Isa разъем на материнской плате для чего

Обновлено: 06.07.2024

С момента появления домашних компьютеров существует возможность расширять их функционал путём установки большего количества RAM, более ёмких накопителей, дополнительных комплектующих. Но только с появлением IBM PC привычной стала идея о полностью открытой модульной компьютерной системе. А именно, концепция карт расширения позволила пользователям компьютеров не зависеть от конфигураций систем, предлагаемых производителями. Подобные конфигурации можно было, в ограниченных пределах, расширять комплектующими, рассчитанными исключительно на эти системы. Благодаря универсальным картам расширения появились целые отрасли промышленности, они стали и причиной возникновения большого рынка любительских устройств, которые можно было подключать к компьютерам.


Такая открытость ISA означала то, что можно было достаточно легко и дёшево создавать собственные ISA-карты. То же касалось и шины PCI, которая появилась после ISA и была такой же открытой. В результате до сих пор существует полная жизни экосистема, в которой есть место и любительским звуковым картам, рассчитанным на слоты PCI или ISA, и картам расширения, позволяющим оснастить IBM PC 1981-го года поддержкой USB, и много чему ещё.

С чего начать тому, кто в наши дни хочет заняться работой с ISA- и PCI-картами?

Цена простоты


По мере того, как разработчики клонов PC использовали в своих моделях компьютеров всё более быстрые процессоры, частота шины AT, в итоге, пришла к значениям, находящимся где-то между 10 и 16 МГц. Это, понятно, привело к тому, что многие существующие AT-карты (ISA) работали в подобных системах неправильно. Через некоторое время большинство производителей оборудования сделало так, чтобы частота шины не была бы напрямую связана с частотой процессора. Но несмотря на то, что в названии шины ISA есть намёк на нечто стандартизированное, настоящего стандарта этой шины не существовало.

Правда, была попытка стандартизировать замену ISA, получившую название Extended ISA (EISA). Эта 32-битная шина, работавшая на частоте 8,33 МГц, была создана в 1988 году. Хотя на рынке домашних компьютеров она и не «взлетела», некоторым вниманием она пользовалась среди пользователей серверного оборудования, особенно — как более дешёвая альтернатива собственной шине IBM Micro Channel architecture (MCA). Компания IBM задумывала эту шину в качестве замены ISA.

В итоге же шина ISA дожила до наших дней, сохранившись, в основном, в промышленном оборудовании и во встраиваемых системах (например, в виде шины LPC), в то время как в других сферах был сначала осуществлён переход на PCI, а позже — на PCIe. А вот интерфейсы для подключения видеокарт к компьютерам шли своим путём. Речь идёт о шинах VESA Local Bus (VLB) и Accelerated Graphics Port (AGP), которые представляют собой специализированные интерфейсы, нацеленные на нужды GPU.

Начало работы с новыми старыми технологиями


При разработке устройств для ISA и PCI физический интерфейс тоже особых проблем не доставляет, так как и в том и в другом случаях используются контакты, расположенные на ребре платы. Именно такой вариант расположения контактов на платах, актуальный до наших дней, был выбран, преимущественно, из-за его дешевизны и надёжности. На плате расширения нет какого-то физического коннектора. Там, на краю, находятся лишь контактные площадки, которые позволяют подключить плату к слоту. При проектировании подобных плат, правда, надо обращать внимание на их толщину, так как от неё зависит надёжность контакта. Обычно хорошо показывает себя толщина платы в 1,6 мм.

Если кто-то хочет самостоятельно создать ISA или PCI-плату — в интернете можно найти параметры контактов для таких плат. Например — этот отличный обзор. Тут, в частности, есть сведения о расстоянии между контактными площадками, о форме платы в том месте, где находятся контакты, о размерах контактных площадок и о других параметрах плат и контактов.

При проектировании электрических цепей плат стоит знать о том, что ISA использует напряжение в 5 В, а PCI может использовать 5 В, 3,3 В, или и то и другое. В случае с PCI платы различают, используя выступы в PCI-слотах и выемки на картах (ключи). Так, если в слоте имеется один выступ, расположенный на расстоянии 56,21 мм от той его стороны, на котором находятся разъёмы подключаемой к нему карты, то это будет слот, рассчитанный на карты, поддерживающие напряжение 3,3 В. Выступ, расположенный на расстоянии 104,77 мм от края слота, указывает на слот для 5 В-карт. На краях карт есть соответствующие выемки. Если карта поддерживает и 5, и 3,3 В — то на ней будет две выемки (это — так называемые универсальные карты).


Ключи на PCI-картах и разъёмах

Существуют 32-битные и 64-битные варианты PCI. Причём, всеобщий интерес на рынке домашних компьютеров вызвал именно первый вариант шины. Если говорить о развитии PCI, то можно отметить интерфейс PCI-X. Эта шина, в 64-битном варианте, в основном, применялась в серверных системах. В PCI-X удвоена максимальная частота шины (с 66 до 133 МГц) и убрана поддержка 5 В. Поэтому PCI-X-карты часто работают при их установке в слоты PCI, рассчитанные на 3,3 В (то же самое справедливо и для PCI-карт, устанавливаемых в слоты PCI-X). 64-битная карта, и PCI, и PCI-X, может перейти в 32-битный режим в том случае, если она установлена в более короткий, 32-битный слот.

Работа с шинами

Каждое устройство, подключённое к шине, увеличивает нагрузку на неё. Кроме того, если речь идёт о шинах с общими линиями связи, важно, чтобы отдельные устройства могли бы отключаться от этих линий в то время, когда они эти линии не используют. Обычно для реализации такой схемы работы используется буферный элемент с тремя состояниями. Например — такой, как распространённый 74LS244.


Логическая схема 74LS244

74LS244 может не только обеспечивать изоляцию, что умеют и стандартные цифровые буферы. Этот элемент может переключаться в высокоимпедансное состояние (Hi-Z), что равносильно отключению устройства.

В случае с ISA-картами нам, для организации правильного взаимодействия с шиной, нужно нечто вроде 74LS244 или его двунаправленного варианта 74LS245. У каждой сигнальной линии должен быть буфер или «защёлка». Подробнее об этом можно почитать здесь. А тут описан хороший пример современной ISA-карты, называемой Snark Barker и представляющей собой клон SoundBlaster.

PCI-карты, по идее, тоже можно создавать, используя подобный подход, но обычно в коммерческих PCI-картах используют специализированные интегральные схемы для ускорения ввода-вывода, которые предоставляют компонентам карт простой интерфейс, похожий на ISA. Подобные решения в наши дни, правда, нельзя назвать дешёвыми (если только не рисковать, связываясь с чем-то вроде WCH CH365). Поэтому хорошей альтернативой подобным решениям является реализация PCI-контроллера на базе FPGA. MCA-версия вышеупомянутой карты Snark Barker использует для взаимодействия с шиной MCA CPLD. На сайтах вроде OpenCores имеются проекты, ориентированные на PCI, которые можно использовать в качестве отправной точки для собственных разработок.

Обмен данными с шинами ISA и PCI

После создания новенькой платы с золотыми контактами, и после того, как на ней распаяны буферные элементы или FPGA, нужно ещё и иметь возможность обмениваться данными с шиной ISA или PCI, пользуясь соответствующим протоколом. К счастью, существует множество материалов по ISA, например — этот. А вот протокол PCI, вроде протокола PCIe, это — «коммерческая тайна». В результате соответствующие данные можно официально (и небесплатно) достать лишь на сайте PCI-SIG. Правда, спецификации, всё же, «утекли» в общий доступ.

Как и в случае с любой другой общей шиной, схема взаимодействия с шиной при записи или чтении данных предусматривает запрос доступа к шине у «хозяина шины» или, в случае с шиной PCI с несколькими «хозяевами», использование процедуры арбитража. К карте расширения, кроме того, можно обращаться напрямую (вот материал об этом, в котором речь идёт об ISA). В Linux это подразумевает использование программ ядра ( sys/io.h ). Сначала получают соответствующие разрешения, а потом уже можно отправлять данные в конкретный IO-порт, соответствующий карте. В целом это выглядит так:


В случае с ISA адрес IO-порта задаётся в самой плате, а для распознавания адреса используется декодер, находящийся на линиях адресного сигнала. Часто на платах для выбора адреса, а так же — линий IRQ и DMA использовались переключатели или перемычки. Технология ISA PnP была призвана улучшить этот процесс, но по факту принесла больше вреда, чем пользы. В случае с PCI технология PnP является частью стандарта. Шина PCI осуществляет поиск устройств при загрузке, а встроенная ROM (BIOS) запрашивает у карт сведения об их нуждах, после чего адреса и другие параметры задаются автоматически.

Итоги

Правда, шины ISA и PCI хороши тем, что они доступны даже любителям. Скорости этих шин, если нужно отлаживать или анализировать платы, вполне укладываются в возможности любительского аппаратного обеспечения и соответствующих осциллографов. Использование достаточно медленных параллельных шин данных означает, что дифференциальные сигналы тут не применяются, а это облегчает трассировку плат.

Хотя те старые шины, о которых мы говорили, не являются игроками той же лиги, что и шина PCIe, их возможности и их широкая доступность означают, что они могут дать старым компьютерам второй шанс. Даже если речь идёт о чём-то очень простом, вроде накопителя, основанного на флэш-памяти, предназначенного для первого IBM PC.

В этой статье мы хотим рассказать вам о некогда хорошо известной, но теперь редко использующейся технологии – технологии ISA, а также сходной с ней технологии ЕISA.

Фото коннектора ISA

История происхождения и принцип действия

ISA представляет собой устаревший стандарт системной шины и шины ввода/вывода персональных IBM-совместимых компьютеров, использовавшийся в 1980-х-начале 1990-х гг. Аббревиатура ISA расшифровывается как Industry Standard Architecture (промышленный стандарт архитектуры). Уже самое это название свидетельствует о том, что шина в то время являлась фактическим стандартом и была принята к использованию практически всеми производителями компьютерного оборудования.

Максимальная пропускная способность 16-разрядной шины составляет чуть более 8 МБ/c. Устройства, вставленные в слот расширения, благодаря 24-адресным линиям шины могут адресовать 16 МБ памяти. Кроме того, она поддерживает 16 аппаратных прерываний, краткое описание которых мы приводили в статье, посвященной IRQ.

В первых версиях ISA работала на одинаковой частоте с процессором. Однако в последующих реализациях из-за того, что частота процессоров значительно увеличилась, шина получила возможность работать при помощи отдельного тактового генератора.

Достоинства шины:

  1. Сравнительная простота конструкции.
  2. Надежность.
  3. Широкая поддержка со стороны производителей.

Тем не менее, она имела и ряд серьезных недостатков, которые побудили отказаться от ее использования:

  1. Низкая скорость.
  2. Небольшая разрядность.
  3. Отсутствие полноценной поддержки функций bus mastering.
  4. Отсутствие автоматической конфигурации устройств. Устройства ISA конфигурировались пользователями вручную при помощи джамперов и переключателей.

EISA – улучшенная версия ISA

Эти недостатки была призвана устранить шина EISA (Extended ISA, т.е. расширенная ISA). В её разработке участвовали многие известные производители компьютерной техники, такие, как Compaq Computer, Epson, Hewlett-Packard, NEC, Zenith и некоторые другие.

Фото слотов EISA

EISA с самого начала позиционировалась, как преемница ISA, а не как ее конкурент. Поэтому она была полностью совместима с устройствами ISA. Устройства EISA должны были вставляться в слот такой же длины, как и 16-разрядный слот ISA, но отличались наличием дополнительных коннекторов. Она поддерживала функцию bus mastering для устройства, что позволяло передавать управление шиной какой-либо плате в слоте расширения. Также поддерживалась автоматическая конфигурация устройства. Однако она была ограниченной, поскольку для этой цели пользователю предлагалась специальная программная утилита, а новейшие на то время операционные системы, такие, как Windows 95, не были в состоянии автоматически конфигурировать устройства EISA.

Теоретическая пропускная способность EISA составляла 32 МБ/c, однако на практике из-за накладных расходов транспортных протоколов она составляла около 20 МБ/с.

В конце 1980-х, во время расцвета систем, основанных на процессорах 80386 и 486, EISA казалась весьма перспективной и сумела «убрать с дороги» тогдашний альтернативный проект от IBM – шину MCA. Но время ее активного применения оказалось сравнительно недолгим. Благодаря внедрению форм-фактора ATX а также получившей популярность технологии локальных шин, шины ISA и EISA практически вышли из употребления, уступив место такой современной локальной шине, как PCI. Тем не менее, разъемы ISA и EISA еще долго можно было встретить на материнских платах, где в качестве основной шины служила PCI.

Заключение

В этой статье мы привели краткое описание шин ISA и EISA, рассказали об их истории и принципах работы. Они стали важной вехой в развитии шин ввода/вывода и оказали большое влияние на развитие таких современных шин ввода/вывода, как PCI, PCI Express и AGP. Industry Standard Architecture до сих пор используется во многих старых компьютерах, а устройства с интерфейсом ISA до сих пор применяются во многих областях.

16-битная шина ISA также использовалась с 32-битными процессорами в течение нескольких лет. Однако попытка расширить его до 32 бит, получившая название расширенной отраслевой стандартной архитектуры (EISA), не увенчалась успехом. Вместо этого использовались более поздние шины, такие как VESA Local Bus и PCI , часто вместе со слотами ISA на той же материнской плате . Производные от структуры шины AT использовались и до сих пор используются в ATA / IDE , стандарте PCMCIA , Compact Flash , шине PC / 104 и внутри микросхем Super I / O.

Несмотря на то, что ISA исчезла с настольных компьютеров много лет назад, она все еще используется в промышленных ПК , где используются определенные специализированные карты расширения, которые никогда не переходили на PCI и PCI Express.

СОДЕРЖАНИЕ

История






Такие компании, как Dell, улучшили производительность шины AT, но в 1987 году IBM заменила шину AT своей собственной архитектурой Micro Channel Architecture (MCA). MCA преодолела многие ограничения, которые тогда были очевидны в ISA, но также была попыткой IBM восстановить контроль над архитектурой ПК и рынком ПК. MCA был намного более продвинутым, чем ISA, и имел много функций, которые позже появятся в PCI. Однако MCA также был закрытым стандартом, тогда как IBM выпустила полные спецификации и принципиальные схемы для ISA. Производители компьютеров отреагировали на MCA, разработав расширенную отраслевую стандартную архитектуру (EISA) и более позднюю локальную шину VESA (VLB). VLB использовала некоторые электронные компоненты, изначально предназначенные для MCA, потому что производители компонентов уже были оборудованы для их производства. И EISA, и VLB были обратно совместимыми расширениями шины AT (ISA).

Пользователи машин на базе ISA должны были знать специальную информацию об оборудовании, которое они добавляли в систему. Хотя некоторые устройства были по сути « plug-n-play », это было редкостью. Пользователям часто приходилось настраивать параметры при добавлении нового устройства, например линию IRQ , адрес ввода-вывода или канал DMA . MCA покончила с этим усложнением, и PCI фактически включил в себя многие идеи, впервые исследованные с помощью MCA, хотя он был более прямым наследником EISA.

Эта проблема с конфигурацией в конечном итоге привела к созданию ISA PnP , системы plug-n-play, в которой использовалась комбинация модификаций оборудования, системного BIOS и программного обеспечения операционной системы для автоматического управления распределением ресурсов. В действительности, ISA PnP может быть проблематичным и не получил хорошей поддержки до тех пор, пока архитектура не подошла к концу.

Слоты PCI «повернуты» по сравнению с их аналогами ISA - карты PCI по существу вставлялись «вверх ногами», что позволяло соединителям ISA и PCI прижиматься друг к другу на материнской плате. Только один из двух разъемов может использоваться в каждом слоте одновременно, но это обеспечивает большую гибкость.

Интерфейс жесткого диска AT Attachment (ATA) напрямую унаследован от 16-разрядного ISA ПК / AT. ATA берет свое начало в жестких картах, которые объединяли жесткий диск (HDD) и контроллер жесткого диска (HDC) на одной карте. Это было в лучшем случае неудобно, а в худшем - повредило материнскую плату, поскольку слоты ISA не были предназначены для поддержки таких тяжелых устройств, как жесткие диски. Следующее поколение накопителей с интегрированной приводной электроникой переместило привод и контроллер в отсек для накопителей и использовало ленточный кабель и очень простую интерфейсную плату для подключения его к слоту ISA. ATA - это, по сути, стандартизация этого устройства плюс единообразная структура команд для программного обеспечения для взаимодействия с HDC внутри накопителя. С тех пор ATA был отделен от шины ISA и подключен непосредственно к локальной шине, обычно путем интеграции в набор микросхем, для гораздо более высоких тактовых частот и пропускной способности данных, чем может поддерживать ISA. ATA имеет четкие характеристики 16-битного ISA, такие как 16-битный размер передачи, синхронизация сигнала в режимах PIO и механизмы прерывания и DMA.

Архитектура шины ISA

PC / XT-шина является восьми- битого ISA шина используется Intel 8086 и Intel 8088 систем в IBM PC и IBM PC XT в 1980 - х годах. Среди его 62 контактов были демультиплексированные и электрически буферизованные версии 8 линий данных и 20 адресных линий процессора 8088, а также линии питания, тактовые импульсы, стробоскопы чтения / записи, линии прерывания и т.д. для прямой поддержки pMOS и схем nMOS в режиме расширения, таких как, среди прочего, динамическое ОЗУ. Архитектура шины XT использует одну PIC Intel 8259 , что дает восемь векторизованных линий прерывания с приоритетом. Он имеет четыре канала DMA, изначально предоставленных Intel 8237 , 3 из которых выведены на слоты расширения шины XT; из них 2 обычно уже назначены машинным функциям (дисковод гибких дисков и контроллер жесткого диска):

Канал DMA Расширение Стандартная функция
0 Нет Динамическое обновление памяти с произвольным доступом
1 да Дополнительные карты
2 да Диск Floppy контроллер
3 да Контроллер жесткого диска

Количество устройств

Различная скорость автобуса

Первоначально тактовая частота шины была синхронизирована с тактовой частотой процессора, что приводило к разным тактовым частотам шины среди множества различных «клонов» IBM на рынке (иногда до 16 или 20 МГц), что приводило к программным или электрическим проблемам синхронизации для некоторых ISA. карты на скоростях автобуса, для которых они не были предназначены. Более поздние материнские платы или интегрированные наборы микросхем использовали отдельный тактовый генератор или тактовый делитель, который либо фиксировал частоту шины ISA на уровне 4, 6 или 8 МГц, либо позволял пользователю регулировать частоту через настройку BIOS . При использовании на более высокой частоте шины некоторые карты ISA (например, некоторые видеокарты, совместимые с Hercules ) могут значительно улучшить производительность.

8/16-битная несовместимость

Прошлое и текущее использование

ISA до сих пор используется в специализированных промышленных целях. В 2008 году IEI Technologies выпустила современную материнскую плату для процессоров Intel Core 2 Duo, которая, помимо других специальных функций ввода-вывода, оснащена двумя слотами ISA. Он предназначен для промышленных и военных пользователей, которые вложили средства в дорогие специализированные адаптеры шины ISA, которых нет в версиях шины PCI .

Аналогичным образом, ADEK Industrial Computers в начале 2013 года выпускает материнскую плату для процессоров Intel Core i3 / i5 / i7, которая содержит один (не DMA) слот ISA.

PC / 104 автобуса, используемый в промышленных и встроенных приложениях, является производным от ISA шины, используя те же сигнальные линии с различными разъемами. LPC автобус заменил ISA шины в качестве подключения к устройствам унаследованного ввода / вывода на последних материнских платы; хотя физически он сильно отличается, LPC выглядит так же, как ISA для программного обеспечения, так что особенности ISA, такие как ограничение DMA 16 МБ (что соответствует полному адресному пространству процессора Intel 80286, используемого в исходном IBM AT), вероятно, сохранятся какое-то время.

Как объяснялось в разделе « История », ISA была основой для разработки интерфейса ATA , используемого для жестких дисков ATA (также известного как IDE), а в последнее время - Serial ATA (SATA) . Физически ATA - это, по сути, простое подмножество ISA с 16 битами данных, поддержкой ровно одного IRQ и одного канала DMA и 3 битами адреса. К этому подмножеству ISA ATA добавляет две линии выбора адреса IDE («выбор микросхемы») и несколько уникальных сигнальных линий, характерных для жестких дисков ATA / IDE (таких как линия выбора кабеля / синхронизации шпинделя). В дополнение к физическому интерфейсу. канал, ATA выходит за рамки ISA, также определяя набор регистров физических устройств, которые должны быть реализованы на каждом диске ATA (IDE), а также полный набор протоколов и команд устройства для управления фиксированными дисковыми накопителями с использованием этих регистров. Доступ к регистрам устройства ATA осуществляется с помощью битов адреса и сигналов выбора адреса в канале физического интерфейса ATA, а все операции с жесткими дисками ATA выполняются с использованием протоколов, определенных ATA, с помощью набора команд ATA. Самые ранние версии стандарта ATA содержали несколько простых протоколов и базовый набор команд, сравнимый с наборами команд контроллеров MFM и RLL (которые предшествовали контроллерам ATA), но последние стандарты ATA имеют гораздо более сложные протоколы и наборы инструкций, которые включают дополнительные Команды и протоколы, обеспечивающие такие расширенные дополнительные функции, как большие скрытые области памяти системы, блокировка паролем и программируемое преобразование геометрии.

Еще одно отклонение между ISA и ATA заключается в том, что, хотя шина ISA оставалась заблокированной на единой стандартной тактовой частоте (для обратной совместимости с оборудованием), интерфейс ATA предлагал множество различных скоростных режимов, мог выбирать среди них, чтобы соответствовать максимальной скорости, поддерживаемой подключенным оборудованием. дисков, и продолжал добавлять более высокие скорости с более поздними версиями стандарта ATA (до 133 МБ / с для ATA-6, последней версии). В большинстве форм ATA работает намного быстрее, чем ISA, при условии, что он был подключен непосредственно к локальной шине. быстрее, чем шина ISA.

XT-IDE

Многие более поздние материнские платы AT (и преемники AT) не имели встроенного интерфейса жесткого диска, но полагались на отдельный интерфейс жесткого диска, подключенный к слоту ISA / EISA / VLB. Было даже несколько модулей на базе 80486, поставляемых с интерфейсами и накопителями MFM / RLL вместо все более распространенной AT-IDE.

Компания Commodore построила периферийный жесткий диск / модуль расширения памяти A590 на основе XT-IDE для своих компьютеров Amiga 500 и 500+, которые также поддерживали диск SCSI . Более поздние модели - серии A600 , A1200 и Amiga 4000 - используют диски AT-IDE.

PCMCIA

Спецификацию PCMCIA можно рассматривать как надмножество ATA. Стандарт интерфейсов жестких дисков PCMCIA, в который входят флэш-накопители PCMCIA, позволяет взаимно настраивать порт и накопитель в режиме ATA. В качестве расширения де-факто большинство флэш-накопителей PCMCIA дополнительно допускают простой режим ATA, который включается путем снятия низкого уровня на одном контакте, поэтому оборудование и прошивка PCMCIA не нужны для использования их в качестве диска ATA, подключенного к порту ATA. Таким образом, флэш-накопитель PCMCIA к адаптерам ATA прост и недорого, но не гарантируется работа с любым стандартным флэш-накопителем PCMCIA. Кроме того, такие адаптеры нельзя использовать в качестве общих портов PCMCIA, поскольку интерфейс PCMCIA намного сложнее, чем ATA.

Эмуляция встроенными чипами

Хотя большинство современных компьютеров не имеют физических шин ISA, почти все ПК - x86 и x86-64 - имеют шины ISA, выделенные в физическом адресном пространстве. Южный мост , процессоры и графические процессоры сами предоставляют такие услуги, как мониторинг температуры и показания напряжения через эти шины в качестве устройств ISA.

Стандартизация

IEEE начал стандартизацию шины ISA в 1985 году, названную спецификацией P996. Однако, несмотря на то, что были даже опубликованы книги по спецификации P996, она так и не перешла в статус черновика.

Современные карты ISA

Все еще существует база пользователей со старыми компьютерами, поэтому некоторые карты ISA все еще производятся, например, с портами USB или полные одноплатные компьютеры на базе современных процессоров, USB 3.0 и SATA .

С появлением материнских плат формата ATX шина ISA перестала широко использоваться в компьютерах, хотя встречаются ATX-платы с AGP 4x, 6 PCI и одним (или двумя) портами ISA. Но пока её ещё можно встретить в старых AT-компьютерах, а также в промышленных компьютерах.

Для встроенных систем существует вариант компоновки шины ISA, отличающийся применяемыми разъёмами — шина PC/104.

Содержание


Шина представляет из себя набор проводов (линий), соединяющий различные компоненты компьютера для подвода к ним питания и обмена данными. В "минимальной комплектации" шина имеет три типа линий:

  • линии управления;
  • линии адресации;
  • линии данных.

Файл:Isa_bus_arc2.jpg‎

Устройства, подключенные к шине, делятся на две основных категории - bus masters и bus slaves. Bus masters - это устройства, способные управлять работой шины, т.е инициировать запись/чтение и т.д. Bus slaves - соответственно, устройства, которые могут только отвечать на запросы.

Файл:Isa_1.jpg‎

62-контактный слот включал 8 линий данных, 20 линий адреса (А0-А19), 6 линий запроса прерываний (IRQ2-IRQ7). Таким образом, объем адресуемой памяти составлял 1 Мбайт, и при частоте шины 4.77 МГц пропускная способность достигала 1.2 Мбайта/сек.

  • добавление 8 линий данных позволило вести 16-битный обмен данными;
  • добавление 4 линий адреса позволило увеличить максимальный размер адресуемой памяти до 16 МВ;
  • были добавлены 5 дополнительных trigger-edged линий IRQ;
  • была реализована частичная поддержка дополнительных bus masters;
  • частота шины была увеличена до 8 MHz;
  • пропускная способность достигла 5.3 МВ/сек.

Несмотря на отсутствие официального стандарта и технических "изюминок" шина ISA превосходила потребности среднего пользователя образца 1984 года, а "засилье" IBM AT на рынке массовых компьютеров привело к тому, что производители плат расширения и клонов AT приняли ISA за стандарт. Такая популярность шины привела к тому, что слоты ISA до сих пор присутствуют на всех системных платах, и платы ISA до сих производятся.

Виды устройств, работающие на шине ISA

При описании шины целесообразно представить компьютер как состоящий из материнской платы (motherboard) и внешних плат, которые взаимодействуют между собой и ресурсами материнской платы через шину. Все пассивные устройства (не могущие стать задачиками) на шине можно разделить на две группы - память и устройства ввода/вывода (порты). Циклы доступа для каждой из групп отличаются друг от друга как по временным характеристикам, так и по вырабатываемым на шине сигналам.

Чисто условно, для удобства понимания функционирования шины ISA, будем считать, что на материнской плате компьютера существуют следующие устройства, способные быть владельцами (задатчиками) шины: центральный процессор (ЦП), контроллер прямого доступа в память (ПДП), контроллер регенерации памяти (КРП). Кроме этого, задатчиком на шине может быть и внешняя плата. При выполнении цикла доступа на шине задатчиком может быть только одно из устройств. Рассмотрим подробнее функции этих устройств на шине ISA.

Центральный процессор (ЦП) - является основным задатчиком на шине. По умолчанию именно ЦП будет считаться задатчиком на шине. Контроллер ПДП, а также контроллер регенерации памяти запрещают работу ЦП на время своей работы.

Контроллер ПДП - это устройство связано с сигналами запроса на режим ПДП и сигналами подтверждения режима ПДП. Активный сигнал запроса на ПДП будет разрешать последующий захват шины контроллером ПДП для передачи данных из памяти в порты вывода или из портов ввода в память.

Контроллер регенерации памяти - становится владельцем шины и генерирует сигналы адреса и чтения памяти для регенерации информации в микросхемах динамической памяти как на материнской памяти, так и внешних платах.

Внешняя плата - взаимодействует с остальными устройствами через разъем на шине ISA. Может становиться задатчиком на шине для доступа к памяти или устройствам ввода/вывода.

Кроме этого, на материнской плате компьютера имеется ряд устройств, которые не могут быть задатчиками на шине, но тем не менее взаимодействуют с ней. Это следующие устройства:

Часы реального времени (Таймер-счетчик) - это устройство состоит из часов реального времени для поддержки даты и времени и таймера, как правило на базе микросхемы Intel 8254A. Один из таймеров-счетчиков этой микросхемы вырабатывает импульсы с периодом 15 микросекунд для запуска контроллера регенерации памяти на регенерацию.

Кросс материнской платы - часть материнской платы, которая соединяет разъемы шины ISA для подключения внешних плат с другими ресурсами на материнской плате.

Память на материнской плате - часть или все микросхемы памяти прямого доступа (ОЗУ), используемые для хранения информации ЦП. На внешних платах также могут быть размещены микросхемы дополнительной памяти.

Контроллер прерываний - это устройство связано с линиями запросов прерываний на шине. Прерывания требуют дальнейшего обслуживания ЦП.

Устройства ввода/вывода - часть или все устройства ввода/вывода (такие как параллельные или последовательные порты) могут размещаться как на материнской плате, так и на внешних платах.

Архитектура персонального компьютера IBM PC/AT с точки зрения использования шины ISA показана на рисунке.

Циклы шины

Циклы шины ISA всегда асинхронны по отношению к SYSCLK. Различные сигналы разрешаются и запрещаются в любое время; внутри допустимых интервалов сигналы отклика могут также быть выработаны в любое время. Исключением является только сигнал -0WS, который должен быть синхронизирован с SYSCLK.

На шине существуют 4 индивидуальных типа циклов: доступ к ресурсу, ПДП, регенерация, захват шины. Цикл доступа к ресурсу выполняется, если центральный процессор или внешняя плата в качестве задатчиков обмениваются данными с различными ресурсами на шине. Цикл ПДП выполняется, если контроллер ПДП является задатчиком на шине и выполняет циклы передачи данных между памятью и УВВ. Цикл Регенерации выполняется только контроллером регенерации для регенерации микросхем динамической памяти. Цикл Захвата Шины выполняется внешней платой для того, чтобы стать задатчиком на шине.

Структурно циклы отличаются по типу задатчика на шине и видами ресурсов доступа на ней. Внутри типа цикла существуют различные виды его, обусловленные различной продолжительностью каждого вида.

Существуют три типа цикла доступа к ресурсу:

  • цикл с 0 тактов ожидания - этот цикл наиболее короткий из всех возможных;
  • нормальный цикл - при выполнении такого цикла ресурс доступа не запрещает сигнал готовности I/O CH RDY - далее цикл такого вида будет называться просто нормальным;
  • удлиненный цикл - при выполнении такого цикла ресурс доступа запрещает сигнал готовности I/O CH RDY на время, необходимое ресурсу для приема или передачи данных - далее цикл такого вида будет называться удлиненным.

В циклах ПДП и Регенерация тоже существуют два вида: нормальный и удлиненный, исходя из таких же, описанных выше условий.Ниже все типы циклов будут подробно описаны и, кроме этого, в гл. 6 приведены временные диаграммы всех типов циклов.

Электрические характеристики шины

Стандартом шины ISA установлены ограничения на максимальное значение тока, потребляемого каждой платой расширения (они связаны только с возможностями используемого разъема): +5 В - 3,0 А, -5 В - 1,5 А, +12 В - 1,5 А, -12 В - 1,5 А. Новая плата расширения практически всегда добавляется к платам, уже подключенным к шине. Общее энергопотребление этих плат и их нагрузка на сигналы системной шины не всегда известна. Максимально возможный ток потребления всеми используемыми платами расширения определяется типом источника питания данного компьютера и не стандартизован. Поэтому рекомендуется руководствоваться практическим правилом - выбирать или проектировать как можно менее энергоемкую плату расширения. Плата расширения должна также соответствовать следующим требованиям:

- Выходные каскады передатчиков магистральных сигналов должны выдавать ток "0" не менее 24 мА (это относится ко всем типам выходных каскадов), ток высокого уровня - не менее 3 мА (для выходов с тремя состояниями и ТТЛ).

- Максимальная длина печатного проводника от контакта разъема шины до вывода микросхемы - не более 65 мм, максимальная емкость относительно земли по каждому контакту разъема - не более 20 пФ.

Электрические характеристики сигналов

Аббревиатуры, раскрытые ниже, будут использоваться далее при рассмотрении требований к характеристикам сигналов на шине.

ТРИ - выход с тремя состояниями. Имеет состояния: активный низкий уровень, активный высокий уровень, выключено;

ОК - открытый коллекторный выход. Имеет состояния: активный низкий уровень, выключено;

ТТЛ - выход транзисторно-транзисторной логики с двумя состояниями. Имеет состояния: активный низкий уровень, активный высокий уровень;

Iih - входной ток высокого уровня. Такой ток возникает тогда, когда ко входу подключен выход с активным высоким уровнем;

Iil - входной ток низкого уровня. Такой ток возникает тогда, когда ко входу подключен выход с активным низким уровнем.

Ioh - выходной ток высокого уровня. Характеризует нагрузочную способность выхода устройства в активном высоком уровне;

Iol - выходной ток низкого уровня. Характеризует нагрузочную способность выхода устройства в активном низком уровне;

Vih - входное напряжение высокого уровня;

Vil - входное напряжение низкого уровня;

Voh - выходное напряжение высокого уровня;

Vol - выходное напряжение низкого уровня.

Напряжения и токи по цепям сигналов на шине.

На шине ISA могут использоваться только три типа устройств: ТТЛ (транзисторно-транзисторной логики), ТРИ (трехстабильный) и ОК (открытый коллекторный выход). Устройство ТТЛ может быть только фиксированного направления - либо вход, либо выход. Устройство с тремя состояниями может быть как входом так и выходом, и кроме этого, находиться в третьем состоянии.

Читайте также: