Качество звука оцифрованного звуковой картой определяется такими параметрами как

Обновлено: 02.07.2024

Одной из основных задач информатики является представление данных в виде удобном для хранения и передачи. Эти данные могут быть разного типа – звуковые, текстовые, графические и т.д. В этой статье мы расскажем про кодирование звуковой информации. Из этой статьи Вы узнаете основные принципы и определения. Также после прочтения сможете посчитать объем аудио файла. Читайте!

Основные определения

Для того чтобы разобраться в теме надо знать, что представляет собой звуковая информация (звук).

Звук – это непрерывная аналоговая волна, которая распространяется в окружающей среде. В роли среды может выступать воздух, жидкость, твердое тело, электричество и т.д.

Звук, как непрерывную волну, характеризуют две характеристики – частота и амплитуда.

От амплитуды зависит громкость аудио сигнала . Чем выше амплитуда, тем громкость больше.

Частота же характеризует тональность аудиоинформации . Чем больше частота, тем тональность выше. Человеческий слух улавливает волны от 20 Гц до 20 кГц. 1 Гц равен 1 колебанию аудио сигнала в секунду.

Представление и кодирование звуковой информации в компьютере

Для представления и кодирования звука используются специальное оборудование и программы. Рассмотрим весь процесс более подробно.

  1. Аудиоинформация, поступая из окружающей среды (например, по воздуху), преобразуется в электрический сигнал. Для этого используется такое устройство, как микрофон.
  2. После этого звук поступает на АЦП (аналого-цифровой преобразователь), где подвергается оцифровке.
  3. На последнем этапе информация (уже в двоичном виде) кодируется при помощи специальной программы – аудиокодека. На выходе получается файл в специальном формате (например, mp3), который можно хранить, воспроизводить и передавать.

Кодирование звуковой информации

Наибольший интерес представляет процесс оцифровки, также называемым аналого-цифровым преобразованием. В результате него аналоговый сигнал заменяется на цифровой.

Основной принцип аналогово-цифрового преобразования заключается в том, что через равные промежутки времени измеряется амплитуда волны. Также этот процесс называется дискретизация.

Дискретизация – это процесс в результате, которого непрерывная функция представляется в виде дискретной последовательности её значений. Схематично дискретизацию можно представить так:

Кодирование звуковой информации

Дискретизация характеризуется двумя такими величинами, как:

  • Частота шага по времени;
  • Шаг квантования.

Первая величина отображает, как часто берутся дискреты и измеряется в Герцах (количество измерений за одну секунду). Частота шага по времени находится по теореме Котельникова.

Шаг квантования характеризуется количеством уровней , до которых округляются величины амплитуды волны.

Количество уровней (ступенек) до которых округляются значения сигнала, зависит от аналого-цифрового преобразователя. На данный момент используются 16, 32 и 64 битные устройства.

Количество бит, затрачиваемое для номеров уровней, называется глубиной кодирования звуковой информации.

Глубина кодирования связано с количеством уровней по формуле:

Где i разрядность АЦП в битах.

Чем чаще берутся дискреты за единицу времени и больше глубина кодирования, тем выше качество звуковых данных на выходе и дороже АЦП.

Расчет объема аудио файла

​ \[V = 60*1*8000*8=3840000 \ бит \] ​

Форматы аудио

Форматов для хранения аудио много, однако, все они делятся на две большие группы в зависимости от того, какой из методов сжатия используется – LOSELESS или LOSSY.

  1. LOSELESS – метод сжатия без потерь. Качество звуковой информации остается без изменений, однако за него приходится платить большим объемом компьютерной памяти. Используется для хранения музыки и других данных, где важно качество. Форматы, которые основаны на данном методе сжатия: FLAC, APE, TAC, ALAC и другие. На данный момент зарабатывают все большую популярность в связи с увеличением дискового пространства.
  2. LOSSY – сжатие с потерями. При таком методе файл сохраняются с искажениями относительно оригинала. В основном эти искажения не воспринимаются человеческим слухом, а также не замечаются при плохом аудио оборудовании. LOSSY позволяет существенно сэкономить дисковое пространство. На данный момент этот метод сжатия является доминирующим.

Форматы кодирования использующие алгоритмы LOSSY:

  • MP3 (MPEG-1,2,2.5) – самый популярный аудио формат. Проигрывается на всех аудио и видео системах, по умолчанию поддерживается всеми операционными системами. Искажения заметны на высокоточной дорогостоящей аппаратуре.
  • AAC – формат, который разрабатывался и позиционировался, как приемник mp3. Не получил широкого распространения. Преимущества перед mp3: большая гибкость кодирования, возможность использовать до 48 звуковых каналов.
  • HE-AAC (High-Efficiency Advanced Audio Coding) – используется в цифровом радио и телевиденье.

Заключение

Как качественно оцифровать звук

О том, как пользоваться звуковой картой, написано множество книг и статей, в том числе и на нашем сайте. Однако, на этот раз речь пойдет не о том, что уже и без того известно каждому постоянному читателю раздела Мультимедиа, а о том, что называется практикой цифровой звукозаписи. Наверняка любой владелец мультимедийного компьютера рано или поздно приступает к этой увлекательной деятельности. Собственно, для этого (и не только) компьютер и приобретают. Тем не менее, процесс этот не столь прост, и нужно иметь некоторый навык для достижения максимального качества. Цель этой статьи — дать читателям сайта (и владельцам SB Live! среди них в частности) некоторые полезные рекомендации в этой области, которые по тем или иным причинам не освещены в прессе или Сети должным образом.

Начну с того, что в свое время передо мной встал вопрос сведения моей кассетной фонотеки в MP3 файлы, и я вынужден был потратить не одну ночь для того, чтобы сделать процесс перегона аудиоинформации в компьютер по возможности более качественным и более универсальным для большинства аудиозаписей. Скажу сразу, несмотря на солидный опыт звукозаписи (и аналоговой и цифровой), это, на первый взгляд, невинное занятие потребовало у меня мобилизации многих сил и знаний.

Однако, пользователь приличной звуковой карты совершенно не обязан (как я) иметь высшее радиотехническое образование, и все же, достойное качество полученной записи требовать вправе. Считаю своим долгом дать аудитории iXBT тот самый минимум информации, который, надеюсь, избавит многих от неприятностей, связанных с оцифровкой аудио (таких как помехи, наводки и т.д). Полагаю, что некоторые сведения в этом материале будут полезны и опытным пользователям. Для того чтобы не выйти за рамки приличия, скажу также, что все написанное ниже — результат обобщения опыта многих людей, но, конечно же, не претендует на истину в последней инстанции. Обоснованная критика от читателей — это всегда хорошо! (Свои отзывы на статьи можно писать и в нашу конференцию О материалах сайта).

Общие замечания

Наиболее часто пользователям мультимедиа приходится оцифровывать следующие источники:

Виниловые пластинки. Здесь главное — хороший проигрыватель и предусилитель-корректор (тот, что встраивается в дорогие усилители). Из отечественных проигрывателей порекомендую Феникс ЭП 009С (алмазный эллипс в качестве головки, автоматический тонарм). А дальше — записываем пластинку на компьютер, чистим от щелчков (Click Removal), фильтруем инфразвук ниже 16 Гц (для устранения рокота) и нарезаем запись на песни. Шум лучше не удалять, так как шум в 65-70 дБ на выходе проигрывателя (или корректора) не так уж и велик. Например, 65-70 дБ выдает аналоговый выход большинства CD-ROM и ведь ничего? А вот с фоном (неприятным низкочастотным тоном в 50, 100, 150 и так далее Гц) лучше разобраться до оцифровки — где-то висит земля, или перепутаны полюса внутри проигрывателя.

Микрофон. Я подразумеваю хороший микрофон и микрофонный усилитель. И про то, и про другое можно найти массу информации в печатных изданиях, да и в Сети тоже. Дам совет только в одном.

Дело в том, что в студийной практике применяется один очень умный принцип для соединительных кабелей. Про витую пару сигнальных линий все уже знают, но вот как припаивать провода на концах проводов — лишь посвященные, да и то не все.

На рисунке ниже показано, как правильно изготовить шнур, который не внесет никакого вклада в качество записи, если он состоит из качественных проводов. В качестве экрана — медная оплетка (желательно, чтобы везде применялась медь!). Сигнальные жилы внутри экрана — витая пара медных многожильных проводов. Подобный кабель лучше купить в каком-нибудь магазине, где продают профессиональные микрофоны, гитары, и т.п. (дешевле обойдется провод, чем помехи). Стоит отметить, что только с микрофоном необходимо столь щепетильно отнестись к кабелю, иначе будете менять микрофонные усилители и сами микрофоны до греческих календ.

Если картинка не очень понятна, знайте сам ПРИНЦИП:

Экран соединен с металлической основой капсюля (если она металлическая) или просто висит внутри корпуса микрофона, а на входе (только лишь на входе. ) экран соединяется с землей. Тогда помехи и наводки, попав в экран, стекают в одну точку (как бы компенсируются), а не циркулируют по экрану. Экран не должен быть "антенной для помех"!

Я надеюсь, инженеры простят мне столь вольное толкование этой важной истины, а эстеты подобный эскиз :).

В случае с электрогитарой — руководствоваться тем же! Электрогитара — тот же микрофон, только менее чувствительный. Экран коммутационной схемы внутри гитары (если нет — сделайте из жести или шоколадной фольги) присоединяем к экрану, а потом, также соединяем на входе карты или приставки с землей. Не играйте на этом инструменте вблизи системного блока — изготовьте кабель подлиннее.

Вот только не стоит гробить студийную технику! Просто проверьте, как распаяны разъемы и все. Микрофон с профессиональным разъемом CANON (это такой здоровый, с защелкой) имеет обычно землю на штырьке номер 3 — тот, что посередине, если не так — уточните у продавца (не дарить же 100$ за новенький Shure SM58!?).

Шнуры от микрофонного усилителя/процессора/магнитофона и т.д. паяем по тому же принципу (экран соединяем с землей на входе), только здесь добавляется еще жила второго стереоканала. Не мешает заземлить и системный блок компьютера.

Надеюсь, вы согласны с тем, что грамотно созданный шнур не столь уж плох в сравнении с кабелем Monster Cable или Vampire, хотя если ваш шестиканальный DSP-усилитель стоит 1000$ — все же потратьтесь на приличный кабель.

А вот с компакт-кассетой 2 не так все просто. Тут запись и очистка от артефактов — самое настоящее искусство и подходы у опытных людей свои. Я же поделюсь моими методами, позволившими ИМХО 3 выжать из кассеты все ценное.

2 Ирония судьбы — компакт-кассета и компакт-диск сейчас уже не кажутся нам компактными. А уж их "некомпактных" собратьев из эпохи динозавров так вообще мало кто помнит. Так что, производителям надо было быть поосторожнее с выбором названий в своё время.

Вся штука в том, что у компакт-кассеты ограниченный ресурс эксплуатации (примерно 300 прогонов). Потом информация начинает теряться, звук становится рассыпчатым, глухим, прерывистым. Кроме того, более целесообразно гонять CD с отполированными MP3 файлами, чем вставлять кассету, крутить головку, чистить тракт спиртом и т.д. (хотя и у этого ритуала есть приверженцы!). К тому же, отреставрированная фонограмма с приличной по качеству кассеты ИМХО иногда даст фору по насыщенности деталями и аналоговой "теплоте" многим 128 Кбит MP3 — файлам. Я не распространитель мифов о дискретной и мертвой цифровой записи (хотя лет пять назад был другого мнения, да и АЦП/ЦАП были не те), но кассету хоронить рано, и владельцы хороших стационарных аппаратов меня поддержат!

Реставрация

1. Выравнивание АЧХ

Почти на любую стандартную кассету (TDK D, и т.д.), да и на кассеты подороже аудиозапись попадает практически одинаково. Если у вас не TEAC за 900$ или не Nakamichi Dragon, то разницы нет: AIWA или ВЕГА. На подобных "бюджетных" аппаратах воспроизводимый с кассеты сигнал больше зависит от свойств магнитной ленты, нежели от тракта воспроизведения. А магнитная лента на "железных" кассетах просто не пропустит частоты выше 14000 Гц, остальное будет жестоко ослаблено.

АЧХ тракта запись-воспроизведение для магнитофона ВЕГА-МП122С:

Конечно, тракт записи-воспроизведения у всех магнитофонов различен и особенно дотошным владельцам хороших стационарных магнитофонов исследования предстоит проделать самостоятельно. Для этого (а также для дальнейшего мастеринга) нам понадобятся последние версии знакомых программ (или хотя бы их демо-версии):

    , или 2000 для создания белого шума, синусов, фильтрации и очищения от шумов и т.д. для монтажа (оцифровка, нарезка материала) для всестороннего анализа
  • Энтузиасты могут применять внешние денойзеры (удаление шума), типа Sonic Foundry Noise Reduction 2.0, Arboretum Restoration-NR и др., но я после многочисленных субъективных и объективных исследований остановился на встроенном средстве Cool Edit Pro (хотя долго не мог с этим смириться). Все же программисты Syntrillium Software свой хлеб едят не зря! 4 То же касается и фильтрации.

4 Cледует отметить, что коммерческая версия программы Cool Edit (Cool Edit Pro 1.2) существенно отличается от своего бесплатного собрата (Cool Edit 2000). Например, Cool Edit 2000 не имеет функции Preview (предварительного прослушивания) при обработке, Multitrack-режима и т.д. И тем не менее, все необходимое для наших задач имеется в обеих версиях программы Cool Edit.

Процедуру исследования тракта записи/воспроизведения магнитофона лучше проделать так:

  1. Очистить воспроизводящую головку магнитофона и прижимной ролик с ведущим валом спиртом, затем, поместив чистую (с обеих сторон!) кассету в магнитофон, приготовить ее к записи.
  2. Далее, подав белый шум 5 (48 кГц) на вход (Generate/Noise…/White, mono, intensity = 12 в Cool Edit), добиться оптимального уровня записи на Вашем магнитофоне и записать около 3-х минут (если компьютер не ниже Celeron+64Mb) или 60 секунд этого шума (ежели машина слабее). Магнитная лента весьма неравномерно реагирует на последовательное изменение значения частоты (Frequency Sweep), поэтому, из соображений статистики лучше использовать белый или розовый шум. Это обеспечивает более точный и равномерный график АЧХ.
  3. Далее, следует, не вынимая кассету и не подкручивая воспроизводящую головку, записать только что полученный белый шум — с кассеты на Line-In звуковой карты (частоту дискретизации ставим 48 кГц). 6
  4. Теперь нормализуем полученный сигнал под -1 дБ (Process/Normalize… в Sound Forge 4.5), и сохраняем.
  5. В SpectraLAB выбираем Mode/Post Process, и открываем только что полученный файл. Делаем настройки (Settings): 48000, 16bit, FFT Size = 65536 (для слабой машины 16384), mono, Average = linear. Выделяем весь файл в режиме View/Time Series, жмем правую кнопку и приказываем: Compute and Display Average Spectrum.
  6. Смотрим на спектр и кривимся неравномерности АЧХ нашего магнитофона J. В Cool Edit открываем этот же файл и поднимаем ослабленные частоты (FFT Filter etc.). Сохраняем (но не закрываем. ) в другой файл и этот другой открываем в SpectraLAB (первый файл пригодится в случае порчи второго). Чтобы запомнить огибающие спектра в SpectraLAB для сравнения — жмите Set в районе Overlays.
  7. Не красиво? Отменяйте в Cool Edit фильтрацию — и снова!

5 Использовать розовый шум предпочтительнее, так как он ближе по свойствам к музыкальному сигналу.

6 Почему это обязательное условие для получения налучшего качества записи, читайте статьи с измерениями тестовых параметров звуковых карт на нашем сайте.

Как видите, искусство и здесь требует жертв :(. Однако я повторяю — на хороших аппаратах тракты Record-Play очень схожи, и вы можете воспользоваться моими результатами исправления АЧХ для магнитофона МП ВЕГА-122С. Для этого в файле C:\Windows\cool.ini найдите раздел [Filters96] и в незанятой строке запишите (в одну линию!) следующее:

Item29=RESTORATION,3,19,0,20,426,5,845,0,1288,0,1986,0,2259,0,2855,6,3179,9,3444, 21,3583,28,3688,42,3773,48,3848,61,3925,76,3957,96,3998,100,4004,100,4012,5,4096,5, 19,0,20,426,5,845,0,1288,0,1986,0,2259,0,2855,6,3179,9,3444,21,3583,28,3688,42,3773, 48,3848,61,3925,76,3957,96,3998,100,4004,100,4012,5,4096,5,2,0,12000,1,2,0,0,1000, 100,5,-10,100,-0.5,12,24000,1,0,1,1,48000

Теперь в Transform/Filters…/FFT Filter (все в том же Cool Edit) ищем пресет RESTORATION и корректируем фонограмму. Все. Я убил 2 дня, чтобы выровнять АЧХ своей ВЕГИ до значения ±0,5 дБ от 10 до 19500 Гц! Наслаждайтесь. АЧХ ВЕГИ-МП122С до (зеленый график) и после (желтый график) частотной коррекции:

2. Владельцам SB Live!

Многие владельцы SB Live!1024 Value знают, что АЧХ кодека SigmaTel STAC9721 совсем не идеальна и уже после 4,5 кГц начинается ступенчатый спад:

Основной вклад в это вносит АЦП кодека, в чем можно убедиться, скажем, в этой статье. Сделано это, с одной стороны, для нашего же блага: таким образом предотвращается проникновение паразитных гармоник в слышимую область спектра. С другой стороны, подобное "подрезание" верхов имеет и негативное последствие: на достаточно серьезной Hi-Fi-аппаратуре этот ньюанс может быть вполне заметен.

Поэтому, всем владельцам SB Live! НАСТОЯТЕЛЬНО рекомендую каждую записанную фонограмму через Line-IN сначала, то есть до последующей обработки, пропустить через следующий фильтр (тот же cool.ini и тот же раздел):

Item36=CORRECtion,3,20,0,0,83,0,532,1,793,1,1003,2,1223,4,1713,5,2046,10,2391, 12,2569,15,2710,18,3066,24,3234,27,3398,35,3480,41,3546,47,3628,56,3726,70,3825, 89,4096,100,20,0,0,83,0,532,1,793,1,1003,2,1223,4,1713,5,2046,10,2391,12,2569,15, 2710,18,3066,24,3234,27,3398,35,3480,41,3546,47,3628,56,3726,70,3825,89,4096,100, 2,0,12000,1,2,0,0,1000,100,3,-10,100,0,14,24000,1,0,0,1,48000

Кстати, номер Item должен не совпадать ни с каким другим, ну а так — любой…

После подобной операции неравномерность АЧХ в кольце LineOUT — LineIN для звуковой карты SB Live! удалось уменьшить до ±0,1 дБ! В этом можно убедиться, взглянув на спектрограмму (мне это далось в свое время опять же ценой пары ночей).

АЧХ звуковой карты SBLive (кодек STAC9721) до и после частотной коррекции. Шкала графика 5 дБ!:

Теперь линейный вход у нас — референс! Enjoy…

Владельцам микрофона МД-52А (студийный, 20-16000Гц) посоветую следующую коррекционную фишку:

Item40=MIC_MD52A,3,8,0,0,1723,17,2158,37,2569,53,3176,89,3316,100,3480,100,4096, 100,11,0,50,4,51,5,60,6,73,8,81,10,85,14,87,17,79,19,60,24,51,4096,50,2,1,6000,1,4, 0,0,648,31,831,57,1000,100,3,0,100,0,16,24000,2,1,0,1,48000

Не забываем, что строка неразрывна во всю свою длину.

3. Шумоподавление

Теперь поговорим о шумоподавлении. Как я уже указал — Noise Reduction в Cool Edit — на мой взгляд — лучший. Звукорежиссеры хвалят Arboretum Ionizer, якобы из-за того, что он избавлен от внесения фазовых артефактов в обработанный материал (если знаете где взять — напишите!), знакомые советуют Sonic Foundry Noise Reduction. Но мои уши пока что влюблены в CoolEdit-овский шумодав. Кроме того, ни в каком другом нет столько настроек и опций, да и то, что он работает медленнее (читай добросовестнее) других — тоже говорит о многом. Существует также весьма неплохая программа реставрации DART Pro, однако детальное сравнение всех этих программных продуктов выходит за рамки данной статьи.

Итак, после многотрудной фильтрации необходимо взять 1,5-1,6 секунд шума перед каждой (для максималистов) или какой-нибудь средней фанерой (но только с той же кассеты и стороны, откуда взята фонограмма). Далее:

    1. Сделать профиль этого 1,5 секундного шума (Get Profile from Selection) с параметрами:

Нередко приходиться повторно нормализовать фонограммы под -0,2 дБ (это стандарт для CD-Audio), так как шумоподавление может серьезно уменьшить энергию сигнала. Все готово к MP3-кодированию! Правда, бытует мнение, что нормализация перед сжатием в MP3 — это очень вредно, и Вы на это должны идти лишь в случае ощутимого различия между уровнями отдельных каналов или просто слабого (-3…-6 дБ) уровня фонограммы в конечном итоге. Это как раз тот случай, когда решать Вам.

4. Сжатие

Лично я пользуюсь кодером Fraunhofer IIS, встроенный в BPM Studio Pro 3.0. Остальные кодеры (ИМХО) от Fraunhofer IIS не могут преодолеть своеобразного шелеста в полученном файле, причем на всех битрейтах. А вот к LAME -f я отношусь настороженно, этот кодер, по-моему, только на АЧХ и хорош.

Теперь о битрейте. Честно говоря, все ньюансы сохраняются лишь при 256 Кбит/c, но и при 192 Кбит/c фонограмма почти неотличима от исходной. Для проверки того, какой битрейт наилучший для данной фонограммы, я применяю довольно жестокую методику субъективного сравнения. Сначала кодирую наиболее ответственный фрагмент (насыщенный высокими частотами или с какими-нибудь знакомыми ньюансами) во все битрейты: 128, 160, 192, 224, 256. Затем последовательно соединяю в Sound Forge оригинальный фрагмент с закодированным и слушаю. Обычно 128 и 160 Кбит/с выпадают из рассмотрения сразу, а настоящая борьба разворачивается между 192 и 256 Кбит/с (ну не люблю я поток в 224 Кбит/c, ибо кривой он какой-то :)).

Для отреставрированных фонограмм вполне хватает и 192 Кбит/с, но опять-таки некоторым и 256 Кбит/c подчас не хватает. Скажу также, что магнитофонные записи представляют собой весьма непростой для кодирования материал. Как-то раз я подверг, как теперь принято говорить, "зачистке" фонограмму с весьма посредственным качеством и закодировав потом все в 192 Кбит/c я был потрясен услышанным! Результат звучал словно джаз на 112 Кбит/c, то есть омерзительно. У этого феномена очень глубокая причина и я могу написать еще одну статью на эту тему, если желаете. Так что, доверяйте технике и спектрограммам, но контрольное прослушивание устроить не ленитесь. Тем не менее, по большей части эта информация относится к обладателям хорошего тракта усилитель-колонки (наушники).

Заключение

Под обработкой звука следует понимать различные преобразования звуковой информации с целью изменения каких-то характеристик звучания. К обработке звука относятся способы создания различных звуковых эффектов, фильтрация, а также методы очистки звука от нежелательных шумов, изменения тембра и т.д. Все это огромное множество преобразований сводится, в конечном счете, к следующим основным типам:

1. Амплитудные преобразования. Выполняются над амплитудой сигнала и приводят к ее усилению/ослаблению или изменению по какому-либо закону на определенных участках сигнала.

2. Частотные преобразования. Выполняются над частотными составляющими звука: сигнал представляется в виде спектра частот через определенные промежутки времени, производится обработка необходимых частотных составляющих, например, фильтрация, и обратное «сворачивание» сигнала из спектра в волну.

3. Фазовые преобразования. Сдвиг фазы сигнала тем или иным способом; например, такие преобразования стерео сигнала, позволяют реализовать эффект вращения или «объёмности» звука.

4. Временные преобразования. Реализуются путем наложения, растягивания/сжатия сигналов; позволяют создать, например, эффекты эха или хора, а также повлиять на пространственные характеристики звука.

Практическую обработку сигналов можно разделить на два типа: обработка «на лету» и пост-обработка. Обработка «на лету» подразумевает мгновенное преобразование сигнала (то есть с возможностью осуществлять вывод обработанного сигнала почти одновременно с его вводом). Простой пример – гитарные «примочки» или реверберация во время живого исполнения на сцене. Такая обработка происходит мгновенно, то есть, скажем, исполнитель поет в микрофон, а эффект-процессор преобразует его голос и слушатель слышит уже обработанный вариант голоса. Пост-обработка – это обработка уже записанного сигнала. Скорость такой обработки может быть сильно ниже скорости воспроизведения. Такая обработка преследует те же цели, то есть придание звуку определенного характера, либо изменение характеристик, однако применяется на стадии мастеринга или подготовки звука к тиражированию, когда не требуется спешка, а важнее качество и скрупулезная проработка всех нюансов звучания. Существует множество различных операций над звуком, которые вследствие недостаточной производительности сегодняшних процессоров нельзя реализовать «на лету», поэтому такие преобразования проводят лишь в пост-режиме .

Аналоговый и дискретный способы представления звука

Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме.

При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно.

При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.


Примером аналогового хранения звуковой информации является виниловая пластин­ка (звуковая дорожка изменяет свою форму непрерывно), а дискретного — аудиокомпакт-диск (звуковая дорожка которого содержит участки с различной отражающей способностью).

Восприятие звука человеком

Звуковые волны улавливаются слуховым органом и вызывают в нем раздражение, которое передается по нервной системе в головной мозг, создавая ощущение звука.

Колебания барабанной перепонки в свою очередь передаются во внутреннее ухо и раздражают слуховой нерв. Так образом человек воспринимает звук.

В аналоговой форме звук представляет собой волну, которая характеризуется:

  • Высота звука определяется частотой колебаний вибрирующего тела.
  • Г ромкость звука определяется энергией колебательных движений, то есть амплитудой колебаний.
  • Длительность звука - продолжительность колебаний.
  • Тембром звука называется окраска звука.

Герц (Гц или Hz) — единица измерения частоты колебаний. 1 Гц= 1/с

Человеческое ухо может воспринимать звук с частотой от 20 колебаний в секунду (20 Герц, низкий звук) до 20 000 колебаний в секунду (20 КГц, высокий звук).



Кодирование звуковой информации

Для того чтобы комп ьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).


  • В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.
  • Таким образом, при двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала.

Качество кодирования звуковой информации зависит от :

1)частотой дискретизации, т.е. количества измерений уровня сигнала в единицу времени. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.

2)глубиной кодирования, т.е. количества уровней сигнала.

Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле: N = 2 i = 2 16 = 65536, где i — глубина звука.

Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код.

Количество измерений в секунду может лежать в диапазоне от 8000 до 48 000, то есть частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц — качеству звучания аудио-С D . Следует также учитывать, что возможны как моно-, так и стерео-режимы.

РСМ. РСМ расшифровывается как pulse code modulation, что и является в переводе как импульсно-кодовая. Файлы именно с таким расширением встречаются довольно редко. Но РСМ является основополагающей для всех звуковых файлов.

WAV. Самое простое хранилище дискретных данных. Один из типов файлов семейства RIFF. Помимо обычных дискретных значений, битности, количества каналов и значений уровней громкости, в wav может быть указано еще множество параметров, о которых Вы, скорее всего, и не подозревали - это: метки позиций для синхронизации, общее количество дискретных значений, порядок воспроизведения различных частей звукового файла, а также есть место для того, чтобы Вы смогли разместить там текстовую информацию.

RIFF. Resource Interchange File Format. Уникальная система хранения любых структурированных данных.

IFF. Эта технология хранения данных проистекает от Amiga-систем. Interchange File Format. Почти то же, что и RIFF, только имеются некоторые нюансы. Начнем с того, что система Amiga - одна из первых, в которой стали задумываться о программно-сэмплернойэмуляции музыкальных инструментов. В результате, в данном файле звук делится на две части: то, что должно звучать вначале и элемент того, что идет за началом. В результате, звучит начало один раз, за тем повторяется второй кусок столько раз, сколько Вам нужно и нота может звучать бесконечно долго.

MOD. Файл хранит в себе короткий образец звука, который потом можно использовать в качестве шаблона для инструмента.

AIF или AIFF. Audio Interchange File Format. Данный формат распространен в системах Apple Macintosh и Silicon Graphics. Заключает в себе сочетание MOD и WAV.

МР3. Самый скандальный формат за последнее время. Многие для объяснения параметров сжатия, которые в нем применяют, сравнивают его с jpeg для изображений. Там очень много наворотов в вычислениях, чего и не перечислишь, но коэффициент сжатия в 10-12 раз сказали о себе сами. Специалисты говорят о контурности звука как о самом большом недостатке данного формата. Действительно, если сравнивать музыку с изображением, то смысл остался, а мелкие нюансы ушли. Качество МР3 до сих пор вызывает много споров, но для "обычных немузыкальных" людей потери не ощутимы явно.

VQF. Хорошая альтернатива МР3, разве что менее распространенная. Есть и свои недостатки. Закодировать файл в VQF - процесс гораздо более долгий. К тому же, очень мало бесплатных программ, позволяющих работать с данным форматом файлов, что, собственно, и сказалось на его распространении.

RA. Real Audio или потоковая передача аудиоданных. Довольно распространенная система передачи звука в реальном времени через Интернет. Скорость передачи порядка 1 Кб в секунду. Полученный звук обладает следующими параметрами: 8 или 16 бит и 8 или 11 кГц.


Рассмотрим теоретические аспекты преобразования аналогового (аудио) сигнала в цифровой.
Статья не будет всеохватывающей, но в тексте будут гиперссылки для дальнейшего изучения темы.

Чем отличается цифровой аудиосигнал от аналогового?

Аналоговый (или континуальный) сигнал описывается непрерывной функцией времени, т.е. имеет непрерывную линию с непрерывным множеством возможных значений (рис. 1).



Цифровой сигнал — это сигнал, который можно представить как последовательность определенных цифровых значений. В любой момент времени он может принимать только одно определенное конечное значение (рис. 2).



Аналоговый сигнал в динамическом диапазоне может принимать любые значения. Аналоговый сигнал преобразуется в цифровой с помощью двух процессов — дискретизация и квантование. Очередь процессов не важна.

Дискретизацией называется процесс регистрации (измерения) значения сигнала через определенные промежутки (обычно равные) времени (рис. 3).



Квантование — это процесс разбиения диапазона амплитуды сигнала на определенное количество уровней и округление значений, измеренных во время дискретизации, до ближайшего уровня (рис. 4).



Дискретизация разбивает сигнал по временной составляющей (по вертикали, рис. 5, слева).
Квантование приводит сигнал к заданным значениям, то есть округляет сигнал до ближайших к нему уровней (по горизонтали, рис. 5, справа).



Эти два процесса создают как бы координатную систему, которая позволяет описывать аудиосигнал определенным значением в любой момент времени.
Цифровым называется сигнал, к которому применены дискретизация и квантование. Оцифровка происходит в аналого-цифровом преобразователе (АЦП). Чем больше число уровней квантования и чем выше частота дискретизации, тем точнее цифровой сигнал соответствует аналоговому (рис. 6).



Уровни квантования нумеруются и каждому уровню присваивается двоичный код. (рис. 7)



Количество битов, которые присваиваются каждому уровню квантования называют разрядностью или глубиной квантования (eng. bit depth). Чем выше разрядность, тем больше уровней можно представить двоичным кодом (рис. 8).



Данная формула позволяет вычислить количество уровней квантования:

Если N — количество уровней квантования,
n — разрядность, то

Обычно используют разрядности в 8, 12, 16 и 24 бит. Несложно вычислить, что при n=24 количество уровней N = 16,777,216.

При n = 1 аудиосигнал превратится в азбуку Морзе: либо есть «стук», либо нету. Существует также разрядность 32 бит с плавающей запятой. Обычный компактный Аудио-CD имеет разрядность 16 бит. Чем ниже разрядность, тем больше округляются значения и тем больше ошибка квантования.

Ошибкой квантований называют отклонение квантованного сигнала от аналогового, т.е. разница между входным значением и квантованным значением ()

Большие ошибки квантования приводят к сильным искажениям аудиосигнала (шум квантования).

Чем выше разрядность, тем незначительнее ошибки квантования и тем лучше отношение сигнал/шум (Signal-to-noise ratio, SNR), и наоборот: при низкой разрядности вырастает шум (рис. 9).



Разрядность также определяет динамический диапазон сигнала, то есть соотношение максимального и минимального значений. С каждым битом динамический диапазон вырастает примерно на 6dB (Децибел) (6dB это в 2 раза; то есть координатная сетка становиться плотнее, возрастает градация).

рис. 10. Интенсивность шумов при разрядности 6 бит и 8 бит

Ошибки квантования (округления) из-за недостаточного количество уровней не могут быть исправлены.



амплитуда сигнала при разрядности 1 бит (сверху) и 4 бит



50dB SNR
примечание: если аудиофайлы не воспроизводятся онлайн, пожалуйста, скачивайте их.







Теперь о дискретизации.

Как уже говорили ранее, это разбиение сигнала по вертикали и измерение величины значения через определенный промежуток времени. Этот промежуток называется периодом дискретизации или интервалом выборок. Частотой выборок, или частотой дискретизации (всеми известный sample rate) называется величина, обратная периоду дискретизации и измеряется в герцах. Если
T — период дискретизации,
F — частота дискретизации, то


Чтобы аналоговый сигнал можно было преобразовать обратно из цифрового сигнала (точно реконструировать непрерывную и плавную функцию из дискретных, «точечных» значении), нужно следовать теореме Котельникова (теорема Найквиста — Шеннона).

Теорема Котельникова гласит:

Если аналоговый сигнал имеет финитный (ограниченной по ширине) спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчетам, взятым с частотой, строго большей удвоенной верхней частоты.

Вам знакомо число 44.1kHz? Это один из стандартов частоты дискретизации, и это число выбрали именно потому, что человеческое ухо слышит только сигналы до 20kHz. Число 44.1 более чем в два раза больше чем 20, поэтому все частоты в цифровом сигнале, доступные человеческому уху, могут быть преобразованы в аналоговом виде без искажении.

Но ведь 20*2=40, почему 44.1? Все дело в совместимости с стандартами PAL и NTSC. Но сегодня не будем рассматривать этот момент. Что будет, если не следовать теореме Котельникова?

Когда в аудиосигнале встречается частота, которая выше чем 1/2 частоты дискретизации, тогда возникает алиасинг — эффект, приводящий к наложению, неразличимости различных непрерывных сигналов при их дискретизации.



Как видно из предыдущей картинки, точки дискретизации расположены так далеко друг от друга, что при интерполировании (т.е. преобразовании дискретных точек обратно в аналоговый сигнал) по ошибке восстанавливается совершенно другая частота.

Аудиопример 4: Линейно возрастающая частота от

100 до 8000Hz. Частота дискретизации — 16000Hz. Нет алиасинга.



Аудиопример 5: Тот же файл. Частота дискретизации — 8000Hz. Присутствует алиасинг



Пример:
Имеется аудиоматериал, где пиковая частота — 2500Hz. Значит, частоту дискретизации нужно выбрать как минимум 5000Hz.

Следующая характеристика цифрового аудио это битрейт. Битрейт (bitrate) — это объем данных, передаваемых в единицу времени. Битрейт обычно измеряют в битах в секунду (Bit/s или bps). Битрейт может быть переменным, постоянным или усреднённым.

Следующая формула позволяет вычислить битрейт (действительна только для несжатых потоков данных):

Битрейт = Частота дискретизации * Разрядность * Количество каналов

Например, битрейт Audio-CD можно рассчитать так:
44100 (частота дискретизации) * 16 (разрядность) * 2 (количество каналов, stereo)= 1411200 bps = 1411.2 kbit/s

При постоянном битрейте (constant bitrate, CBR) передача объема потока данных в единицу времени не изменяется на протяжении всей передачи. Главное преимущество — возможность довольно точно предсказать размер конечного файла. Из минусов — не оптимальное соотношение размер/качество, так как «плотность» аудиоматериала в течении музыкального произведения динамично изменяется.

При кодировании переменным битрейтом (VBR), кодек выбирает битрейт исходя из задаваемого желаемого качества. Как видно из названия, битрейт варьируется в течение кодируемого аудиофайла. Данный метод даёт наилучшее соотношение качество/размер выходного файла. Из минусов: точный размер конечного файла очень плохо предсказуем.

Усреднённый битрейт (ABR) является частным случаем VBR и занимает промежуточное место между постоянным и переменным битрейтом. Конкретный битрейт задаётся пользователем. Программа все же варьирует его в определенном диапазоне, но не выходит за заданную среднюю величину.

При заданном битрейте качество VBR обычно выше чем ABR. Качество ABR в свою очередь выше чем CBR: VBR > ABR > CBR.

ABR подходит для пользователей, которым нужны преимущества кодирования VBR, но с относительно предсказуемым размером файла. Для ABR обычно требуется кодирование в 2 прохода, так как на первом проходе кодек не знает какие части аудиоматериала должны кодироваться с максимальным битрейтом.

Существуют 3 метода хранения цифрового аудиоматериала:

  • Несжатые («сырые») данные
  • Данные, сжатые без потерь
  • Данные, сжатые с потерями

Несжатый (RAW) формат данных

содержит просто последовательность бинарных значений.
Именно в таком формате хранится аудиоматериал в Аудио-CD. Несжатый аудиофайл можно открыть, например, в программе Audacity. Они имеют расширение .raw, .pcm, .sam, или же вообще не имеют расширения. RAW не содержит заголовка файла (метаданных).

Другой формат хранения несжатого аудиопотока это WAV. В отличие от RAW, WAV содержит заголовок файла.

Аудиоформаты с сжатием без потерь

Принцип сжатия схож с архиваторами (Winrar, Winzip и т.д.). Данные могут быть сжаты и снова распакованы любое количество раз без потери информации.

Как доказать, что при сжатии без потерь, информация действительно остаётся не тронутой? Это можно доказать методом деструктивной интерференции. Берем две аудиодорожки. В первой дорожке импортируем оригинальный, несжатый wav файл. Во второй дорожке импортируем тот же аудиофайл, сжатый без потерь. Инвертируем фазу одного из дорожек (зеркальное отображение). При проигрывании одновременно обеих дорожек выходной сигнал будет тишиной.

Это доказывает, что оба файла содержат абсолютно идентичные информации (рис. 11).



Кодеки сжатия без потерь: flac, WavPack, Monkey’s Audio…

При сжатии с потерями

акцент делается не на избежание потерь информации, а на спекуляцию с субъективными восприятиями (Психоакустика). Например, ухо взрослого человек обычно не воспринимает частоты выше 16kHz. Используя этот факт, кодек сжатия с потерями может просто жестко срезать все частоты выше 16kHz, так как «все равно никто не услышит разницу».

Другой пример — эффект маскировки. Слабые амплитуды, которые перекрываются сильными амплитудами, могут быть воспроизведены с меньшим качеством. При громких низких частотах тихие средние частоты не улавливаются ухом. Например, если присутствует звук в 1kHz с уровнем громкости в 80dB, то 2kHz-звук с громкостью 40dB больше не слышим.

Читайте также: