Из чего сделаны планшеты телефоны

Обновлено: 05.07.2024

Планшет или как его ещё называют планшетник – это портативное цифровое устройство, с помощью которого можно осуществлять различные операции с информацией. Она закодирована в разных цифровых форматах. На планшете можно работать с различными приложениями, передавать и скачивать файлы, устанавливать и играть в игры многое другое.

Отличительной особенностью планшета являются компактные размеры и отсутствие клавиатуры и мыши. В большинстве случаев это моноблочное устройство, реже трансформер с клавиатурой. Все действия производятся путём прикосновения к сенсорному экрану. Работа устройства основывается на операционных системах: IOS, Android, Windows. Это самое распространённое ПО для планшетов.

Разработан данный гаджет был ещё в 2002г., но использовался в основном в научной сфере. Популярным устройство стало благодаря корпорации «Apple», которая выпустила в широкую продажу планшет под названием iPad. Случилось это в 2010 г. Сразу же он начал пользоваться бешеной популярностью у потребительской аудитории, и производство планшетов стали осваивать ведущие мировые производители электроники.

На сегодняшний день планшет основной конкурент ноутбука. Имеет ряд преимуществ:

  • Компактные размеры при практически одинаковых возможностях;
  • Более экономичное потребление и расход энергии;
  • Прост и удобен в работе;
  • Стоит значительно дешевле.

Как устроен планшет?

Планшет — это практически тот же самый ПК только в миниатюре. Экран здесь выступает ещё и в роли мыши и клавиатуры, называется сенсор или touchscreen. За скорость обработки информации отвечает процессор. Чем больше он содержит ядер и выше частота их работы, тем лучше. Помогает процессору в обработке информации ОЗУ – оперативное запоминающее устройство или «оперативка». Не стоит её путать с постоянным запоминающим устройством или жёстким диском.

Все эти модули крепятся и подключаются к основе – материнской плате. Она поддерживает бесперебойную связь между устройствами и обеспечивает слаженную работу всей системы в целом. Питание в отличие от ПК в планшете обеспечивает аккумулятор или как его ещё называют батарея. Помимо этого в некоторых устройствах устанавливаются модули связи, что позволяет использовать планшет в качестве телефона, а также устройства Wi-Fi, Bluetooth и другие. Соединяются все они с материнской платой при помощи специальных шлейфов. Выглядят как широкие штекеры с таким же широким блоком проводов.

Долгое время бытовало мнение, что планшет не поддаётся ремонту в случае поломки. На самом деле это не так. Многие запчасти можно заменять, в том числе сенсор. Связано это с некоторыми трудностями и требует определённых знаний и наличия специального инструмента. Поэтому не рекомендуется самостоятельно заниматься ремонтом планшета, а обращаться в специализированные мастерские и сервисные центры.

Принцип работы планшета

Как работает планшет

Планшет реагирует на прикосновение. Это может быть касание руки или специальной ручки – стилуса. В зависимости от этого планшеты по принципу работы подразделяются на электромагнитные и сенсорные.

Электромагнитные планшеты реагируют только на прикосновение стилуса. Изначально производились практически только такие устройства. Преимущества их в возможности более точной работы с текстом изображениями и программами и отсутствии возможности случайного нажатия, соответственно несанкционированной работы гаджета.

Сенсорные планшеты становятся всё более популярными. Реагируют на прикосновение руки. Выигрывают баллы у электромагнитных собратьев за счёт высокой степени практичности, можно беспрепятственно пользоваться в любой ситуации. Но проигрывают в точности работы.


За последние четыре года рынок радикально изменился. Очень сильно выросло качество дисплеев, увеличилась продолжительность работы от аккумулятора. На фоне использования OEM-производителями очень похожих платформ, выбор материалов для их устройств становится всё важнее. Почти все производители уже сталкивались с необходимостью кардинальной смены используемых материалов: в то время как рынок становится всё насыщенней, покупатели всё реже меняют свои мобильные устройства. И производителям приходится выдумывать различные ходы, чтобы стимулировать спрос. Зачастую это сводится к более тщательному подбору материалов для использования в экстерьере устройства.

Однако подобные усилия нередко уходят впустую. Просто многих пользователей мало заботит материал корпуса, особенно при условии использования чехла. Например, бытует мнение, что алюминий тяжелее, менее надёжен ухудшает качество связи по сравнению с поликарбонатом. Некоторые ссылаются на слишком сильный нагрев при интенсивной работе. При этом алюминий дороже, как утверждают некоторые производители. А уж если использовать стекло, то всем очевидно, что падения такой гаджет не перенесёт. И тут встаёт вопрос: почему производители до сих пор применяют разные непрактичные материалы?

На это нельзя ответить однозначно. При выборе материала необходимо учесть множество разных требований. И не существует единственного, самого лучшего варианта. Для большинства деталей, выбор ограничивается тремя материалами: пластиком, стеклом и металлом.

Пластик


Среди огромного разнообразия пластиков, поликарбонат является наиболее часто используемым при создании мобильных устройств. Он устойчив к ударам, относительно неплохо держит нагрев и невероятно гибок. Поликарбонат практически не является препятствием для распространения радиоволн. А поскольку ценовая конкуренция на рынке мобильных устройств усиливается, более низкая стоимость поликарбоната по сравнению с металлами и стеклом будет становиться всё более веским преимуществом.

Но есть у этого материала и недостатки. Поликарбонат обладает низкой теплопроводностью, то есть фактически он работает как термоизолятор. А это ведёт к снижению тактовых частот центральных и графических процессоров, чтобы предотвратить их перегрев. При этом металлические корпуса (алюминиевые и магниевые) прекрасно проводят тепло и выполняют роль радиатора. Похожая ситуация наблюдается и при сравнении поликарбоната со стеклом. Для сравнения, теплопроводность алюминия составляет 205 Ватт/м*К, магния — 156, однослойного стекла — 0,8, а у поликарбоната — 0,22. Иными словами, при прочих равных устройства в поликарбонатных корпусах приходится делать более медленными, по сравнению с аналогами в металлических и стеклянных корпусах.

Но и это не всё. Я упоминал о высокой гибкости поликарбоната. А это становится большим недостатком для смартфонов, которые стараются сделать как можно тоньше и компактнее. Металл и стекло обеспечивают куда большую механическую жёсткость на изгиб. Ведь в смартфонах даже задняя крышка выполняет различные функции: в частности, на неё зачастую крепится антенна, чтобы обеспечить поддержку всевозможных стандартов связи. Согнувшаяся от нагрузок крышка может повлиять на достаточно хрупкие контакты антенны, которые зачастую очень малы. До определённого предела они выдержат, но дальше контакт просто нарушится. В качестве примера можно привести модификацию Tegra 3 смартфона HTC One X. Её преследовал дефект: часто терялся Wi-Fi и Bluetooth из-за разрушения антенных контактов. Для решения проблемы производителю пришлось дополнительно усилить крышку, чтобы она не скручивалась от внешних нагрузок.

Металл


Многие превозносят металл как суперматериал для корпусов мобильных устройств. Однако зачастую люди ограничиваются внешним видом и тактильными ощущениями. Конечно, применительно к обсуждаемой теме речь идёт об алюминии. Магний тоже часто используется, но обычно для изготовления рамы.

У алюминиевых сплавов есть свои достоинства. В первую очередь, это высокая жёсткость. Благодаря этому внутренности гаджетов защищены в случае удара лучше, чем в поликарбонатном корпусе. Однако при цельноалюминиевом корпусе целесообразнее делать внешнюю антенну, чтобы улучшить характеристики сигнала.

Алюминиевые сплавы также лучше противостоят появлению царапин, чем поликарбонат. Но в гаджетах алюминий редко используется без анодирования. Оно бывает трёх типов, и лишь один из них имеет высокую стойкость к повреждениям. В остальных случаях анодированное покрытие не может похвастаться тем же и быстро покрывается царапинами. Также одним из важнейших преимуществ алюминия является высокая теплопроводность, что позволяет не экономить на тактовых частотах.

Но как и любой другой материал, алюминий не идеален для изготовления мобильных устройств. При отказе от внешней антенны приходится делать пластиковое/стеклянное радиопрозрачное «окно». Это означает, что устройство будет менее изотропичным при приёме сигнала. Даже если часть алюминиевого корпуса превратить во внешнюю антенну, рука человека, к ней прикасающаяся, будет вносить помехи. К тому же в этом случае гораздо сложнее обеспечить совместимость с различными частотами.


Если использовать несколько разных антенн и тюнеры ради создания полностью металлического корпуса, остаётся такой недостаток, как заметная разница в приёме сигнала. И эта разница зависит от текущей частоты.


Помимо проблем с сигналом, алюминий обладает меньшей устойчивостью к пластическим деформациям. И хотя внутренности защищены лучше, но внешний вид быстро портится из-за мелких вмятинок. Зато поликарбонат с большими шансами переживёт падение без повреждений. Алюминий также куда дороже, да ещё и требует больше времени и энергии на обработку, что выливается в приличную долю в цене готового изделия. И наконец, отличная теплопроводность алюминия выливается в слишком горячую поверхность устройства при высоких вычислительных нагрузках. Также на морозе держать поликарбонатный корпус в руку куда приятнее, чем алюминиевый.

Магний гораздо легче алюминия благодаря более низкой плотности. При этом магний меньше влияет на прохождение радиосигнала, обладая рядом преимуществ алюминия по сравнению со стеклом и поликарбонатом: высокой теплопроводностью, относительно высокой твёрдостью и несколько лучшей устойчивостью к появлению царапин. По всем показателям выходит, что магний лучше алюминия.

Однако от поставки магниевых корпусов на конвейер нас удерживает повышенная огнеопасность магния в кислородной среде, из-за чего литьё приходится проводить в вакуумных камерах. К тому же без обработки поверхности магний быстро коррозирует, что делает его не лучшим выбором при изготовлении корпуса, хотя он часто применяется при создании рамы изделия.

Стекло


Это самый твёрдый и царапиноустойчивый из всех трёх рассматриваемых нами материалов. Но и самый хрупкий, склонный к образованию осколков. Поэтому стекло переносит только пластическую деформацию. Алюмосиликатное стекло, больше известное под маркой Gorilla Glass, используется для изготовления корпусов чаще всего. По теплопроводности оно находится между алюминием и поликарбонатом. Стекло мало искажает радиосигнал, что позволяет использовать внутреннюю антенну. Однако главнейший недостаток — хрупкость, а также небезопасность для человека в случае разрушения. К тому же стекло накладывает большие ограничения на возможную форму корпуса. Поэтому такие устройства обычно невелики в размерах, а долю стекла в общем объёме материала корпуса стараются сделать поменьше.

Заключение

Конечно, инженеры стараются обойти врождённые недостатки всех рассмотренных материалов. В случае поликарбонатных корпусов используют магниевую раму, которая отводит тепло на стеклянный дисплей, который выступает в роли радиатора. Толщина стенок и разные виды пластика, металла и стекла могут существенно смягчить присущие им недостатки. Например, добавление АБС-пластика в поликарбонат значительно повышает твёрдость материала. Противоосколочная плёнка на стекле снижает опасность нанесения ранений человеку в случае разбиения. А достижения в антенностроении сводят на нет экранирующий эффект любого металла.

Но вопрос по прежнему остаётся — почему так важен выбор того или иного материала? Ответ заключается в промышленном дизайне. Мы постоянно прикасаемся к смартфонам и планшетам, держим их в руках. Большую часть времени мы смотрим на дисплей, но при этом постоянно имеем тактильный контакт с устройством. И то, как оно выглядит, каково на ощупь, какой оно формы, всё это имеет очень большое значение. Всегда лучше, когда устройство хорошо лежит в руке, приятно наощупь, красиво. Ненужные элементы портят внешний вид. Хороший дизайн очевиден и невиден. Только когда мы сталкиваемся с плохим дизайном, мы начинаем замечать хороший. Технологии могут сгладить недостатки материалов, но ничто не исправит плохой дизайн.

Второй причиной, почему выбору материалов уделяется большое внимание, являются такие важные для мобильных устройств параметры, как вес и габариты. Например, поликарбонатные корпуса зачастую приходится делать с более толстыми стенками, чтобы обеспечить необходимую жёсткость конструкции.

Пока всё это звучит субъективно, но когда рынок достигнет точки насыщения, выбор материалов и промышленный дизайн станут критически важными факторами. Впрочем, они уже ими стали.
Однако ситуация может измениться в связи с разработкой новых материалов и технологий. В частности, промышленная трёхмерная печать может помочь в создании новых конструкций корпусов. Представьте себе смартфон с очень тонкими стенками, лёгкий, но при этом словно сделанный из стали. Такое вполне возможно в будущем с помощью 3D-печати из композиционных материалов. Например, в виде сотовых панелей из смол, обладающих очень высокой механической жёсткостью:



Подобный принцип применяется при создании межконтинентальных и космических ракет, в которых очень тонкая внешняя оболочка выполняет роль несущей конструкции, каркаса.


Дальнейшая миниатюризация потребует создания гибких гаджетов. В частности, производители уже несколько лет экспериментируют с изготовлением подобных дисплеев. В качестве защитного стекла и материала для корпуса может быть использовано очень тонкое гибкое стекло, например, Willow Glass. Его разработала компания Corning, производитель Gorilla Glass.

Ещё одним кандидатом в материалы для корпусов гаджетов является графен. Впрочем, это такой специальный материал, о котором все говорят, которому находят миллионы применений, описывают его чудесные свойства, но на этом, обычно, всё заканчивается. Неизвестно, удастся ли наладить промышленное производство изделий из графена по приемлемой цене. Пока что всё его великолепие не выходит за пределы лабораторий.

Также можно упомянуть материал под названием Liquidmetal. Он обладает уникальной аморфной структурой, поэтому его ещё называют «металлостеклом». По своей прочности и эластичности он сравним с титаном, устойчив к коррозии. Ему можно придавать сложную форму без ухудшения прочностных характеристик. Поэтому многие прочат его на роль «материала будущего» для изготовления гаджетов.

Внутреннее устройство планшета

Внутреннее содержание

Вскрыв корпус, можно увидеть, что составных деталей внутри очень мало. Основная материнская плата занимает примерно половину пространства корпуса, столько же отведено для батареи. Вся плоскость в передней части занята тонкой пластиной экрана. И все — остальные мелкие детали вроде гнезд и разъемов подключения часто располагаются прямо на материнской плате. Отдельно стоит только вибромотор. Рассмотрим подробнее, за счет чего работает планшет.

Материнская плата

Секрет маленьких размеров устройства — минимальные преобразования и низкое потребление энергии. Материнская плата обычного компьютера несет на себе множество цепей согласования и преобразования напряжений, есть даже блоки, отвечающие за эти процессы. Устройство планшета, напротив, является результатом применения подхода максимальной совместимости.

Центральный процессор

Небольшая микросхема в центре печатной платы — вычислительный центр. Размером с контроллер моста у «большого» компьютера, этот маленький чип не оборудован радиатором, а тем более вентилятором. Он выделяет очень мало тепла. Но одновременно это многоядерная вычислительная структура, способная выполнять сотни тысяч операций в секунду и больше.

Внутренности планшета

Вокруг процессора персонального компьютера — десятки конденсаторов и цепей управления питанием. Рядом с процессором планшета расположен всего один блок — задающий генератор. Даже по сравнению с маленькой микросхемой процессора он выглядит крошечным и незаметным.

Постоянное запоминающее устройство

Место, где «прошита» операционная система и хранятся данные пользователя. Это всего одна микросхема перезаписываемой флеш-памяти. В зависимости от модели планшета она может иметь разный объем.

Блок памяти для промежуточных данных и вычислений. Обычно это пара микросхем еще меньшего размера, чем ПЗУ. С объемом этой памяти работают программы и службы операционной системы во время функционирования планшета. Здесь же производится промежуточная обработка данных, полученных от камер или микрофона.

Модули беспроводной связи

Bluetooth и Wi-Fi находятся обычно на самом краю материнской платы, чаще всего в углу. Вызвано это необходимостью дополнительной антенны и буферного источника питания. Антенна представляет собой полоску пластика с нанесенным медным покрытием. В качестве буфера питания выступает маленький аккумулятор в 3,3 В.

Управление питанием

Блок, действительно работающий «на износ», — центр распределения питания. В функции этого модуля входит преобразование напряжений, контроль уровня заряда аккумулятора, а также параметров напряжения, приходящих «снаружи» — от зарядного устройства, присоединенного компьютера или внешнего устройства. От правильности работы этого модуля зависит функционирование всех внешних портов и камер. Построен этот блок на одной-единственной микросхеме. Неудивительно, что она часто выходит из строя.

Батарея планшета

Система обработки тачскрина

Экран, точнее, рабочий комплекс матрицы соединен со своим контроллером с помощью довольно тонкого шлейфа. По нему передаются все данные от датчиков емкостного слоя о движениях пальцев пользователя. Задача контроллера тачскрина — обработать и преобразовать полученные сигналы в цифровой формат. Эти данные, в свою очередь, обрабатываются операционной системой и преобразуются в видимые пользователю визуальные реакции, а также соответствующие действия.

Это были устройства и блоки, которые расположены на материнской плате.

Устройство экрана планшета

Конструктивно дисплей состоит из нескольких слоев. Сегодня практически не встречаются экраны с резистивной технологией, поэтому не будем их рассматривать.

Емкостные экраны для определения прикосновения используют простой принцип. Чувствительный элемент представляет собой, грубо говоря, сетку из двух слоев перпендикулярно расположенных проводников. Они очень тонкие, а сетка настолько мелкая, что не воспринимается глазом. Когда на проводники подается напряжение, контроллер тачскрина фиксирует уровень возникшего поля. Пользователь подносит палец. Он тоже токопроводящий, поэтому изменяет поле проводников. По изменению двух сигналов — от разных слоев сетки — контроллер определяет, в каких координатах произошло касание.

Вид экрана изнутри

Еще один слой формирует изображение. Существует несколько технологий, основанных на различном ориентировании кристаллов. Например, IPS-матрица в выключенном состоянии — черная и непрозрачная. При подаче напряжения кристаллы поворачиваются, пропуская свет. В зависимости от угла, на который «повернута» ячейка одного из трех составных цветов, образуется точка нужного цвета.

Матрица типа TN-Film, грубо говоря, «крутит кристаллами в другую сторону». В выключенном состоянии она прозрачная.

Нижний слой — подсветка. Не вдаваясь в детали, это панель, которая светится с разной силой в зависимости от поданного напряжения. На этом ее работа заканчивается.

И главный слой, по которому постоянно водят пальцами, — защитный. Благодаря тому, что емкостной сенсор не требует деформации для определения касания, сегодня встречаются всевозможные конструкции — пластиковая пленка, пластина, даже слой закаленного или сапфирового стекла.

Аккумулятор

Если описывать внутреннее устройство и принцип работы литий-полимерного источника, можно написать научную статью. Устройство батареи планшета сложное, обязательно включает в себя блок энергоячеек и контроля состояния. От блока мониторинга приходят данные на материнскую плату.

Модуль контроля может запретить работу аккумулятора, если его заряд упал ниже предельного, технически допустимого. Аккумулятор можно «завести» от более мощного источника питания, но планшет сгорит при попытке. Поэтому контроль питания материнской платы и блок мониторинга состояния батареи работают в паре, чтобы не допустить аварийных режимов.

Почему планшеты разные?

Можно спросить — а почему так отличаются конструкции, если внутри все одинаковое? У некоторых планшетов все разъемы с одной стороны, у других — равномерно распределены. Где-то камеры по центру, где-то внизу или в углу.

Ответ прост. Все зависит от разработчика и сборщиков. Проще наладить производственную линию, где автомат соберет материнскую плату со всеми портами и разъемами. От сборщика потребуется установить дисплей, прищелкнуть плату, аккумулятор и соединить все шлейфами. И получится — порты и кнопки в кучу, зато дешево.

Чем дороже планшет, тем лучше сборка

Чем дороже планшет, тем лучше сборка

Можно сделать отдельные платы для разъемов, предусмотреть для них место, вынести камеры на отдельные посадочные места. Словом, нанять квалифицированный и аккуратный персонал. Зато получится удобное устройство с продуманной эргономикой.

Так что в планшете главное — не только начинка, но и уровень квалификации сборщиков и усердие разработчиков.

Электронная "начинка" рядового планшетника


Компьютером сейчас никого не удивишь, а уж планшетником тем более . Наверняка наши потомки будут считать, что планшетные ПК появились раньше ноутбуков и нетбуков. И это не удивительно, ведь за свою скромную историю планшетные ПК завоевали огромную популярность.

Для всех желающих предлагаю ознакомиться с электронной начинкой планшетного компьютера.

В моих руках оказался планшетник Ritmix RMD-825. Да, модель бюджетная, дешёвая, но состав планшетников, как правило, отличается лишь мощностью «комплектухи», принципиальной разницы в устройстве нет.

Планшетный ПК Ritmix RMD-825

Что внутри планшета?

Планшетник Ritmix RMD-825 вскрывается легко, две части корпуса соединяются защёлками. Я вскрывал специальным вскрывателем, который часто используется при ремонте сотовых. Под крышкой обнаружил вот что.

Электронная начинка планшета Ritmix RMD-825

Дисплей (матрица, экран). В данном случае TFT. LCD-матрицы на тонкоплёночных транзисторах (Thin Film Transistor) весьма распространены и дёшевы. Модель матрицы – GL080001T0-50 V1.

Литиевый аккумулятор Li-polymer на 3,7V ёмкостью 3000 mAh.

Li-polymer аккумулятор планшетника

Аккумулятор имеет встроенный контроллер заряда/разряда. Более подробно об его устройстве и алгоритме работы я уже рассказывал на страницах сайта.

Печатная плата требует отдельного рассмотрения.

Процессор.

Процессор ALLWINNER A13

Также недалеко от процессора можно обнаружить микросхему задающего генератора на 24 МГц. Маленькая такая деталь, но весьма важная.

Кварцевый генератор на 24 МГц

Микросхема FLASH-памяти

Аналогичные чипы применяются в твёрдотельных накопителях (SSD-дисках) и USB-флэшках.

"Оперативка" планшетника - это две микросхемы H5TQ2G83CFR DDR3 SDRAM-памяти по 2Gb (2 гигабит) каждая. В даташитах на микросхемы памяти всегда указывается память в битах, а не байтах! А если уж быть ещё точнее, то в данной микросхеме 2147483648 бит. Чуть больше, чем 2 миллиарда бит. Корпус H5TQ2G83CFR – BGA, то есть микросхемы запаяны пузом на плату через шарики припоя.

Микросхемы DDR3 SDRAM-памяти

Wi-Fi модуль.

За Wi-Fi отвечает USB-модуль беспроводной связи на базе чипа Realtek RTL8188CUS.

Wi-Fi модуль Realtek RTL8188CUR

К схеме он подключается посредством 6 контактов. 2 из них – это общий провод (GND). Далее плюс питания +3,3V и два контакта – интерфейс USB (USB_DP и USB_DN). К контакту RF подключается антенна, которая выглядит как медная пластинка причудливой формы.

Подключение USB Wi-Fi модуля RTL8188

Цепи питания.

За питание отвечает контроллер питания – микросхема AXP209. В её обвязке можно обнаружить множество катушек индуктивности и ключевых транзисторов. Бывает, что эта микросхема выходит из строя.

С контроллером питания иногда связаны весьма неприятные поломки. Так, при его неисправности планшет может не заряжать встроенный аккумулятор, хотя индикация заряда может отображаться на дисплее планшета. Сам же планшет работает только при подключенном зарядном устройстве.

Контроллер питания AXP209

Такая неисправность приводит к тому, что встроенный литиевый аккумулятор разряжается до минимума и отключается встроенным контроллером заряда/разряда.

Как правило, планшет в таком случае отправляется на полку или в ящик стола, где валяется несколько месяцев. Аккумулятор же за это время ещё сильнее разряжается и переходит в стадию "клинической смерти". Если и удаётся восстановить такой аккумулятор, то его ёмкость заметно снижается, а иногда после зарядки он просто вздувается.

Именно поэтому настоятельно рекомендуется сразу нести планшетник в ремонт, а не откладывать на 2–3 месяца. Также не стоит затягивать с ремонтом, когда сломался microUSB-разъём, через который заряжается планшет.

Управление тачскрином.

FT5306DE4 – контроллер ёмкостной сенсорной панели. Данный контроллер используется для работы с сенсорными панелями размером от 4,3”до 7”. С главным процессором FT5306DE4 связывается по интерфейсу I 2 C или SPI.

Контроллер сенсорной панели

Как и любой планшет, RMD-825 имеет такие элементы, как вибромотор (приклеен клеем к матрице), миниатюрный динамик, микрофон. Также на плате есть разъём для SD-карт, разъём для подключения USB шнура, выход на наушники, коннектор питания. Думаю, не стоит говорить, что такие элементы, как разъёмы, кнопки и коннекторы чаще всего выходят из строя.

Ну и напоследок, посмотрим, как делают планшеты на китайских фабриках. Удивительно то, как ещё много в этом процессе ручного труда – думал, что всё уже давно штампуют роботы:)

Читайте также: