория, куда вступили различные научные организации, включая Фонд «Сколково», Российский квантовый центр и профильные научные институты. Целью лаборатории является создание квантовых процессоров на базе сверхпроводников, холодных атомов, фотонов и ионов. К 2024 году планируется построить квантовые компьютеры, состоящие из 30-100 кубитов, в зависимости от используемой технологии.

Квантовое превосходство может быть временным и не исключает появления более эффективных алгоритмов, ускоряющих вычисления классическими компьютерами, поэтому любое заявление о достижении квантового превосходства вызывает скепсис у специалистов и подвергается тщательной проверке. Когда Google опубликовала результаты вычислений квантового процессора Sycamore, IBM заявила, что ее суперкомпьютер способен решить ту же задачу более точно и почти с той же скоростью — за два с половиной дня.

Страны вкладывают огромные суммы в развитие квантовой отрасли. Китай создал новый центр квантовых исследований (National Laboratory for Quantum Information Sciences) стоимостью 10 миллиардов долларов; Евросоюз разработал генеральный план развития квантовых технологий и планирует потратить на это около миллиарда евро; США, в соответствии с законом о национальной квантовой инициативе, выделили 1,2 миллиарда долларов на развитие проектов в этой области за пятилетний период. Однако для достижения полезной вычислительной производимости, вероятно, понадобятся машины, состоящие из сотен тысяч кубитов.

Классические компьютеры выполняют логические операции, используя биты — единицы информации, принимающие значение либо «0», либо «1». В квантовых вычислениях для этого используются кубиты, представляющие собой квантовое состояние объекта, например, фотона. До момента измерения квантовое состояние является неопределенным, то есть оно находится в суперпозиции двух возможных состояний — «0» или «1». Суперпозиция одного объекта может быть связана с суперпозициями других объектов, то есть можно сконструировать между ними логические отношения, подобные тем, что существуют на основе транзисторов в классических компьютерах. Однако квантовые системы трудно поддерживать в состоянии суперпозиции достаточно долго, поскольку квантовое состояние нарушается (система декогерирует) в результате взаимодействия с окружающей средой.

Чтобы добиться квантового превосходства, необходимо использовать явление, называемое квантовой запутанностью. Оно возникает в случае, когда две системы настолько сильно связаны, что получение информации об одной системе немедленно даст информацию о другой — вне зависимости от расстояния между этими системами.

Хартмут Невен, директор Google Quantum AI Labs предложил новое правило, которое предсказывает прогресс квантовых компьютеров в ближайшие 50 лет. Оно гласит, что мощность квантовых вычислений испытывает двукратный экспоненциальный рост по сравнению с обычными вычислениями. Если бы этому принципу подчинялись классические компьютеры, то ноутбуки и смартфоны появились бы в мире уже к 1975 году. Невен обосновывал свое правило тем, что ученые создают все более совершенные квантовые процессоры с большим количеством запутанных кубитов, и при этом процессоры сами по себе экспоненциально быстрее традиционных компьютеров.

Закон Невена, или, как его еще называют, закон Мура 2.0, прогнозирует, что по мере совершенствования квантовых микросхем вычисления будут становиться все быстрее и смогут решать проблемы, которые не под силу даже самым мощным суперкомпьютерам на планете. Это лишь вопрос количества доступных кубитов и снижения частоты ошибок, которые представляют основную проблему современных квантовых информационных систем. Если закон Невена себя оправдает, то в ближайшем будущем квантовые компьютеры покинут пределы университетских и исследовательских лабораторий и станут доступны для коммерческих и других приложений.

Все больше крупных компаний разрабатывают квантовые компьютеры, обеспечивая доступ к ним через облачные технологии. Заказчиками могут быть университеты, исследовательские институты, а также различные организации, которые заинтересованы в том, чтобы протестировать возможные сценарии использования таких вычислений. Рынок пока невелик: по оценкам Hyperion Research , в 2020 году он составил 320 миллионов долларов, однако его ежегодный рост составляет почти 25 процентов.

Специалисты Boston Consulting Group предсказывают, что к 2040 году рынок вырастет до 850 миллиардов долларов. Этот прогноз основан на уверенности, что уже в ближайшие годы мир получит оборудование, подходящее для решения коммерческих и общественных задач. Даже отсутствие готовых прототипов не мешает инвестициям в начинающие стартапы. Например, PsiQuantum привлек 665 миллионов долларов на создание квантовых компьютеров на базе запутанных фотонов.

В настоящее время усилия ученых сосредоточены на двух направлениях: создании универсальных квантовых компьютеров для широкого круга задач и специализированных квантовых вычислителях. Как правило, коммерчески доступные системы имеют небольшое количество кубитов, однако в них используются принципы квантовой механики, ускоряющие вычисления. Одним из главных игроков на этом рынке является компания D-Wave Systems, чьи устройства уже включают в себя пять тысяч кубитов. В 2020 году D-Wave начала предлагать коммерческий доступ через облако к специализированным квантовым компьютерам Advantage с пятью тысячами кубитов, которые пока пригодны для решения сложных оптимизационных задач.

IBM представила коммерчески доступный IBM Quantum System One, пригодный для решения более широкого круга задач, в том числе моделирования материалов для систем хранения энергии, оптимизации портфелей финансовых активов и улучшения параметров стабильности в инфраструктуре энергоснабжения. Исследователи также стремятся использовать квантовый компьютер для того, чтобы раздвинуть границы глубокого обучения. Пока ведутся исследования, связанные с проверкой концепции, то есть демонстрации осуществимости квантовых вычислений в интересующих специалистов областях.

Одна из наиболее перспективных областей, на которую могут повлиять квантовые вычисления, — разработка систем искусственного интеллекта (ИИ). ИИ имеет дело с огромными объемами данных, а неточности в обучении нейронных сетей приводят к значительным погрешностям. Квантовые компьютеры могут улучшить алгоритмы обучения и интерпретации. Предприниматель в области ИИ Гэри Фаулер считает, что большую роль играет способность квантовых компьютеров выходить за рамки привычного двоичного кодирования. Это влияет как на объем анализируемой информации, так и на обработку естественного языка.

ИИ на базе квантового компьютера будет способен глубоко понимать и анализировать текст и речь. Это касается и распознавания образов, то есть искусственный интеллект может научиться видеть предметы и понимать, что находится перед ним, с той же точностью, что человек, и даже лучше. Улучшенное распознавание образов позволит медицинским работникам быстрее диагностировать и лечить заболевания по снимкам МРТ.

Некоторые специалисты считают, что сильный ИИ невозможен без квантовых компьютеров. Современные суперкомпьютеры не обладают мощностью для моделирования человеческого мозга с химическими взаимодействиями между отдельными частями нервных клеток. Даже с учетом закона Мура такие компьютеры не появятся и через миллион лет, однако полноценный квантовый компьютер поможет решить эту проблему.

Считается, что постквантовая криптография, которая неподвластна квантовым компьютерам, остается неуязвимой даже для самых мощных систем. Специалисты уже работают над решением этой задачи, и NIST (Национальный институт стандартов и технологий, США) разрабатывает новые стандарты защиты информации, которые будут опубликованы в 2022 году. В то же время подобная криптография требует огромных ресурсов, поэтому квантовые компьютеры могут помочь защитить то, что они же делают уязвимым. Однако уже сейчас существуют прототипы защитных протоколов будущего, доступные для тестирования. Полный переход к ним может затянуться на 15-20 лет.


Квантовые компьютеры способны привести к резкому прорыву в открытии и разработке новых лекарств, давая ученым и врачам возможность решать задачи, которые невозможно решить сейчас. Специалисты швейцарской фармацевтической компании Roche надеются, что квантовое моделирование ускорит разработку вакцин для защиты от инфекций, подобных COVID-19, лекарств от гриппа, рака и даже болезни Альцгеймера. Квантовое моделирование может заменить лабораторные эксперименты, чем снизит стоимость исследований и сведет к минимуму потребности в тестировании препаратов с участием животных и людей.

Квантовые компьютеры потенциально могут ускорить создание новых катализаторов для утилизации СО2 из воздуха или отработанных газов, которые не только сократят выбросы, но и позволят получать ценные нефтехимические продукты.

С помощью «квантового отжига» можно рассчитать траекторию движения каждой частицы воздушного потока над новым типом крыла, что может привести к изобретению новых технологий в аэродинамике. Подобный принцип можно использовать для решения задач оптимизации трафика в городе или потока данных в сети.

Квантовые системы не только существуют, но и продаются за деньги, создавая и решая новые проблемы безопасности – в основном, в сфере криптографии.


Квантовые вычисления и квантовая связь — сами эти понятия были изобретены буквально 30 лет назад, и первые работы ученых даже не брали в научные журналы: говорили, что фантастика, а не наука. Сегодня же квантовые системы не только существуют, но и продаются за деньги, создавая и решая новые проблемы безопасности, в основном в сфере криптографии.

quantum-text

Мы живем в мире радиоволн и электромагнитных сигналов. Wi-Fi, GSM, спутниковое ТВ и GPS, точное время и FM-тюнер — лишь немногие из повседневных технологий, в которых используются электромагнитные волны. Конечно, в список нужно включить и все виды компьютеров, от гигантских дата-центров до смартфонов и ноутбуков. Одна из особенностей электромагнитных сигналов состоит в том, что их довольно легко измерить, то есть перехватить. Именно поэтому практически все вышеперечисленное сегодня снабжено технологией шифрования, защищающей информацию от чтения и изменения посторонними. При этом запасного канала связи обычно нет, и разработчики криптосистем блестяще решили сложную проблему — как договориться о секретном ключе шифрования, когда весь процесс переговоров могут слушать посторонние? Именно решение этой проблемы лежит в основе всех современных систем защиты, и именно ему предположительно положат конец квантовые компьютеры. Спасет ли положение возникшая заодно квантовая криптография?

В чем соль

Название квантовых систем точно передает смысл — их работа основана на квантовых эффектах, таких как суперпозиция и спутывание (сцепление) микрочастиц.

Квантовый компьютер непригоден для большинства повседневных дел, зато способен быстро решить математические задачи, на которых основана современная криптография.

Все кванты - в беленьком квадратике справа

Все кванты — в беленьком квадратике справа

В чем трудность

Главные популяризаторы многострадального кота Шредингера - Пенни и Шелдон из "Теории большого взрыва"

Шаги к цели

D-Wave Two - квантовый компьютер-отжигатель

D-Wave Two — квантовый компьютер-отжигатель

Квантовая криптография

Коммерческая система Cerberis для квантового распределения ключей

Коммерческая система Cerberis для квантового распределения ключей

В отличие от квантовых компьютеров, квантовые криптосистемы уже давно не являются лабораторной инновацией. Хотя первые научные работы на эту тему появились тоже на рубеже 70–80-х годов ХХ века, до практического воплощения дело дошло быстрее. Первые лабораторные тесты прошли в 1989 году, а уже в конце 90-х функционировали коммерческие системы квантовой передачи ключей на расстояние от 20 до 50 км. Такие компании, как id Quantique и MagiQ Technologies, продают готовые системы передачи криптоключей по обычному оптоволоконному кабелю. Эти системы достаточно просты для установки обычным специалистом по прокладке компьютерных сетей. Соответственно, кроме разного рода военных и правительственных организаций их взяли на вооружение крупные коммерческие организации, банки и даже FIFA.

Идеальная защита?

Квантовые криптосистемы являются неуязвимыми только в недостижимых идеальных условиях. Поэтому традиционные средства защиты рано списывать со счетов.

Руслан Юнусов

Квантовый компьютер — одна из самых обсуждаемых и долгожданных технологических инноваций. В прошлом году компания Google продемонстрировала миру свою разработку, которая смогла решить задачу, недоступную классическому компьютеру. IBM, Huawei, Microsoft, Intel — все мировые ИТ-гиганты инвестируют огромные суммы в собственные проекты квантовых вычислений. В России квантовый компьютер должен появиться в 2024 году. Какие риски и возможности повлечет за собой это изобретение, решит ли квантовая криптография проблему кибербезопасности и где произойдет вторая квантовая революция — обо всем этом рассказывает Руслан Юнусов, генеральный директор Российского квантового центра (РКЦ), в интервью партнеру КПМГ Николаю Легкодимову.


Руслан, в последний раз, когда мы виделись в РКЦ, ты сказал, что твоя мечта создать квантовый компьютер. Максимально простым языком объясни, что такое квантовый компьютер?

Этот вопрос мне задают часто. Давайте разберемся, чем квантовый компьютер отличается от классического? Наверное, он должен работать на законах квантовой физики. Эти законы противоречат нашему бытовому опыту. Например, в квантовой физике есть понятие «суперпозиция», когда частица может одновременно находиться в двух местах, или «запутанность» это некая мистическая связь, которая распространяется быстрее скорости света. Такого в нашем мире нет, а в квантовом есть. Если взять эти свойства, то можно построить квантовый компьютер. Но как?

Внутри обычного компьютера находятся регистры, которые принимают значение 0 или 1. Таких регистров очень много, например, в твоем телефоне их несколько миллиардов. В каждый момент времени это как большая-большая книга, в которой расписаны нули и единицы. В квантовом компьютере тоже есть свои регистры, они называются кубиты. В обычном компьютере это биты, в квантовом кубиты. Разница между классическим и квантовым компьютером заключается в том, что квантовый кубит находится сразу в состоянии и нуля, и единицы та самая суперпозиция.

Разница между классическим и квантовым компьютером заключается в том, что квантовый кубит находится сразу в состоянии и нуля, и единицы, а значит, он сможет решать задачи очень быстро.

Казалось бы, подумаешь, тут одно состояние, а тут два. Но если мы будем увеличивать систему, то количество возможных состояний, в которых одновременно находится квантовый компьютер, будет расти очень-очень быстро: 2, 4, 8. В 10 кубитах будет уже 1000 состояний, а в 20 кубитах миллион и так далее. Такая суперпараллельная система и есть квантовый компьютер. Логично, если он сразу во всех состояниях, то он сможет решать задачи очень быстро. Он будет сразу обрабатывать все возможные варианты. Это понятие «сразу» отличает квантовый компьютер от классического, которому нужно решить сначала одну задачу, один вариант, потом второй, потом третий, потом найти лучший. Квантовый компьютер перебирает сразу все варианты и смотрит, какой лучше.

Если ты помнишь, сначала были процессоры, которые умеют хорошо считать задачи на простых числах. После этого появились сопроцессоры. По-моему, на 386-м IBM появился сопроцессор и стал считать числа с плавающей точкой класс решаемых задач вырос. Потом еще через несколько лет появились графические процессоры, которые были намного быстрее на определенных типах задач. Сейчас в наших компьютерах, смартфонах находится сразу три вида процессоров: классический процессор, самый первый; сопроцессор и графический. Квантовый процессор можно рассматривать как четвертый тип процессора, который решит, конечно, не все задачи в нашем мире, но определенный класс задач будет решать намного-намного эффективнее.


Например? Расскажи, какие встречающиеся в бизнесе или повседневной жизни задачи ждут появления квантового компьютера?

Представим, у нас есть коммивояжер или автомобиль, которому надо развезти 100 посылок по 100 точкам. Как ему выбрать оптимальный маршрут? Вроде, кажется, все просто: Яндекс-навигатор посчитает. Но на самом деле сложность в такой задаче растет экспоненциально быстро с ростом количества точек. В лоб решить задачу перебрать все возможные варианты на 100 точках не получится. Квантовый компьютер именно такие классы задач, когда надо перебирать много вариантов, будет решать хорошо.

Если продолжить тему логистики, например, Airbus объявил конкурс Quantum Challenge, для которого обозначил определенные задачи. Например, как упаковать багаж наиболее эффективным образом? Представим, у тебя есть багаж, и тебе надо упаковать разные прямоугольные коробочки разного размера, которых 100 штук. Обычный компьютер это не решит, а квантовый сможет.

Есть и другие задачи, например, моделирование новых материалов. Понятно, что материалы состоят из атомов и молекул, и именно атомы и молекулы определяют свойства вещества. Хорошо бы нам построить вещество с заданными свойствами.

Представим, что надо упаковать 100 разных прямоугольных коробочек разного размера. Обычный компьютер это не решит, а квантовый сможет.

Например, никто нам не запрещает сделать автомобиль таким, чтобы ты приехал домой, взял его и поставил на полку чтобы он был легкий. Физика не запрещает, но делать мы не умеем. Моделирование новых веществ, физических веществ с новыми свойствами одна из задач, которая также будет посильна для квантового компьютера.

Там, где физика в микромире, там и химия например, моделирование новых лекарств или моделирование катализаторов для химии. Вроде бы химики занимаются катализаторами уже несколько сотен лет, но до сих пор не решена задача, как подобрать правильный катализатор по-честному. Все ищут случайным перебором, как-то полуосмысленно. Но так, чтобы «есть химическая реакция, дайте мне хороший катализатор с гарантированным результатом», эта задача не решена. Квантовый компьютер опять же, так как он описывает квантовый мир, сможет решать и такого типа задачи.

А в какой области, индустрии ты ожидаешь, что будет именно тот самый пресловутый disruption от квантовой технологии?

Если бы людям, которые строили первые компьютеры, тогда сказали, что основные вычислительные ресурсы на Земле будут потрачены на индустрию игр, они подумали бы, что это полная ересь.

На самом деле мы сейчас не знаем, зачем нам нужен квантовый компьютер. Мы не знаем, где от него будет наибольшая польза. Те задачи, про которые я сказал, мы про них уже знаем, и он их решит. Но так же, как с классическим компьютером, скорее всего, квантовый компьютер решит гораздо больший круг задач, причем тех, которые мы не видим сегодня.

Когда создавали классические компьютеры, были определенные задачи, которые надо было посчитать. Было квалифицированное мнение, что одной тысячи компьютеров хватит на всю Землю, и больше не надо. Я думаю, люди, которые строили первые компьютеры, если бы им тогда сказали, что основные вычислительные ресурсы на Земле будут потрачены на индустрию игр, сказали бы, что это полная ересь.

Так же и с квантовым компьютером: очень многие великие физики считают, что да, мы понимаем сейчас какие-то узкие задачки, но на самом деле есть большой класс задач, который мы увидим, только когда начнем играться с тем квантовым компьютером, который будет построен. Поэтому сказать точно, где будет disruption, сегодня невозможно. Это черный лебедь те события, которые мы предсказать не можем, но мы знаем, что они наступят рано или поздно и точно все перевернут.


Интересная мысль. Хорошо, с компьютерами разобрались. Еще одно часто встречающееся словосочетание это квантовая коммуникация. Что это такое?

Я расскажу про еще одну задачу, которую может решить квантовый компьютер, и будет понятно, зачем нужны квантовые коммуникации. Квантовый компьютер иногда называют информационной бомбой XXI века. Почему? Потому что есть алгоритмы Шора и другие, которые в будущем позволят взламывать системы шифрования, используемые сегодня. Наши классические системы шифрования общедоступны, они посильны для квантового компьютера это означает не только возможность украсть ваши деньги, но в будущем и украсть, например, ваше здоровье: взломать управление кардиостимулятором или иными приборами, которых будет только больше. Как у любой медали, у квантового компьютера две стороны: это не только преимущество новых материалов, логистики, оптимизации, но и риск.

Наши классические системы шифрования посильны для квантового компьютера это означает не только возможность украсть ваши деньги, но в будущем и украсть, например, ваше здоровье: взломать управление кардиостимулятором или иными приборами.

Если провести аналогию с шутливой детской загадкой про то, может ли идеальный снаряд пробить идеальную броню, квантовый компьютер не может взломать квантовую криптографию, так?

Да, квантовую криптографию взломать невозможно. Другой вопрос, что квантовая криптография не решает все вопросы кибербезопасности, все-таки это защита между двумя точками. Что происходит внутри здания, социальная инженерия и прочие способы добывания информации, конечно, квантовая криптография не закроет, но свой определенный пул задач она решает.

Со всеми этими преимуществами, принципиальной невзламываемостью почему мы сегодня все еще используем традиционные методы криптографии? В чем ограничения квантовой криптографии?

Это очень хороший вопрос. У нас существуют сегодня технологические ограничения. Ситуация чем-то похожа на ситуацию начала XX века с обычными коммуникациями, когда была большая проблема, как обеспечить телефонную связь между двумя побережьями США, например. В городах все работало, а между побережьями сигнал угасал достаточно быстро. Проблему решили. Bell Labs ее решила.

Квантовую криптографию взломать невозможно.


У нас сегодня примерно такая же ситуация. Ограничение квантовых коммуникаций это порядка 100 км между двумя точками, и дальше ты обязан иметь некий защищенный сервер, в который нельзя допустить физического вторжения: расшифровываешь информацию, зашифровываешь заново, и так каждые 100 км. Конечно же, это не очень удобно. Плюс, это достаточно дорого сегодня. Для каких-то узких приложений квантовые коммуникации уже сегодня можно применять, но для того, чтобы это широко вошло в мир, нужно чтобы это было дешево, быстро и на достаточно далекое расстояние.

На горизонте 10 – 15 лет примерно есть понимание, как мы будем двигаться и в сторону удешевления, и в сторону увеличения расстояния. Но так, чтобы это был масс-маркет, конечно, надо пройти еще много этапов.

Ограничение квантовых коммуникаций порядка 100 км между двумя точками. Конечно же, это не очень удобно и достаточно дорого.

Какие практически примеры по квантовым коммуникациям есть уже в России? Если почитать, то Китай хвастается квантовым каналом через спутник, видимо, это все еще в экспериментальном режиме. Что есть в России из того, что можно уже потрогать? Где можно поговорить с человеком и на каком расстоянии по телефону, защищенному квантовой криптографией?

В России сегодня ситуация на уровне пилотных проектов. Ведущие банки, например, « Газпромбанк » , Сбербанк, уже тестируют такие линии связи. Мы с ними работаем, одна из линий работает 24/7, соединяет два ЦОД Сбербанка. Технология сейчас обкатывается. В ближайшие годы она должна пойти на магистральные решения соединить Москву и Питер. Наверное, на горизонте 5 лет можно рассчитывать на какие-то первые реальные коммерческие внедрения. Представим, что Сбербанк и ключевые его клиенты будут защищены квантовой коммуникацией, это вполне реальная картинка на горизонте до 5 лет. Это имеет под собой экономическую составляющую, и технологии для таких узких решений уже существуют.

Какая экономика у этих пилотов сегодня? Стоит ли овчинка выделки, есть ли какие-то индикативные цифры? Подозреваю, что это очень недешевое упражнение.

Каждое соединение сегодня это 5–10 миллионов рублей соединить две точки. В будущем это все должно стать сильно дешевле. Уже сегодня есть понимание, как, например, во внутригородских сетях, снизить эту капитальную составляющую в 10 раз и даже больше. Это будет не 5 миллионов, а 500 тысяч или 300 тысяч рублей. Такое снижение стоимости, понятно, откроет рынки. За 300 тысяч рублей защищенные каналы к Сбербанку готовы будут провести не 10 клиентов, а, может быть, уже 10 тысяч.

Каждое соединение это 5–10 млн рублей. В будущем должно стать сильно дешевле.

Понял. А расскажи еще про такое понятие, как постквантовая криптография? В чем ее отличие от квантовой криптографии?

Постквантовая криптография это, как ни странно, классическая криптография, но построенная на новых принципах таких, которые, как ожидается, будут сложными для расшифровки квантовому компьютеру. Т.е. математики сейчас трудятся над тем, чтобы создать такое шифрование, такое софтверное решение, которое будет учитывать возможности квантового компьютера.

Если с железным решением (основанном на свойствах фотонов, о которых мы говорили в начале) мы договорились, что никогда и никак взломать нельзя, то софтверные решения квантовый компьютер, скорее всего, не сумеет взломать в ближайшее время, т.е. 100%-ной уверенности в этом нет.

Я думаю, такие внедрения будут очень быстро развиваться. Мы, например, тестируем такую технологию с одним из клиентов, которому надо защищать персональные медицинские данные: фактически у тебя личный кабинет, в который ты входишь, все анализы, всё-всё про тебя и твое здоровье будет защищено постквантовыми алгоритмами. Использовать постквантовую криптографию или железную квантовую криптографию сегодня нужно, в том числе, потому что ты таким образом защитишь долгоиграющую информацию в будущем.

Использовать постквантовую криптографию или железную квантовую криптографию сегодня нужно, в том числе, потому что ты таким образом защитишь долгоиграющую информацию в будущем.


Руслан, ты уже больше 7 лет возглавляешь РКЦ. Можешь подробнее рассказать, как вы появились, какой у вас сейчас фронт работ, кому это нужно? Какие объемы финансирования вы привлекаете? Откуда это финансирование частное, государственное?

Квантовый центр для России это необычная организация, потому что он, с одной стороны, занимается фундаментальными исследованиями в квантовой физике, а с другой не является государственным. Для России это непривычный формат. Мы частная организация, однако мы активно работаем с государством, мы привлекаем много грантов.

Ты спрашивал про деньги. Бюджет привлечения более 3 миллиардов рублей, которые мы уже привлекли. Из них государственных, наверное, около 1 миллиарда. Мы активно привлекаем и частные деньги.

Я сказал, что у нас есть фундаментальная наука, но вторая наша достаточно большая ветвь это квантовые технологии. У нас есть шесть стартапов в разных областях. В основном это сенсорика и коммуникации, потому что квантовый компьютер, как мы говорим, только-только стартует в России. Более того, наша команда участвовала в написании дорожной карты по квантовым технологиям, потом по квантовым вычислениям. Эта карта написана. Сейчас планируется ее активная реализация на горизонте до 2024 года. До 2024 года мы должны построить квантовые компьютеры, которые будут решать примерно те же задачи, что сегодня уже решены Google и прочими лидерами в мире.

Бюджет привлечения в РКЦ более 3 млрд рублей. Из них государственных около 1 млрд. Мы активно привлекаем и частные деньги.

Фото: Getty Images

Что такое квантовый компьютер

Привычные нам компьютеры хранят информацию в двоичном коде, а наименьшей единицей хранения информации является бит. Он может принимать строго одно из двух значений: 0 или 1. При решении задачи ПК проводит множество последовательных операций с битами, и в случае со сложными задачами этот процесс занимает много времени.

Квантовые компьютеры работают принципиально иначе, чем классические. Для решения любых алгоритмических задач они используют квантовые биты — кубиты.

Кубиты могут существовать одновременно в нескольких состояниях, поэтому при проведении вычислений не перебирают последовательно все возможные комбинации, как обычный компьютер, а делают вычисления моментально. В итоге та задача, на выполнение которой у обычного компьютера ушла бы неделя, может выполняться на квантовом компьютере за секунду.

В настоящее время усилия ведущих игроков сосредоточены в направлении разработки специализированных квантовых вычислителей для конкретной задачи (так делает D-Wave) и универсальных квантовых компьютеров для решения разных задач (IBM, Google).

Первый двухкубитный квантовый компьютер появился в 1998 году. Он работал на так называемом явлении «ядерного магнитного резонанса». Компьютер использовался в Оксфордском университете, в исследовательском центре IBM и Калифорнийским университетом в Беркли вместе с сотрудниками из Стэнфордского университета и Массачусетского технологического института. В 2018 году IBM предложила сторонним компаниям использовать ее 20-кубитный квантовый компьютер через облако. Google представила 53-кубитный компьютер Sycamore и заявила о достижении квантового превосходства. Квантовое превосходство подразумевает способность квантовых вычислительных устройств решать те проблемы, которые не могут решить классические компьютеры. По заявлению компании, Sycamore потребовалось около 200 секунд, чтобы выполнить выборку одного экземпляра схемы миллион раз. Самому мощному суперкомпьютеру Summit для той же задачи понадобилось бы около 10 тыс. лет.

Правда, в IBM оспорили утверждение Google. Компания утверждала, что Summit справится с задачей для Sycamore в худшем случае за 2,5 дня, но полученный ответ будет точнее, чем у квантового компьютера. Это позволил предположить теоретический анализ.

В России квантовые технологии также привлекают внимание исследователей. Так, в 2010 году для проведения исследовательских работ в этой области был организован Российский квантовый центр. В 2019 году была разработана сначала единая дорожная карта, а после — дорожная карта на каждое отдельное направление: квантовые вычисления, квантовые коммуникации и квантовые сенсоры. Руслан Юнусов, руководитель проектного офиса по квантовым технологиям госкорпорации «Росатом», говорит, что создание квантовых процессоров стало одной из основных задач дорожной карты, утвержденной в июле 2020 года. По его словам, работа ведется в нескольких плоскостях: развитии фундаментальной науки и первых прикладных внедрениях квантовых продуктов. Россия стала одним из 17 технологически развитых государств с официально утвержденной квантовой стратегией.

Фото:Shutterstock

Юнусов рассказал, что перед отечественными разработчиками стоит задача к 2025 году построить квантовые процессоры на четырех основных платформах: сверхпроводниках, ионах, атомах и фотонах, а также создать облачный софт, который позволил бы работать с этими процессорами удаленно, вне лабораторий. На реализацию дорожной карты предусмотрено финансирование в размере 23,7 млрд рублей.

Как работает квантовый компьютер

Квантовые компьютеры для вычислений используют такие свойства квантовых систем, как суперпозиция и запутанность. В суперпозиции квантовые частицы представляют собой комбинацию всех возможных состояний, пока не произойдет их наблюдение и измерение. Запутанные кубиты образуют единую систему и влияют друг на друга. Измерив состояние одного кубита, возможно сделать вывод об остальных. С увеличением числа запутанных кубитов экспоненциально растет способность квантовых компьютеров обрабатывать информацию.

Биты и кубиты

Базовым элементом, выполняющим логические операции в классическом компьютере, является вентиль. Для работы квантового компьютера используются квантовые вентили, собранные из кубитов. Они бывают однокубитные и двухкубитные. Также существуют универсальные наборы вентилей, с помощью которых можно выполнить любое квантовое вычисление

Кроме того, квантовые компьютеры не могут работать со стандартным софтом вроде Windows. Для них требуется своя операционная система и приложения. Некоторые технологические гиганты уже предлагают организациям опцию квантовых вычислений в облаке. Облачные квантовые вычисления обеспечивают прямой доступ к эмуляторам, симуляторам и квантовым процессорам.

Квантовые вычисления в облаке

Платформа Orquestra от Zapata предлагает набор вычислительных методов для квантовых компьютеров

Для работы квантовых компьютеров требуются квантовые алгоритмы. Из наиболее известных квантовых алгоритмов можно выделить три:

    (разложения числа на простые множители) (решение задачи перебора, быстрый поиск в неупорядоченной базе данных) (ответ на вопрос, постоянная или сбалансированная функция)

Квантовые кубиты в физической реализации бывают нескольких типов: сверхпроводниковые, зарядовые, ионные ловушки, квантовые точки и другие.

Настоящий уровень развития технологий позволяет создать большое количество кубитов, сложность возникает с устойчивостью такой системы. Как и все квантовые системы, кубиты легко теряют заданное квантовое состояние при взаимодействии с окружением (происходит их декогеренция). При этом в работе квантового компьютера растет количество ошибок вычислений. Чтобы обеспечить ее устойчивость при проведении вычислений, требуется оградить систему от любого фонового шума, например, в случае сверхпроводниковых систем, охлаждая их до температур, близких к нулю по Кельвину (-273,1 °C). Разработчики используют сверхтекучие жидкости, чтобы добиться такого охлаждения.

Фото:НИТУ "МИСиС"

Как объяснил Руслан Юнусов, исторически сверхпроводники считались наиболее перспективным направлением благодаря хорошей масштабируемости, стабильности во времени, контроле параметров и относительной легкости управления ими. Именно на этой платформе построены квантовые компьютеры IBM, Google и Rigetti. Однако, по его словам, в последнее время все большую популярность приобретают альтернативные квантовые платформы: ионы, демонстрирующие высочайшие на сегодняшний день показатели стабильности и точности операций (Honeywell, IonQ), и фотоны, преимуществами которых являются малый размер фотонного процессора и возможность работы при комнатных температурах (Xanadu, PsiQuantum, Quix).

Кроме того, развиваются новые концепции: системы на поляритонах или магнонах, системы бозе-эйнштейновских конденсатов, когерентные машины Изинга, когерентные CMOS-архитектуры. Так, в поляритонной архитектуре битом служит поляритон — квазичастица, сочетающая свойства света и вещества. Теоретически, поляритонный квантовый компьютер сможет работать при комнатной температуре, что снизит его стоимость и упростит изготовление. В настоящее время изучением поляритонных структур занимается Сколтех.

Чем квантовый компьютер превосходит обычный?

Принцип суперпозиции, при котором базовая единица информации может существовать более чем в одном состоянии одновременно, позволяет квантовому компьютеру хранить и обрабатывать одновременно гораздо больше данных, чем любому другому. При этом большими объемами данных можно управлять одновременно с помощью концепции, известной как квантовый параллелизм. Имея возможность вычислять и анализировать разные состояния данных одновременно, а не по одному, квантовые системы могут давать результаты с очень высокой скоростью.

Принцип суперпозиции, при котором базовая единица информации может существовать более чем в одном состоянии одновременно, позволяет квантовому компьютеру хранить и обрабатывать одновременно гораздо больше данных, чем любому другому.

Внутреннее устройство квантового компьютера

Внутреннее устройство квантового компьютера (Фото: IBM)

Квантовые системы можно было бы применить для того, чтобы решить проблему коммивояжера — задачу, которая требует нахождения кратчайшего маршрута между множеством городов, прежде чем вернуться домой. А решение этой задачи позволило бы более грамотно выстраивать навигацию и планировать маршруты по всему миру, что удешевило бы и упростило перемещения людей и грузов. Подобного рода исследования уже проводит Volkswagen совместно с D-Wave и Google.

Фото:Reuters

Квантовый компьютер способен обрабатывать огромные объемы финансовых, фармацевтических или климатологических данных, чтобы найти оптимальные решения проблем в этих отраслях.

Наконец, квантовые системы способны найти новые методы шифрования и легко взламывать даже самые сложные шифры.

IBM Quantum уже работает с клиентами над решением подобных проблем. Компания помогает разработать новое поколение электромобилей на технологии квантовых батарей с Daimler; технологию снижения выбросов углерода в атмосферу с помощью открытия экологичных материалов с ExxonMobil: ищет истоки зарождения Вселенной вместе с CERN. А Google использовала Sycamore для точного моделирования химической реакции.

Читайте также: