Чем отличается синхронный от асинхронного usb

Обновлено: 06.07.2024

Добрый вечер, для тех кто немного знаком со связью, очень часто слышали о той или иной технологии, что это синхронная передача, а это асинхронная передача.

Сперва основные отличия, а затем уже примеры. К асинхронной передаче данных, можно отнести большинство протоколов связанных с конечным обычным пользователем, но это просто слова. Асинхронный, значит свободный от временных рамок, то есть связь по запросу. Вам необходимо передать данные, вы обращаетесь к каналу связи, видите, что он свободен и начинаете передачу. Подошли к лифту, нажали на кнопку и ждёте, как только он освободился тут же подъехал и Вас повез, куда нужно.

Теперь в подобном духе рассмотрим синхронную передачу. Во время синхронной передачи, и источник и получатель все время находятся на связи, и пакеты, хоть и пустые но всегда отправляются и посылаются. Здесь уместно сравнить передачу с эскалатором, в любой момент вы к нему подойдете и зайдете на него, при этом он постоянно в движении. Это более затратно, но всегда доступно

Еще можно сравнить с автобусом и попуткой. вы решили поехать в другой город и у вас есть два способа, пойти купить билет и в строго отведенное время, сесть на выделенное место и доехать по расписанию. А можно поймать попутку, она вероятнее будет скорее всего дешевле, может быстрее доехать, а может сломаться по пути или остановиться на неожиданный перекус, но во втором случае больше неожиданных моментов, чем в первом.

в момент передачи кадра, все остальные платы начинают слушать, и синхронизироваться(это побитная синхронизация и относится к протоколу) к приему данных. Как видим из рисунка, первые 7 байт, как раз и служат синхронизацией. Сетевая плата, за эти семь байт подстраивается под сигнал и первым делом принимает адрес получателя. Если адрес получателя совпадает или является широковещательным, то кадр загружается весь, иначе он просто игнорируется. Кадр закончился и снова сидим ждем отправки или получения. Но может возникнуть ситуация, когда устройства будут мешать друг другу, при использовании концентраторов ( hub) очень часто возникали коллизии, коммутаторы избавили нас от них.

Обращу внимание что сейчас речь идет о каналах связи. Синхронная и асинхронная передача на уровне каналов.

Теперь переходим к синхронной передаче. Сюда в первую очередь относят синхронную цифровую иерархию (SDH). Основная особенность в том, что кадры идут постоянно и в строго отведенных временных границах. то есть синхронизация идет постоянно и на нескольких уровнях.


Электрический двигатель — это устройство, обеспечивающее преобразование электрической энергии в механическую. Конструктивно агрегат состоит из статора (фиксирован) и ротора (вращается). Первый создает магнитный поток, а второй крутится под действием электродвижущей силы (ЭДС).

Отличие – кратко простыми словами

Если говорить кратко и простыми словами, синхронный и асинхронный двигателя отличаются конструкцией роторов. Внешне понять какой перед вами электродвигатель практически невозможно, за исключением наличия дополнительных ребер охлаждения у асинхронных электродвигателей.


В устройстве, работающем на синхронном принципе, на роторе предусмотрена обмотка с независимой подачей напряжения.

У асинхронного мотора ток на ротор не подается, а формируется с помощью магнитного статорного поля. При этом статоры обоих агрегатов идентичны по конструкции и несут аналогичную функцию — создание магнитного поля.


Дополнительно в синхронном двигателе магнитные поля статора и ротора взаимодействуют друг с другом и имеют равную скорость.


У асинхронных агрегатов в роторных пазах имеются короткозамкнутые пластинки из металла или контактные кольца, обеспечивающие разность магнитного поля роторного и статорного механизма на величину скольжения.


Несмотря на видимую простоту, разобраться с этим вопросом сразу вряд ли получится, поэтому рассмотрим вопрос более подробно. Поговорим об особенностях и отличиях асинхронных и синхронных машин.

Синхронный двигатель (СД)

Синхронный двигатель — агрегат с индивидуальной конструкцией ротора и индуктором с постоянными магнитами. Отличается улучшенными характеристиками мощности, момента и инерции. Имеет ряд особенностей конструкции и принципе действия.

Устройство

Конструктивно состоит из двух элементов: ротора (вращается) и статора (фиксированный механизм). Роторный узел находится во внутренней части статора, но бывают конструкции, когда ротор расположен поверх статора.

В состав ротора входят постоянные магниты, отличающиеся повышенной коэрцитивной силой.

Конструктивно СД делятся на два типа по полюсам:

  1. Неявно выраженные. Отличаются одинаковой индуктивностью по поперечной и продольной оси.
  2. Явно выраженные. Поперечная и продольная индуктивность имеют разные параметры.


Конструктивно роторы бывают разными устройством и по конструкции.

В частности, магниты бывают:

Статор условно состоит из двух компонентов:


Обмотка статорного механизма бывает двух видов:

  1. Распределенная. Ее отличие состоит в количестве пазов на полюс и фазу. Оно составляет от двух и более.
  2. Сосредоточенная. В ней количество пазов на полюс и фазу всего одно, а сами пазы распределяются равномерно по поверхности статорной части. Пара катушек, формирующих обмотку, могут соединяться в параллель или последовательно. Минус подобных обмоток состоит в невозможности влияния на линию ЭДС.

Форма электродвижущей силы электрического синхронного мотора бывает в виде:

  1. Трапеции. Характерна для устройств с явно выраженным полюсом.
  2. Синусоиды. Формируется за счет скоса наконечников на полюсах.

Если говорить в целом, синхронный мотор состоит из следующих элементов:

  • узел с подшипниками;
  • сердечник;
  • втулка;
  • магниты;
  • якорь с обмоткой;
  • втулка;
  • «тарелка» из стали.


Принцип работы

Сначала к обмоткам возбуждения подводится постоянный ток. Он создает магнитное поле в роторной части. Статор устройства содержит обмотку для создания магнитного поля.

Как только на статорную обмотку подается ток переменной величины, по закону Ампера создается крутящий момент, и ротор начинает вращаться с частотой, равной частоте тока в статорном узле. При этом оба параметра идентичны, поэтому и двигатель носит название синхронный.

Роторная ЭДС формируется, благодаря независимому источнику питания, что позволяет менять обороты и не привязываться к мощности подключенных потребителей.


С учетом особенностей работы синхронный электродвигатель не может запуститься самостоятельно при подключении к трехфазному источнику тока.

Сфера применения

Электродвигатель синхронного типа имеет широкую сферу применения, благодаря постоянству частоты вращения.

Эта особенность расширяет сферу его применения:

  • энергетика: источники реактивной мощности для поддержания напряжения, сохранение устойчивости сети при аварийных просадках;
  • машиностроение, к примеру, при изготовлении гильотинных ножниц с большими ударными нагрузками;
  • прочие направления — вращение мощных компрессоров или вентиляторов, генераторы на электростанциях, обеспечение устойчивой работы насосного оборудования и т. д.


Преимущества и недостатки

После рассмотрения конструктивных особенностей, принципа работы и сферы применения СД подведем итог по положительным / отрицательным особенностям.

  1. Возможность работы при косинусе Фи равном единице (отношение полезной мощности к полной). Эта особенность улучшает косинус Фи сети. При работе с опережающим током синхронные машины генерируют реактивную мощность, которая поступает к асинхронным моторам и уменьшает потребление «реактива» от генераторов электрических станций.
  2. Высокий КПД, достигающий 97-98%.
  3. Повышенная надежность, объясняемая большим воздушным зазором.
  4. Доступность регулирования перегрузочных характеристик, благодаря изменению тока, подаваемого в ротор.
  5. Низкая чувствительность к изменению напряжения в сети.
  1. Более сложная конструкция и, соответственно, высокая стоимость изготовления.
  2. Трудности с пуском, ведь для этого нужные специальные устройства: возбудитель, выпрямитель.
  3. Потребность в источнике постоянного тока.
  4. Применение только для механизмов, которым не нужно менять частоту вращения.

Пример СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В.

Асинхронный двигатель (АД)

Асинхронный (индукционный) электродвигатель, имеющий разную частоту вращения магнитного поля в статоре и скорости ротора. В зависимости от типа и настройки может работать в двигательном или генераторном режиме, режиме ХХ или электромагнитного тормоза.

Конструктивные особенности

Конструктивно асинхронные механизмы трудно отличить от синхронных. Они также состоят из двух основных узлов: статора и ротора. При этом роторный узел может быть фазным или короткозамкнутым. Но небольшие конструктивные отличия все-таки имеются.


Рассмотрим, из чего состоит асинхронный двигатель:

  • сердечник;
  • вентилятор с корпусом;
  • подшипник;
  • коробка с клеммами;
  • тройная обмотка;
  • контактные кольца.


С учетом сказанного одним из главных отличий является отсутствие обмоток на якоре (исключением являются фазные АД). Вместо обмотки в роторе находятся стержни, закороченные между собой.


Как проверить электродвигатель, обмотку якоря мультиметром, омметром на исправность

Принцип действия

В асинхронном двигателе магнитное поле создается, благодаря току в статорной обмотке, находящейся на специальных пазах. На роторе, как отмечалось выше, обмоток нет, а вместо них накоротко объединенные стержни. Такая особенность характерна для короткозамкнутого роторного механизма.

Во втором типе ротора (фазном) на роторе предусмотрены обмотки, ток и сопротивление которых могут регулироваться реостатным узлом.


Простыми словами, принцип действия можно разложить на несколько составляющих:

  1. При подаче напряжения в статоре создается магнитное поле.
  2. В роторе появляется ток, взаимодействующий с ЭДС статора.
  3. Роторный механизм вращается в том же направлении, но с отставанием (скольжением) размером от 1 до 8 процентов.

Сфера применения

Асинхронные электромоторы пользуются большим спросом в быту, благодаря простоте конструкции и надежности в эксплуатации.

Они часто применяются в бытовой аппаратуре:

  • стиральных машинках;
  • вентиляторе;
  • вытяжке;
  • бетономешалках;
  • газонокосилках и т. д.

Также применяются они и в производстве, где подключаются к 3-фазной сети.

К этой категории относятся следующие механизмы:

  • компрессоры;
  • вентиляция;
  • насосы;
  • задвижки автоматического типа;
  • краны и лебедки;
  • станки для обработки дерева и т. д.

Асинхронные машины применяются в электрическом транспорте и других сферах. Они нашли применение в башенных кранах, лифтах и т. д.

Пример Трехфазный АИР 315S2 660В 160кВт 3000об/мин.


Трехфазный АИР 315S2 660В 160кВт 3000об/мин

Преимущества и недостатки

Электродвигатель асинхронного тип имеет слабые и сильные места, о которых необходимо помнить.

  1. Простая конструкция, которая обусловлена трехфазной схемой подключения и простым принципом действия.
  2. Более низкая стоимость, по сравнению с синхронным аналогом.
  3. Возможность прямого пуска.
  4. Низкое потребление энергии, что делает двигатель более экономичным.
  5. Высокая степень надежности, благодаря упрощенной конструкции.
  6. Универсальность и возможность применения в сферах, где нет необходимости в поддержке частоты вращения, или имеет место схема управления с обратной связью.
  7. Возможность применения при подключении к одной фазе.
  8. Успешный самозапуск группы АД в случае потери и последующей подачи на них напряжения.
  9. Минимальные расходы на эксплуатацию. Все, что требуется — периодически чистить механизма от пыли и протягивать контактные соединения. При соблюдении требований производителей менять подшипники можно с периодичностью раз в 15-20 лет.
  1. Наличие эффекта скольжения, обеспечивающего отставание вращения ротора от частоты вращения поля внутри механизма.
  2. Потери на тепло. Асинхронные моторы имеют свойство перегреваться, особенно при большой нагрузке. По этой причине корпус изделия делают ребристым для увеличения площади охлаждения (у СД такое применяется не на всех моделях). Дополнительно может устанавливаться вентилятор для обдува поверхности.
  3. Напряжение только на 220 В и выше. Из-за конструктивных особенностей такие электродвигатели не производятся для рабочего напряжения меньше 220 В. В качестве замены часто применяются гидро- или пневмоприводы.
  4. Небольшой КПД в момент пуска и высокая реактивность. По этой причине мотор может перегреваться уже при пуске. Это ограничивает количество пусков в определенный временной промежуток.
  5. Синхронная частота вращения не может быть больше 3000 об/мин, ведь в ином случае требуется использование турбированного привода или повышающего редуктора.
  6. Трудности регулирования устройств, которые приводятся в движение «синхронниками».
  7. Повышенный пусковой ток — одна из главных проблем асинхронных моторов, имеющих мощность свыше 10 кВт. В момент пуска токовая нагрузка может превышать номинальную в шесть-восемь раз и длиться до 5-10 секунд. По этой причине для «асинхронников» не рекомендуется прямое подключение.
  8. При появлении КЗ возле шин с работающим двигателем появляется подпитка тока.
  9. Чувствительность к изменениям напряжения. При отклонении этого параметра более, чем на 5% показатели электродвигателя отклоняются от номинальных. В случае снижения напряжения уменьшается момент АД.

Сравнение синхронного и асинхронного двигателей

В завершение можно подвести итог, в чем главные отличия асинхронных (АД) и синхронных (СД) моторов.

Выделим базовые моменты:

  1. Ротору асинхронных моторов не требуется питание по току, а индукция на полюсах зависит от статорного магнитного поля.
  2. Обороты АД под нагрузкой отстают на 1-8% от скорости вращения поля статора. В СД количество оборотов одинаково.
  3. В «синхроннике» предусмотрена обмотка возбуждения.
  4. Конструктивно ротор СД представляет собой магнит: постоянный, электрический. У АД магнитное поле в роторном механизме наводится с помощью индукции.
  5. У синхронной машины нет пускового момента, поэтому для достижения синхронизации нужен асинхронный пуск.
  6. «Синхронники» применяются в случаях, когда необходимо обеспечить непрерывность производственного процесса и нет необходимости частого перезапуска. АД нужны там, где требуется большой пусковой момент и имеют место частые остановки.
  7. СД нуждается в дополнительном источнике тока.
  8. «Асинхронники» медленнее изнашиваются, ведь в их конструкции нет контактных колец со щетками.
  9. Для АД, как правило, характерно не круглое количество оборотов, а для СД — округленное.

Про реактивную мощность

Синхронные электродвигатели генерируют и одновременно потребляют реактивную мощность. Особенности и параметры «реактива» зависит от тока в возбуждающей обмотке. При полной нагрузке косинус Фи равен 1. В таком режим СД не потребляет «реактив» из сети, а ток в статорной обмотке минимален.

Здесь важно понимать, что реактивная мощность ухудшает параметры энергосистемы. Большой параметр неактивных токов приводит к повышению расхода топлива, увеличению потерь и снижению напряжения.

Кроме того, «реактив» грузит линии передач электроэнергии, что ведет к необходимости увеличения сечения кабелей и проводов, а, соответственно, повышению капитальных расходов.


Сегодня одна из главных задач энергетиков — компенсация реактивной мощности. К основным ее потребителям относят АД, потребляющие 40% «реактива», электрические печи, преобразователи, ЛЭП и силовые трансформаторы.


Греется электродвигатель: причины неисправности у электромоторов на 220 и трехфазных на 380 вольт

Какой лучше

При сравнении асинхронного и синхронного электродвигателей трудно ответить, какой лучше. По конструкции и надежности выигрывает АД, который при умеренной нагрузке имеет более продолжительный срок службы. У СД щетки быстро изнашиваются, что требует их замены.

В остальном это два схожих по конструкции, но отличающихся по принципу действия механизма, имеющих индивидуальные сферы применения.

Lorem ipsum dolor

Сегодня будем с вами разбираться, что такое синхронная и асинхронная передача данных в программировании и как они реализуются в разных языках.

Сложность современных компьютерных программ связана с длительными процессами, которые происходят «внутри». Бывают такие процессы, обработка которых требует много времени. И если в процессе обработки такого процесса программа будет «стоять», то это чревато снижением продуктивности и вероятным и убыткам и . Для этого и придумано асинхронное программировани е , чтобы улучшить общую эффективность программы путем отмены блокирования основного потока программы.

Асинхронная передача данных — это современная популярная тенденция в разработке. Многие нынешние инструменты по программированию имеют собственные инструменты для реализации асинхронных задач. Никто не любит просто ждать, поэтому всегда нужно тщательно определять, когда налаживать синхронное, а когда — асинхронное взаимодействие программы.

Синхронное представление в быту

  • доделать дела на работе;

  • подготовить вечерний наряд;

  • сделать прическу, маникюр и накрасит ь ся;

  • попросить маму накрыть на стол.

Асинхронная передача данных в программировании

При синхронном программировании каждая функция, передающая данные , прежде чем приступить к своему выполнению , ожидает окончани я выполнения предыдущей. Если одна из функций выполняется очень долго, то программа может просто «зависнуть».

Асинхронная передача данных — это когда долго выполняемую функцию убирают из основного потока выполнения программы. Она не завершается, а продолжает работать в каком-нибудь другом месте. А сама программа не «зависает» и не «тормозит», а продолжает свое выполнение.

Рассмотрим на реальном примере, как происходит асинхронная передача данных. Допустим , у нас есть некий ресурс с фильмами. Пользователь заходит на ресурс. В фильтре указывает параметры для подбора какого-нибудь фильма и нажимает кнопку для старта фильтра. Ресурс отправит соответствующий запрос для поиска подходящих фильмов. В целом такая обработка запроса на сервере может происходить довольно долго. Если ресурс будет работать синхронно, то его страница «зависнет» , пока не будет обработан запрос, соответственно , никак нельзя будет взаимодействовать со страницей, даже просто прокрутить ее вниз. Если ресурс будет работать асинхронно, тогда пользователь не замети т «подвисания» и сможет взаимодействовать со страницей , пока ресурс не выдаст ему результаты запроса.

То есть при работе ресурса с фильмами выполнение главного потока программы разделится на 2 части: одна будет поддерживать взаимодействие со страницей, а вторая будет отправлять запрос и ожидать ответа от сервера. Таких асинхронных задач в программе может быть несколько. Для большого их количества придумали даже специальную очередь, которая работает по принципу : кто первый пришел, тот первый ушел.

Терминология асинхронности

  1. Конкурентность. Данны й термин оз начает, что происходит одновременное выполнение нескольких задач. Эти задачи могут быть вообще не связаны друг с другом, поэтому не будет иметь значени я, какая из них завершит выполнение раньше, а какая — позже. Каждая такая задача формирует отдельный поток выполнения.

  2. Параллелизм. Данный термин подразумевает выполнение одной задачи несколькими потоками. То есть фактически происходит разделение одной задачи на несколько небольших частей. Все это делается для того, чтобы ускорить общее выполнение большой з а дачи.

  3. Многопоточность. Данный термин обозначает наличие нескольких потоков выполнения программы.

  4. Асинхронность. Данный термин означает, что начало и конец одной функции мо гут происходить в разных частях кода. Чтобы такая функция завершилась , должно пройти немного времени, но сколько точно — сказать невозможно.

Заключение

Синхронная и асинхронная передача данных может осуществляться во многих сферах. Мы показали на примере программирования, как работают синхронные и асинхронные события. У обоих подходов есть свои достоинства и недостатки, поэтому использовать их в своих программах нужно обдуманно.

Нельзя утверждать, что асинхронная передача данных — это единственно правильный подход. Это совсем не так, потому что синхронный подход тоже до сих пор очень популярен и часто используется.

Мы будем очень благодарны

если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.

Основная задача электродвигателя - преобразовывать электрическую энергию в механическую. Сегодня электродвигатели изготавливаются как постоянного, так и переменного тока. Среди двигателей переменного тока лидируют асинхронные и синхронные двигатели. Асинхронные двигатели малой и средней мощности относятся к группе наиболее часто используемых электродвигателей. Они широко используются как в промышленности, так и в бытовой технике.

В промышленности чаще всего используются асинхронные двигатели трехфазные. Они используются, например, в энергетике - в качестве приводов для собственных нужд электростанций, в строительстве, на транспорте, в коммунальном хозяйстве - в качестве приводов насосов водоснабжения и т. д.

Отличие асинхронного электродвигателя от синхронного


С виду внешне они похожи, порой даже специалист не отличит по внешним признакам синхронный электродвигатель от асинхронного. У обоих электродвигателей есть неподвижный статор, состоящий из обмоток (катушек), которые уложены в пазы сердечника, набранного из пластин, выполненных из электротехнической стали, и подвижный ротор. Кроме того, функция этих типов электродвигателей одна и та же — создание вращающегося магнитного поля статора.

Ротор синхронного двигателя имеет обмотку возбуждения с независимым питанием. Статоры синхронного и асинхронного двигателя устроены одинаково, функция в каждом случае одна и та же — создание вращающегося магнитного поля статора.

Обороты асинхронного двигателя под нагрузкой всегда на величину скольжения отстают от вращения магнитного поля статора, в то время как обороты синхронного двигателя равны по частоте «оборотам» магнитного поля статора. И поэтому у асинхронного двигателя есть такой параметр - как СКОЛЬЖЕНИЕ - разность скоростей вращения ротора и вращающегося магнитного поля в статоре. У синхронного электродвигателя частота вращения ротора всегда равна частоте вращения электромагнитного поля.

У этих двух типов двигателей разные области применения: синхронные электродвигатели отличаются гораздо большей мощностью и полезной нагрузкой, но они дороже и сложней. И поэтому асинхронные двигатели востребованы там, где достаточно их характеристик, ведь они дешевле и проще в изготовлении.

Недостатки и преимущества двигателей

Синхронные двигатели

синхронный электродвигатель
синхронный электродвигатель
синхронный электродвигатель

Синхронные двигатели имеют довольно сложную конструкцию, обусловленную наличием щеточного узла. Кроме того, для их работы требуется дополнительный источник постоянного тока. Еще одним недостатком является невозможность их эксплуатации в условиях частых пусков и остановов. Однако все это компенсируется большой мощностью, высоким КПД, устойчивостью к перепадам напряжения в питающей сети и стабильной частотой вращения вала, вне зависимости от величины нагрузки на него.

Синхронные электрические машины рентабельны при мощностях свыше 100 кВт и основное применение находят для вращения мощных вентиляторов, на различных металлургических производствах, для привода насосов, которые обладают не только значительной мощностью, но и долгим режимом функционирования т.д.

Асинхронный двигатель

Асинхронный двигатель
Асинхронный двигатель
Асинхронный двигатель

Асинхронный двигатель в отличие от синхронных машин более чувствителен к колебаниям напряжения и не может сохранять номинальную скорость вращения, при увеличении нагрузки. В большинстве случаев недостатки компенсируются путем применения преобразователей частоты и других устройств пуска. Но простота конструкции, длительный срок эксплуатации, универсальность применения, способность работать в режиме частых включений и остановок делают эти машины наиболее распространенными в промышленном и бытовом секторе.

Читайте также: