Ddr 333 память что это

Обновлено: 07.07.2024

Еще пару лет назад подавляющее большинство персональных компьютеров оснащалось динамической памятью SDRAM PC100 или PC133. Но в погоне за быстродействием на смену этому типу памяти пришла память DDR200, затем DDR266, далее DDR333, а сейчас доступна память DDR400. Не за горами и новая память DDR-II, и уже поговаривают о новом стандарте DDR-III.

ипы памяти, представленные сегодня на рынке, отличаются большим разнообразием. Кроме того, существуют различные варианты одного и того же типа памяти. Например, встречается память DDR333 с характеристикой CL=3 и CL=2,5. Короче говоря, разобраться во всех этих нюансах неискушенному пользователю не так-то просто. Попробуем осуществить небольшой ликбез по современным типам памяти и основам ее функционирования.

Теоретические основы

Схема памяти на основе конденсаторов обладает одним недостатком: заряд конденсатора не может сохраняться бесконечно долго. По законам физики неизбежно происходит самопроизвольный разряд конденсаторов, вследствие чего память на основе массива конденсаторов требует периодического подзаряда конденсаторов или регенерации. Именно поэтому такая память называется динамической.

Для того чтобы получить доступ к той или иной ячейке памяти (например, для записи или считывания данных), необходимо указать ее адрес. Поскольку ячейки памяти образуют матрицу, то для задания адреса ячейки нужно указать номер столбца (адрес столбца) и номер строки (адрес строки).

Если данные появляются в ближайший момент за фронтом тактового импульса, то они будут считаны только с началом следующего тактового импульса. Так происходит по той причине, что сигналом к считыванию данных является не уровень тактового импульса, а его фронт. Поэтому при использовании асинхронной памяти часто возникает задержка с обработкой данных, что, в свою очередь, приводит к жестким ограничениям на частоту системной шины.

В связи с этим на смену асинхронной памяти пришла синхронная динамическая память SDRAM (Synchronous DRAM). В синхронной памяти обеспечивается синхронизация всех входных и выходных сигналов с тактами системного генератора. Однако управление памятью усложняется, так как приходится вводить дополнительные регистры-защелки, в которых хранятся адреса, данные и управляющие сигналы. Все типы современной памяти (SDR, DDR и DDR-II) являются именно синхронной динамической памятью, причем основной принцип организации памяти остается неизменным.

Как уже говорилось, в синхронной памяти между подачей стробирующих импульсов CAS и RAS, то есть между моментами считывания адреса строки и адреса столбца в пределах выбранной строки имеется определенная задержка, измеряемая в периодах синхроимпульсов. Эта задержка называется RAS to CAS Delay и для синхронной памяти варьируется от 2 до 3 тактов.

Аналогичным образом после подачи сигнала СAS и до появления первого элемента данных на шине проходит определенный временной промежуток, измеряемый в тактах и именуемый CAS Latency. Каждый последующий элемент данных появляется на шине данных в очередном такте. Для SDRAM-памяти эта задержка может составлять 2 или 3 такта. CAS Latency (CL) является одной из основных характеристик и указывается на модулях памяти. Например, на модуле может быть указано CL=2, что означает задержку в 2 такта.

Завершение цикла обращения к банку памяти осуществляется посредством команды деактивации, которая подается за 1 или за 2 такта перед выдачей последнего элемента данных. Время деактивации RAS Precharge также измеряется в тактах и может быть равно 2 или 3 тактам.

Описанные времена RAS to CAS Delay (Trcd), CAS Latency (Tcl) и RAS Precharge (Trp) определяют тайминг памяти, записываемый в виде последовательности Tcl-Trcd-Trp. Временные диаграммы при обращении к синхронной памяти для тайминга 2-2-2 показаны на рис. 1.

Кроме организации страничного доступа с пакетной обработкой данных, в SDRAM-памяти используется деление всей памяти на четыре независимых банка (Bank0, Bank1, Bank2, Bank3), что позволяет совмещать выборку данных из одного банка с установкой адреса в другом банке, то есть одновременно могут быть открытыми несколько страниц. Доступ к этим страницам чередуется (Bank Interleaving), что приводит к устранению задержек и обеспечивает создание непрерывного потока данных.

Пропускная способность (Мбайт/с) = Частота шины памяти (МГц) Ѕ 8 байт.

Относительно пропускной способности памяти отметим, что здесь имеется в виду только режим страничного пакетного доступа, то есть когда данные считываются на каждом такте. Если же речь идет о произвольной выборке данных, расположенных в разных строках, то необходимо учитывать, что для доступа к каждому такому элементу данных требуется несколько подготовительных циклов, количество которых определяется суммой RAS to CAS Delay и CAS Latency.

DDR-память

В соответствии со спецификацией DDR-память имеет структуру из четырех независимых банков (как и в памяти SDRAM PC100/133), что позволяет совмещать выборку данных из одного банка с установкой адреса в другом банке, то есть можно одновременно иметь несколько открытых страниц. Кроме того, в DDR-памяти предусматривается пакетный доступ к данным, а длина пакета может составлять 2, 4 и 8 элементов.

В DDR-памяти данные могут передаваться два раза за такт, поэтому латентность CAS может оказаться не целой величиной, а кратной 0,5 такта. К примеру, на модуле памяти может использоваться обозначение CL=2,5, то есть CAS Latency составляет 2,5 такта системной частоты.

Вообще же, в соответствии со спецификацией на DDR-память предусматривается латентность CAS равная 2 и 2,5. Латентности 1,5 и 3 являются опциональными.

DDR-II

тандарт DDR-II пока еще находится в стадии утверждения, и широкое распространение память DDR-II получит лишь в 2005 году.

Если следовать терминологии DDR (Double Data Rate), то память DDR-II логично ее было бы назвать QDR (Quadra Data Rate), так как этот стандарт подразумевает в четыре раза большую скорость передачи: при пакетном режиме доступа данные передаются четыре раза за один такт.

Несмотря на увеличение скорости передачи в четыре раза по сравнению с обычной SDR (Single Data Rate) SDRAM-памятью, базовые принципы остались прежними. Само ядро памяти работает на тех же тактовых частотах, что и ядро памяти SDR и DDR.

Напомним, что для получения удвоенной скорости передачи в памяти DDR к синхронизирующему сигналу добавлялся инверсный, что позволяло считывать данные как по положительному, так и по отрицательному фронту тактирующего импульса и достигать удвоенной скорости передачи. Но каким же образом удается еще в два раза повысить скорость передачи по сравнению с DDR-памятью?

Предположим, что у нас имеется не одно, а два совмещенных ядра DDR. Каждое такое ядро позволяет производить выборку двух битов данных за такт, но в сумме получается, что за один такт происходит передача уже четырех битов. В реальности, конечно, используется одно ядро, но выборка данных происходит уже с учетверенной скоростью. При этом само ядро, как и прежде, тактируется на частоте 100, 133 или 166 МГц.

Память DDR-II, как и DDR, использует архитектуру из четырех банков с такой же длиной строки (страницы), как и в памяти DDR. Минимальная длина пакета равна 4 (в памяти DDR минимальная длина пакета равна 2). Набор команд DDR-II совместим с набором команд DDR.

Новые модули памяти DDR-II уже не будут совместимы по контактам с модулями DDR-памяти. Вместо 184-контактных модулей будут применяться 232-контактные модули. Кроме того, в них будет использоваться пониженное напряжение: 1,8 В против 2,5 В в модулях DDR. Учитывая, что поглощаемая мощность пропорциональна тактовой частоте, емкости памяти и квадрату напряжения, при прочих равных условиях снижение напряжения позволит почти вдвое снизить поглощаемую мощность.

DDR-III

Окончательные спецификации DDR-III будут приняты JEDEC к концу 2005 года, примерно тогда же появятся первые образцы новых чипов, а массовое появление чипов DDR-III ожидается в 2007 году.

Предполагается, что для снижения паразитных шумов при работе на высоких частотах в чипах DDR-III будут применяться сигнальная технология шунтирующих цепей SLT (Short-Loop Through), уже применяемая в некоторых чипах стандарта DDR-II и позволяющая исключить возникновение затуханий, возникающих при распространении сигнала от шины памяти к каждому модулю системы.

Инфоповодом для нижеследующего текста послужила материнская плата Gigabyte GA-7VAXP на чипсете KT400, доставленная в нашу тестовую спецрейсом прямиком из Поднебесной. Центральная опция данной платы и чипсета, несомненно, — поддержка 400-мегагерцовой DDR-памяти. Вот о последней, ее предшественниках и последователях и хотелось бы поговорить.

Предыдущий стандарт памяти — DDR333 (он же PC2700) — лишь совсем недавно получил статус официального, принятого JEDEC (Joint Electron Device Engineering Council). А большинство разнокалиберных модулей на чипах Samsung с гордой маркировкой DDR333 CL2,5, до сих пор сплошь и рядом соглашаются устойчиво работать лишь на 266 МГц. Иногда, снизив частоту, в качестве компенсации удается уменьшить и задержку CL до 2 тактов, что дает свои пару процентов прироста общей производительности, но не более того. Конечно, задавшись целью, можно найти фирменный 333-мегагерцовый модуль, например, собственной самсунговской сборки, отлично работающий на штатной частоте (к тому же если поднять напряжение питания памяти на 0,1-0,2 В). Для большей стабильности настоятельно рекомендуется нескольким модулям маленького объема предпочесть один большой.

Платформер

К сожалению, AMD-платформа, единолично пока поддерживающая DDR400, принципиально не дружит с единственной живой альтернативной памятью Direct Rambus DRAM. А Intel не станет реализовывать поддержку DDR400 в своих чипсетах до тех пор, пока этот стандарт не будет официально принят. В итоге приходится ограничиваться сравнением трех действующих разновидностей DDR плюс самой быстрой версии старой-доброй PC133 SDRAM (что ни говори, а старушка SDRAM-обыкновенная, несмотря на весь этот бурный прогресс, все еще остается самой распространенной).

Как ни странно, но на этот раз, взятый наугад DDR400-модуль (256 Мбайт, упакованных в 8 чипов производства вышеупомянутой Winbond) проявил отменную стабильность в штатном режиме. То же самое можно сказать и о матплате GA-7VAXP, несмотря на номер ее ревизии (всего лишь 1.1) и отсутствие большей части ответственных за стабильность питания конденсаторов на разведенных для них местах вокруг процессорного разъема. Попытка AMD сделать крепление кулеров более надежным (для чего была придумана конструкция, напоминающая крепеж кулеров у Pentium4), похоже, так и не встретила отклика у пользователей и изготовителей плат. В частности, наша GA-7VAXP не имела соответствующих крепежных отверстий, а на ее предшественнице GA-7VRXP (на чипсете KT333) таковые дырки были.

Из прочих новшеств, реализованных в чипсете KT400, непременно надо отметить следующее:
• поддержку AGP 8x (AGP 3.0), достойную особого рассмотрения (каковое несомненно воспоследует). Ради нового множителя пришлось поступиться поддержкой старых видеокарт с 3,3-вольтовым напряжением питания, работавших в режиме AGP 2x (реже — AGP 4x);
• 8X V-Link — новую шину между северным и южным мостом с пропускной способностью 533 Мбайт/с (против 266 Мбайт/с у KT266A и KT333);
• поддержку процессоров Athlon для системной шины 333 МГц. Как явствует из инструкции к нашей плате, с такими процессорами можно будет использовать только синхронную частоту памяти (DDR333). Обидно.

Память DDR400 PC3200 на своем рабочем месте.

У самой GA-7VAXP тоже есть обновка по сравнению с предшественницей. И без того богатая коллекция интерфейсов (USB 1.1 и 2.0, IDE RAID, адаптер Ethernet 10/100 Мбит/с) пополнилась контроллером FireWire (IEEE1394). Можно посетовать лишь на отсутствие уже входящего в обиход интерфейса для жестких дисков Serial ATA, но он пока не столь нужен, чтобы навешивать на плату еще несколько чипов, а встроенной поддержки SATA в KT400 по-прежнему не предусмотрено.

DDR в тесте

Оценить производительность подсистемы памяти можно с большой точностью, воспользовавшись многочисленными синтетическими тестами (PCMark, Cachemem), да только практическая польза от таких испытаний будет невелика. Их оценки можно предсказать или даже просчитать, зная частоты, задержки, ширину шины данных и т.п. Увы, в реальных задачах картина может оказаться совершенно иной (местами, конечно, результаты останутся прежними, но разница может сократиться в разы или даже стать нулевой).

Производительность DDR400 по мнению SiSoft Sandra.

Посему для наших целей традиционно больше всего подходят тесты, базирующиеся на игровых движках. Чтобы окончательно приземлить результаты, использовалось обиходное разрешение 1024х768х32 с выключенным сжатием текстур, а также видеокарта уровня чуть выше среднего — Sapphire Radeon 9000 Pro (64 Мбайт собственной памяти).

Результаты тестированиев разрешении 1024x768x32.

Результаты перед вами — см. таблицу (применялся процессор Athlon-1700+ XP). На первый взгляд разница заметна лишь между простой SDRAM и DDR-памятью. С другой стороны — что такое 300 «попугаев» в 3DMark? Фактически всего лишь прирост в 5-6 fps по некоторым из тестов или даже меньше того. С третьей стороны такой же разрыв отделяет самую медлительную версию DDR от виновницы нашего сегодняшнего торжества. А разница между DDR400 и простой SDRAM достигает уже 10-16 fps в самых удачных тестах. Как говорится, уже что-то. Хоть и, по-моему, совершенно недостаточно для того, чтобы немедленно бежать в магазин за новой памятью. Тем более что современные высокотехнологичные игры с поддержкой шейдеров и т.п. (ради них, как правило, и затеивается апгрейд) в наименьшей степени откликнулись на возросшую частоту памяти). По большому счету, того же десятка fps прироста с куда большей вероятностью можно добиться сменой видеокарты (а если карта старая, без аппаратного блока T&L — это в любом случае единственный действенный вариант).

Другое дело, что быстрая память влияет на производительность всех программ, включая операционную систему. Измерить изменения в скорости загрузки Windows XP — нетривиальная задача, но даже лишние доли секунды задержки на том или ином привычном действии порою очень портят общее ощущение темпа. А поскольку темп работы у каждого свой, сложно давать какие-либо рекомендации по поводу апгрейда, связанного с подсистемой памяти. Для иллюстрации я перегнал 240 Мбайт аудиоматериала из WAV в MP3 с помощью одного из самых популярных кодеков — Lame 3.92. Получившиеся 15% разницы между самой быстрой (DDR400) и самой медленной системой (PC133) мне лично кажутся достаточной причиной для беспокойства. Разница же между DDR400 и DDR266 не превысила 7% — вроде бы не столь страшно, чтобы отказываться от совсем еще свежей, но уже ставшей самой слабой памятью в иерархии DDR?

Безусловно, для стерильной оценки необходимо было бы использовать разные контроллеры памяти, входящие в состав разных чипсетов. Вполне возможно (даже — почти наверняка), что KT400 пока не использует всех возможностей последнего поколения DDR-памяти, да и сама эта память вряд ли пока пригодна для разгона и тонкой настройки (впрочем, не проверял — у нашей GA-7VAXP в текущей версии BIOS отсутствовала даже настройка CAS Latency, не говоря уже о более тонких). В то же время контроллер памяти у использовавшейся в тесте платы ABIT KT7A (как и у большинства фирменных плат на последнем поколении SDRAM-чипсетов) отточен до мелочей и более шлифовать его уже некуда. Три основные настройки — Bank DRAM Timing, DRAM Bank Interleave, SDRAM Cycle Length — были установлены в лучшую комбинацию — Turbo, 4-Way и 2 соответственно.

А значит, есть шанс, что с появлением оптимизированных версий BIOS для KT400 разрыв в скоростях еще увеличится на пару-тройку процентов.

Что же теперь будет?


Новые поколения процессоров стимулировали разработку более скоростной памяти SDRAM (Synchronous Dynamic Random Access Memory) с тактовой частотой 66 МГц, а модули памяти с такими микросхемами получили название DIMM(Dual In-line Memory Module).
Для использования с процессорами Athlon, а потом и с Pentium 4, было разработано второе поколение микросхем SDRAM — DDR SDRAM (Double Data Rate SDRAM). Технология DDR SDRAM позволяет передавать данные по обоим фронтам каждого тактового импульса, что предоставляет возможность удвоить пропускную способность памяти. При дальнейшем развитии этой технологии в микросхемах DDR2 SDRAM удалось за один тактовый импульс передавать уже 4 порции данных. Причем следует отметить, что увеличение производительности происходит за счет оптимизации процесса адресации и чтения/записи ячеек памяти, а вот тактовая частота работы запоминающей матрицы не изменяется. Поэтому общая производительность компьютера не увеличивается в два и четыре раза, а всего на десятки процентов. На рис. показаны частотные принципы работы микросхем SDRAM различных поколений.


Существуют следующие типы DIMM:

    • 72-pin SO-DIMM (Small Outline Dual In-line Memory Module) — используется для FPM DRAM (Fast Page Mode Dynamic Random Access Memory) и EDO DRAM (Extended Data Out Dynamic Random Access Memory)


      • 100-pin DIMM — используется для принтеров SDRAM (Synchronous Dynamic Random Access Memory)


        • 144-pin SO-DIMM — используется для SDR SDRAM (Single Data Rate … ) в портативних компьютерах



          • 172-pin MicroDIMM — используется для DDR SDRAM (Double date rate)



            • 200-pin SO-DIMM — используется для DDR SDRAM и DDR2 SDRAM




              • 214-pin MicroDIMM — используется для DDR2 SDRAM



                • 240-pin DIMM — используется для DDR2 SDRAM, DDR3 SDRAM и FB-DIMM (Fully Buffered) DRAM









                Чтобы нельзя было установить неподходящий тип DIMM-модуля, в текстолитовой плате модуля делается несколько прорезей (ключей) среди контактных площадок, а также справа и слева в зоне элементов фиксации модуля на системной плате. Для механической идентификации различных DIMM-модулей используется сдвиг положения двух ключей в текстолитовой плате модуля, расположенных среди контактных площадок. Основное назначение этих ключей — не дать установить в разъем DIMM-модуль с неподходящим напряжением питания микросхем памяти. Кроме того, расположение ключа или ключей определяет наличие или отсутствие буфера данных и т. д.


                Модули DDR имеют маркировку PC. Но в отличие от SDRAM, где PC обозначало частоту работы (например PC133 – память предназначена для работы на частоте 133МГц), показатель PC в модулях DDR указывает на максимально достижимую пропускную способностью, измеряемую в мегабайтах в секунду.

                DDR2 SDRAM

                Название стандарта Тип памяти Частота памяти Частота шины Передача данных в секунду (MT/s) Пиковая скорость передачи данных
                PC2-3200 DDR2-400 100 МГц 200 МГц 400 3200 МБ/с
                PC2-4200 DDR2-533 133 МГц 266 МГц 533 4200 МБ/с
                PC2-5300 DDR2-667 166 МГц 333 МГц 667 5300 МБ/с
                PC2-5400 DDR2-675 168 МГц 337 МГц 675 5400 МБ/с
                PC2-5600 DDR2-700 175 МГц 350 МГц 700 5600 МБ/с
                PC2-5700 DDR2-711 177 МГц 355 МГц 711 5700 МБ/с
                PC2-6000 DDR2-750 187 МГц 375 МГц 750 6000 МБ/с
                PC2-6400 DDR2-800 200 МГц 400 МГц 800 6400 МБ/с
                PC2-7100 DDR2-888 222 МГц 444 МГц 888 7100 МБ/с
                PC2-7200 DDR2-900 225 МГц 450 МГц 900 7200 МБ/с
                PC2-8000 DDR2-1000 250 МГц 500 МГц 1000 8000 МБ/с
                PC2-8500 DDR2-1066 266 МГц 533 МГц 1066 8500 МБ/с
                PC2-9200 DDR2-1150 287 МГц 575 МГц 1150 9200 МБ/с
                PC2-9600 DDR2-1200 300 МГц 600 МГц 1200 9600 МБ/с

                DDR3 SDRAM

                Название стандарта Тип памяти Частота памяти Частота шины Передач данных в секунду(MT/s) Пиковая скорость передачи данных
                PC3-6400 DDR3-800 100 МГц 400 МГц 800 6400 МБ/с
                PC3-8500 DDR3-1066 133 МГц 533 МГц 1066 8533 МБ/с
                PC3-10600 DDR3-1333 166 МГц 667 МГц 1333 10667 МБ/с
                PC3-12800 DDR3-1600 200 МГц 800 МГц 1600 12800 МБ/с
                PC3-14400 DDR3-1800 225 МГц 900 МГц 1800 14400 МБ/с
                PC3-16000 DDR3-2000 250 МГц 1000 МГц 2000 16000 МБ/с
                PC3-17000 DDR3-2133 266 МГц 1066 МГц 2133 17066 МБ/с
                PC3-19200 DDR3-2400 300 МГц 1200 МГц 2400 19200 МБ/с

                В таблицах указываются именно пиковые величины, на практике они могут быть недостижимы.
                Для комплексной оценки возможностей RAM используется термин пропускная способность памяти. Он учитывает и частоту, на которой передаются данные и разрядность шины и количество каналов памяти.

                Пропускная способность = Частота шины x ширину канала x кол-во каналов

                (400 МГц x 64 бит x 2)/ 8 бит = 6400 Мбайт/с

                • Kingston KVR800D2N6/1G
                • OCZ OCZ2M8001G
                • Corsair XMS2 CM2X1024-6400C5

                На сайте многих производителей памяти можно изучить, как читается их Part Number.

                В начале 2003 года основным видом памяти была память стандарта DDR333. Она использовалась как для систем с процессорами Intel (i845PE), так и для AMD-систем (KT400 / nForce II).

                Стоит отметить, что DDR333 не позволяла полностью раскрыть потенциал процессора Pentium4, архитектура которого оптимизирована под системы с большой пропускной способностью памяти. В первую очередь это отметили оверклокеры, которые использовали наиболее мощные материнские платы на чипсете i845PE с одновременной поддержкой делителей 54 и 43. Именно использование делителя 43 позволяло установить частоту памяти = 177Мгерц (это соответствует DDR354), что давала неплохую прибавку производительности. Однако, как такового, стандарта DDR354 не существовало. Точно также не существовало единого стандарта DDR400, хотя память с такой маркировкой выпускали многие компании (прежде всего дальновидный Samsung :). Особенно большим спросом такая память пользовалась среди оверклокеров, многие из которых разгоняли процессора P4 до умопомрачительных (по тем временам :) частот FSB = 180-190Мгерц. В результате уже в начале 2003 года появились первые, достаточно серьезные, аргументы в пользу высокоскоростной памяти, способной работать на частотах 240Мгерц и выше (DDR480). Однако максимумом того, что могли предложить производители на тот момент, это памяти DDR433 (217Мгерц).

                Отдельно отметим материнские платы на чипсетах SiS, которые позволяли использовать память DDR400 (а также еще целый ряд нестандартных частот) для процессоров с 133(533QP) Мгерцовой шиной.

                Чуть позже, на рынке появляются первые платы на двухканальном чипсете E7205 GraniteBay, и потребность в скоростной памяти резко снижается. Даже для самых удачных (с точки зрения разгона) процессоров было достаточно памяти DDR400. При этом пропускная способность шины памяти полностью соответствовала пропускной способности процессорной шины, что позволяло в полной мере ощутить преимущества архитектуры NetBurst.

                Период царствования чипсета GraniteBay был очень короткий: в конце весны Intel выпускает процессоры с новой частотой шины - 200(800QP)Мгерц. Для поддержки новых процессоров Intel выпускает целую гамму чипсетов 865 (i875P, i865PE, i865P и i848P), основным видом памяти которых был DDR400. Естественно, комитет JEDEC быстренько утверждает стандарт DDR400, и Intel начинает компанию по сертификации соответствующих модулей (это же делают и производители материнских плат).

                Все перечисленные чипсеты имеют двухканальный контроллер памяти, и обычным пользователям беспокоится совершенно не о чем: пропускной способности DDR400 (работающей в двухканальном режиме) достаточно для достижения максимума производительности. А вот оверклокеры начинают в панике хвататься за голову: новые процессоры демонстрируют чудеса разгона (до FSB=300Мгерц), но на рынке отсутствует память способная работать на столь высоких частотах. Однако производители памяти не сидели сложа руки, и вот уже летом-осенью этого года завалили пользователей анонсами о выходе памяти DDR450 и DDR500.



                Что касается владельцев систем на процессорах AMD, то проблема выбора "быстрой" памяти мучила их не столь сильно :). Во-первых архитектура процессоров Athlon XP такова, что увеличение пропускной способности памяти не приводит к существенному увеличению производительности. А во-вторых до 2003 года, основной платформой AMD систем были платы на чипсетах VIA KT333 и KT400. То есть, для наиболее производительного синхронного режима, памяти DDR333 было вполне достаточно. Что касается оверклокеров, то максимум на что они могли рассчитывать - это режим 200200 (FSBMEM), но в таком режиме стабильность систем на чипсетах VIA резко падала (прежде всего из-за повышенной частоты на PCI). Проблемы с режимом 200200 испытали и первые владельцы плат на чипсете nVidia nForce II, однако их причина была скрыта в другом. Сам по себе чипсет nForce II положительно относится к оверклокингу: он имеет фиксированную частоту AGPPCI и массу асинхронных режимов. Однако первые платы на nForce II имели неудачный дизайн, и основывались на "сырой" ревизии чипсета. Первое приводило к тому, что при использовании асинхронных режимов платы довольно часто выходили из строя (необходимо было восстанавливать биос). Вторая проблема скрывалась в чипсете - только очень редкие модели материнских плат обеспечивали стабильную работу в двухканальном синхронном режиме на частотах около 200Мгерц.

                Однако, вот уже несколько месяцев на рынке присутствует обновленная ревизия чипсета nForce II - 400 Ultra, которая обеспечивает стабильную работу на гораздо больших частотах (в интернете есть сведения о работе в Sync DC 240Мгерц и выше). Кроме того, на новых платах изменен код отвечающий за перепрошивку биоса при разгоне, что серьезно уменьшило вероятность выхода платы из строя. В результате потребность в скоростной памяти серьезно увеличилась, и теоретически, использование памяти DDR500 должно сделать возможным работу системы в режиме 250250.

                Наконец-то, в наши цепкие руки попала память DDR500, и мы ее протестируем и на Intel и на AMD системе.

                Transcend DDR500

                Память упакована в пластиковый бокс, что бы вскрыть который нужно приложить немало усилий.


                Transcend DDR500

                Помимо самой памяти, в боксе есть рекламка с описанием различной продукции компании, а также гарантийный талон.


                Transcend DDR500

                Каждый модуль памяти имеет алюминиевый распределитель тепла (heatspreader), с отличным качеством обработки. В результате модуль памяти не только приятно держать в руках, но и можно безбоязненно увеличивать напряжение.


                Transcend DDR500

                Первое тестирование на плате Asus P4P800 Deluxe повергло меня в шок: памяти не работала даже на заявленной частоте = 250Мгерц. Максимальная частота, при которой система работала стабильно - 241Мгерц (DDR482). Более того, память отказывалась работать в асинхронном режиме (делитель 45) и несколько нестабильно работала в асинхронном режиме 23.

                Сделав предположение, что возникла ситуация с несовместимостью платы и памяти, я решил попробовать память с платой на чипсете i875P. К этому подталкивал и тот факт, что Transcend для проверки своей продукции использует материнские платы Asus P4C800, которые основаны на i875P. Итак, я установил память в систему с платой Abit IC7-G, и сбылась мечта: стабильная работа в режиме 250250Мгерц.

                Однако, мой процессор работает на всех частотах FSB до 309Мгерц включительно (см обзор Abit IC7-MAX3), и для достижение наивысшей производительности возникла необходимость включить асинхронный режим. И тут возникло разочарование: система упорно отказывалась стартовать как с делителем 23, так и делителем 45. В результате нам не удалось протестировать такой заманчивый режим как 300240 и вполне обыденный 300200.

                Вообще, если говорить о асинхронных режимах, то именно они позволяют выжать максимум производительности при разгоне младших моделей процессоров Pentium4 (2.4C, 2.6C и 2.8C). Для наглядной демонстрации я сделал следующую табличку:

                В качестве технологического предела ядра Northwood была выбрана частота 3.7Ггерц, и для каждого процессора указана та частота FSB, которая необходима ему для достижения этого предела. В результате при синхронном разгоне процессора 2.4С до частоты 3.7Ггерц, частота работы памяти должна составить 309Мгерц (DDR618) что совершенно нереально. Тоже самое можно сказать и о разгоне моделей 2.6C и 2.8C. А вот для разгона старших моделей Pentium4 (3.0C и 3.2С) синхронный режим вполне возможен. Но есть ли в нем смысл ? Конечно, синхронный режим наиболее производителен, но если посмотреть на тайминги памяти, то они достаточно высокие. И вполне может возникнуть ситуация, когда прирост скорости от синхронного режима будет ликвидирован из-за потерь связанных с высокими таймингами. Мы уже проводили подобное исследование, и выяснили, что реальное падение производительности при переходе к асинхронным режимам составляет 3% и 6% (для режимов 45 и 23 соответственно), а при увеличении таймингов - падение производительности может достигать 5%.

                Итог: память Transcend DDR500 очень неоднозначный продукт с высокой ценой, с высокими таймингами. Кроме того область применения этой памяти очень мала: исключительно синхронный разгон.

                Corsair DDR400

                Память Corsair нечастый гость на российском рынке, но в последнее время ситуация стала изменяться к лучшему.

                Итак, в нашей лаборатории побывали два модуля Corsair DDR400 из серии TwinX.


                Corsair DDR400

                Серия TwinX подразумевает комплект памяти из двух модулей, якобы оптимизированный для работы в двухканальный системах. На самом деле для работы на двухканальной плате достаточно использовать любые одинаковые модули (т.е. одного производителя, из одной серии). Чисто теоретически можно устанавливать модули различных производителей (даже с разными таймингами по SPD), но в этом случае возможны ситуации с падением производительности или несовместимости.

                На модуле памяти есть наклейка, в которой указаны тайминги 2-2-6-2, однако это не помешало ей показать стабильную работу на частоте 209Мгерц при таймингах 2-2-5-2. Правда на сайте компании (см. по маркировке CMX256A-3200LLPT) в качестве таймингов по умолчанию указаны значения 2-3-6-2. А при увеличении таймингов, максимальная частота выросла до 221Мгерц.

                Наивысшей частотой, при которой система работала стабильно, явилось значение 221Мгерц. Что касается асинхронных режимов, то тут никаких претензий: стабильная работа с делителями 23 и 45.

                Итог: очень хорошая память, единственный недостаток которой - грубая обработка внешней поверхности теплораспределителей :).

                Kingston DDR333 и DDR433

                Компания Kingston одной из первых представила на российском рынке модули памяти ориентированные на оверклокеров. Это линейка HyperX, двух представителей которых мы сегодня рассмотрим.

                Каждый модуль памяти упакован в отдельную коробочку с прозрачным верхом.


                Kingston DDR333 и DDR433

                Отдельно отметим, что подобную упаковку имеют и более дешевые модули из серии ValueRAM (на фото они сверху ; отсутствуют распределители тепла).



                Как и положено "оверклокерскому" модулю, он имеет теплораспределители (алюминиевые). На наклейке есть информация о рабочем напряжении модуля, которое составляет 2.5V (что соответствует штатному напряжению).



                А вот тайминги памяти на наклейке не указаны. И зря - инженерам компании есть чем гордится: данные по SPD показывают значения 2-2-5-2. При этом память действительно работает на таких таймингах на штатной частоте. А при увеличении Vmem до 2.7V память показывает чудеса разгона: стабильная работа на частоте 210Мгерц (DDR420) на минимальных таймингах.

                А при увеличении таймингов, максимальная частота была зафиксирована на отметке 221Мгерц. Причем, как и память Corsair DDR400, память Kingston DDR333 совершенно нормально работала в асинхронных режимах (23 и 45).

                Итоговый вывод: очень привлекательный продукт, как с точки зрения характеристик, так и с точки зрения цены.

                А вот память Kingston HyperX DDR433 оставила после себя совершенно иное впечатление.




                от DDR333, память DDR433 отличается только наклейкой

                Во-первых для достижения стабильной частоты в 217Мгерц, инженеры компании вынуждены были поднять тайминги до 2-3-7-3 и увеличить напряжение Vmem до 2.6V. Во-вторых, на некоторых материнских платах эта память отказывалась работать даже в штатном режиме. В-третьих, любое снижение таймингов приводило к невозможности старта система. Далее - память не работала в асинхронных режимах (как 23, так и 45). И наконец - память стоит довольно дорого по сравнению с DDR333 и DDR400.

                Совершенно непонятно, что мешает компании делать нормальные модули DDR433 хотя бы из своих же DDR333. А иначе закрадывается жуткое подозрение, что модули DDR433 и выше это отбраковка от производства модулей DDR333. Иными словами наиболее качественные модули идут для производства памяти с низкими таймингами; те модули которые не прошли проверку - проверяются на более высоких таймингах (и так далее).

                Вывод: память Kingston HyperX DDR433 совершенно не соответствует своей стоимости и к приобретению не рекомендуется.

                Тестирование

                В первую очередь мы провели тестирование на Intel платформе.

                Во второй тестовой сессии использовалась память Kingston HyperX DDR333. Процессор опять же работал на частоте FSB = 250Мгерц (итоговая 3.0Ггерц), а вот память - асинхронно (45) на частоте 200Мгерц (DDR400) с минимальными таймингами 2-2-5-2.

                Вначале посмотрим на результаты синтетических тестов.

                Теперь тесты игровых программ.

                Итоговый вывод: система с памятью, работающей в асинхронном режиме с минимальными таймингами, оказалась быстрее (правда чисто символически) системы в синхронном режиме с высокими таймингами. Что касается синтетических приложений, то они честно показывают более высокую пропускную способность памяти DDR500.

                А теперь проведем не менее интересное исследование: насколько эффективно применение высокоскоростной памяти на AMD платформе. Самый первый вопрос: сможем ли мы достичь синхронного двухканального (Sync DC) режима 250250 и если да, то какой прирост производительности мы получим по сравнению с режимами 166166 и 200200.

                Вначале посмотрим на результаты синтетических тестов.

                Теперь тесты игровых программ.

                Перед нами несколько иная картина, нежели то, что мы видели на Intel системе. Благодаря более высокой частоте системной шины, режим 233233 оказывается наиболее производительным. Поэтому, приобретение высокоскоростной памяти для системы с процессором AthlonXP имеет смысл только в одном случае: для достижения как можно более высокой частоты FSB в синхронном разгоне. При этом совместимость материнской платы и модулей памяти должна быть достаточно высокой, что бы обеспечить минимум частоту 233Мгерц. Если же частота оказывается ниже, то система с высокими таймингами, будет проигрывать системе в режиме 200200, но работающей на низких таймингах.

                Здесь уместно будет упомянуть о том, что более высокая частота шины не позволяет достичь максимальной частоты процессора с высокой точностью. Поскольку даже увеличение множителя на 0.5 приводит к увеличению частоты процессора более 116Мгерц!

                В завершающей части тестирования я установил память Transcend DDR500 на плату Abit NF7-S, которая в сравнительном тестировании завоевала титул "лучшей платформа для разгона". Но в данном случае она не смогла подтвердить свой высокий статус: максимальная частота в Sync DC составила всего лишь 220Мгерц (при этом пришлось увеличивать Vdd до 1.7V!).

                Итак, если делать выбор из тех модулей, которые участвовали в сегодняшнем тестировании, то наиболее привлекательной выглядит память Kingston HyperX DDR333, за ней следует Corsair DDR400. Этот вывод справедлив как для систем с процессорами Intel, так и для AMD-систем.

                Итоговый вывод: фактически высокоскоростная память типа Transcend DDR500 это сильно гипертрофированный вариант памяти, в которой для достижения стабильной работы на высоких частотах принесены в жертву все остальные полезные функции (такие как низкие тайминги, способность работать в асинхронном режиме, совместимость с материнскими платами). Поэтому покупать такую память нужно в твердом уме и в трезвой "памяти" (прошу прощения за тафтологию :), с обязательным манибэком и при достаточном финансовом благополучии (что бы не расстраиваться в случае неудачного разгона). Во всех остальных случаях, рекомендуется подобрать оверклокерскую память из серий DDR333 и DDR400. Кроме того, не нужно стесняться асинхронных режимов при работе с Intel системами. А что касается AMD систем, то по моему мнению наилучшим вариантом является синхронный режим 200200 с минимальными таймингами (и дальнейшим разгоном с помощью увеличения множителя).

                На сегодняшний день развитие памяти DDR явно зашло в тупик. Наращивание рабочей частоты в ущерб остальным параметрам не прибавляет высокоскоростной памяти привлекательности. Выход из подобной ситуации возможен только при существенном снижении рабочих таймингов. Однако на это остается очень мало времени - в 2004 году начнется постепенный переход на оперативную память DDR-II, образцы которой уже имеют на руках ведущие фирмы-производители.

                Читайте также: