Как называется технология беспроводной связи выберите один ответ a wi fi

Обновлено: 06.07.2024

Почти все современные смартфоны содержат в себе довольно внушительный перечень беспроводных технологий: Qi, Bluetooth, Wi-Fi, NFC и т.д. И каждая из этих технологий предоставляет пользователю массу возможностей, тем самым принося в его жизнь комфорт и удобства.

Около десяти лет назад практически единственной возможностью передать данные с одного телефона на другой без использования проводов было наличие инфракрасного порта. Однако, удобства в таком способе передачи информации было не очень много: скорость было небольшая, и расстояние между телефонами должно было быть маленьким. В настоящее время инфракрасный порт тоже встраивается в смартфоны, но не для передачи данных, а для управления домашней техникой.

После инфракрасных портов для передачи данных и прямого подключения устройств стали использовать Bluetooth. С помощью этой технологии можно соединить между собой гарнитуру и планшет или смартфон с аудиоколонкой без использования каких-либо проводов. Скорость передачи при этом довольно высока, а устройства могут находиться на достаточно большом расстоянии. Например, в последнем стандарте Bluetooth 5.0 скорость передачи может достигать до 5120 кбит/с, а диапазон действия может быть более 100 метров.

Неотъемлемая часть всех современных смартфонов – технология беспроводной связи Wi-Fi. Это наиболее легкий способ подключения к Интернету. Также с помощью этой технологии можно транслировать контент со смартфона на экран телевизора или же обеспечить доступ в Интернет другим устройствам, превратив свой телефон в «точку доступа». Первый стандарт для этой технологии был выпущен еще в 1996 году и назывался IEEE 802.11. После этого технология Wi-Fi постоянно развивалась, и было выпущено еще более двадцати стандартов, каждый из которых получил свое буквенное обозначение. В настоящее время самыми востребованными являются 802.11b, 802.11g, 802.11n и 802.11ac.

Также возможность беспроводного сопряжения устройств между собой предоставляет технология NFC. Она имеет очень небольшой радиус действия – до 20 см, но в отличии от Bluetooth, где для организации соединения необходимо включить на смартфоне соответствующий модуль, начать поиск устройств, выбрать из списка нужное устройство, разрешить доступ и дождаться установки соединения, NFC позволяет связать устройства почти мгновенно. Однако, скорость передачи при этом довольно низкая. Стоит отметить, что т.к. требуется небольшое расстояние между устройствами, они не будут устанавливать случайных соединений. Технология NFC активно применяется в электронных платежах. Аналог – технология Hotknot.

В некоторые смартфоны встраивается технология Qi. Она предполагает беспроводную зарядку телефона, осуществляемую с помощью электромагнитной индукции. В этом случае имеется зарядное устройство, выполняемое в виде небольшой панели, которое содержит в себе катушку. У телефона есть своя катушка, и в результате, когда смартфон подносится к зарядной панели, энергия с катушки зарядного устройства передается на катушку телефона. Однако, скорость такой индукционной зарядки значительно ниже, чем с использованием проводов.

Также большинство современных смартфонов оснащены GPS-приемниками, которые способны определять местоположение устройства с точностью до нескольких метров. В этом случае используется информация, отправляемая с навигационных спутников. При этом чем больше спутников, тем лучше результат. При включении GPS-системы на смартфоне пользователю нужно немного подождать, пока пройдет «холодный старт». За это время навигатор устанавливает связь со спутниками и получает от них данные, т.е. подготавливается к работе. Ускорить этот процесс может технология A-GPS, которая предоставляет информацию от вышек сотовой связи, что позволяет быстро определить координаты местоположения устройства.

Таким образом, в данной статье были рассмотрены основные беспроводные технологии, применяющиеся в современных смартфонах.

image

Технологии беспроводной передачи данных, которую мы знаем как WiFi, уже более 30 лет. В этой статье вспомним, почему WiFi называется именно так, как появился, какие были основные этапы развития и что ждет технологию в будущем.

Все это и немного больше — под катом.

Почему именно “WIFi”?

Многие из нас принимают аббревиатуру, как должное, не задумываясь о том, почему технология называется именно так. Ларчик открывается просто — дело в том, что WiFi изначально продвигали со слоганом «The Standard for Wireless Fidelity», что можно перевести как «стандарт беспроводной точности».

Затем технология получила сокращенное название «Wireless Fidelity», что со временем было обрезано до WiFi. Частично сыграла свою роль и аббревиатура HiFi, которая расшифровывается как High Fidelity. Может быть, разработчики WiFi пытались сделать свою технологию узнаваемой как раз за счет HiFi — кто знает. Как бы там ни было, своего они добились.

С чего все началось

Наверное, не будет ошибкой сказать, что датой рождения технологии является 1985 год. Тогда Федеральная служба по связи США официально разрешила использовать определенные частоты радиоспектра без лицензии. Эту инициативу поддержали и другие страны, так что бизнес быстро понял — в этой нише можно заработать. Один за другим стали появляться проекты беспроводной связи, которые разные компании пытались коммерциализировать.

Лишь в самом конце прошлого века, в 1997 году, появились первые спецификации беспроводной связи WiFi. Первое поколение, 802.11, давало возможность передавать данные со скоростью в 2 Мбит/с, при том, что радиус действия модуля был очень небольшим. Да и стоимость оборудования, которое обеспечивало беспроводную передачу данных, была просто заоблачной.

Затем, где-то в 1999 году, появились прототипы двух редакций базового стандарта: 802.11b и 802.11a. Они обеспечивали невиданную скорость передачи данных по воздуху — вплоть до 11 Мбит/с. Радиодиапазон при этом использовался тот же, что и сейчас — 2,4 ГГц. Радиус действия был гораздо большим, чем у самого первого поколения WiFi. Радиооборудование становится все более доступным — его могут купить уже и обычные пользователи.

Чуть позже скорость увеличили до 54 Мбит/с, воспользовавшись диапазоном в 5 ГГц и назвав спецификацию 802.11a. Именно тогда и закрепилось название WiFi, которое сейчас является обозначением спецификации 802.11.

Кроме того, разработчики стали заботиться о безопасности передаваемых данных лучше, чем раньше. Так, на смену дырявому WEP пришел WPA (англ. — Wi-Fi Protected Access). Еще год спустя, в 2004, появился протокол WPA2, который стал весьма надежно защищать беспроводные сети.

Спустя десять лет

Да, в течение десяти лет технология развивалась, но не очень быстро — пропускной способности канала вполне было достаточно для потребностей пользователей того времени. Но затем стало понятно, что дальше так продолжаться не может — нужен новый стандарт, который позволил бы передавать больше данных за единицу времени.

Основная причина в том, что качество фото и видео возросли, причем очень значительно, по сравнению с концом 20-го века. Стоит только посмотреть фотографии начала 2000-х, сравнив их с цифровым контентом более раннего времени, и все станет понятно.

В целом, технологии не стояли на месте, в 2003-м, например, появилась спецификация 802.11g. Но это не было чем-то принципиально новым — разработчики воспользовались технологией диапазона 5 ГГц, адаптировав ее для диапазона 2,4 ГГц. К слову, количество членов WiFi Alliance стало тоже расти, как на дрожжах. В 2003 году их стало более 100. Соответственно, все больше компаний разрабатывали оборудование, совместимое с беспроводным стандартом WiFI.

Ура, новые технологии

В 2009 команда разработчиков из WiFi Alliance приняла новый стандарт — 802.11n. Это уже было новое поколение WiFi, без клонирования механизма передачи данных из одного диапазона в другой. При этом скорость передачи данных увеличилась во много раз — вплоть до 600 Мбит/с.

image

Такого резкого роста пропускной способности удалось добиться за счет использования многопотоковой передачи данных MIMO вместо SISO. Многопотоковая передача позволила использовать несколько потоков передачи данных, направляемых разными же антеннами. В самом начале стандарт давал возможность работать с 4 потоками, каждый из которых предоставлял пропускную способность в 150 Мбит/с.

При этом технология была «умной» — сигналы обрабатывались, а затем объединялись в единое целое, что давало возможность добиться пропускной способности в 600 Мбит/с, во всяком случае, в теории. В целом, MIMO и положила начало развитию современного WiFi — скоростного, надежного и дальнобойного.

И снова развиваемся

Технология беспроводной связи продолжила эволюционировать. Так, в 2015 году появилась новая ревизия — WiF 802.11 AC, где количество потоков MIMO было доведено до 8. Благодаря этому, а также другим техническим ухищрениям удалось добиться пропускной способности одного канала до 866 Мбит/сек. Правда, были некоторые сложности с достижением теоретического максимума, поскольку в узкой полосе частот 2,4 ГГц достаточно сложно добиться идеального приема из-за загруженности «эфира».

image

Те пропускной способности в 7 Гбит/с добиться удавалось исключительно редко. Но все же скорость огромная по сравнению с предыдущими поколениями. MIMO усовершенствовали, так что появилась технология MU-MIMO — мультиплексирование каналов. Точки доступа стали умными, их научили разбивать один канал на несколько подканалов, каждый из которых обменивается данными с абонентами. Это дало возможность оптимизировать работу точек доступа даже в очень высоконагруженных сетях.

Добиться этого удалось еще и за счет фазового сдвига сигнала таким образом, что интерференция становилась «конструктивной», так что радиоволны усиливались за счет взаимодействия.

Новые достижения


Недавно был принят новый стандарт — 802.11 AX, который называют еще Wi-Fi 6. Здесь появилось сразу несколько нововведений, включая добавление новой технологии OFDMA. Она позволила увеличить производительность одного канала с шириной спектра 40 МГц до 290 Мбит/с. Схему MU-MIMO усовершенствовали, теперь появился двухсторонний полноценный режим обмена данными.

В частности, разработчики ввели квадратурную амплитудную модуляцию (QAM) 1024, которая позволила повысить плотность модуляции и увеличить скорость передачи данных примерно на треть.


802.11ax позволяет работать в средах с высокой плотностью клиентов, передавая по воздуху тяжелый медиаконтент — например, видео с разрешением 4-8К. Количество точек доступа, находящихся поблизости друг от друга, практически не влияет на качество приема и передачи данных. Достоинство нового поколения связи еще и в том, что оно довольно энергоэффективное, так что батарей мобильных устройств хватает на более продолжительное время работы.

Что дальше?

image

В недалеком будущем нас ждет новый протокол беспроводной передачи данных WiFI 7 или IEEE 802.11be. Он будет работать с технологией CMU-MIMO, позволяющей поддерживать работу сразу 16 потоков данных. Помимо традиционных полос 2,4 ГГц и 5 ГГц, WiFi 7 также будет поддерживать полосу частот 6 ГГц. Все три полосы частот могут работать одновременно.

Теоретическая максимальная скорость передачи Wi-Fi 7 может достигать 30 Гбит/с, что в три раза превышает максимальную скорость 9,6 Гбит/с для Wi-Fi 6.

К сожалению, разработка основных механизмов работы технологии задерживается из-за эпидемии. Изначально планировалось, что все основные работы будут завершены до 2021 года, а стандарт будет одобрен в 2024 году. Но теперь, скорее всего, этот срок будет увеличен примерно на полгода, если не на год. Но в любом случае, разработка не прекратилась, она продолжается, хотя и в несколько замедленном темпе.

У Zyxel тоже есть WiFi 6


Zyxel, как любой уважающий себя и своих клиентов производитель, представил широкий ассортимент точек доступа стандарта WiFi 6 и PoE коммутаторов к ним. Есть и бюджетные модели и навороченные точки с “квантовым подавителем гравитационного возмущения”. :-)

А если понравилось, заходите к нам и оставайтесь:
— Новостной канал в Telegram
— Телеграм-чат поддержки для специалистов
— Форум для специалистов
— Наш YouTube


Wi-Fi — это стандарт беспроводного подключения LAN для коммуникации разных устройств, относящийся к набору стандартов IEEE 802.11. Wi-Fi использует радиоволны (так же, как Bluetooth и сотовые сети) для коммуникации устройств в малом масштабе, например: в домах, торговых центрах, на площадях и т. д. Wi-Fi — это самый недорогой и быстрый способ передачи данных на короткие расстояния, включая просмотр веб-страниц, онлайн-игры, видеостриминг и VoIP-вызовы. В 2019 году количество поставленных Wi-Fi устройств превысило 310 млн.

Пользовательский опыт: высокая скорость, низкая задержка, использование в разных условиях на разных типах устройств.

  • Самая используемая технология беспроводной коммуникации.
  • Основное средство доступа к мировому интернет-трафику.
  • Сфера экономики объёмом почти 2 трлн долларов США.
  • Рост: в 2019 году общее количество поставленных устройств достигло 4 млрд, а используемых устройств — 13 млрд [1] .

Но всегда ли нужно покупать новый роутер с новейшими технологиями?

Количество устройств

Рекомендуемый стандарт

Просмотр веб-страниц, работа с почтой, общение по видео или телефонные звонки через интернет

Всё вышеперечисленное + загрузка больших файлов и видеостриминг в прямом эфире

Wi-Fi 5 или Wi-Fi 6

Далее, определите нужную площадь охвата. Окружающая обстановка довольно сильно влияет на покрытие и производительность беспроводных устройств.

В разных домах из-за радиопомех (также известных как затухание сигнала) и разной чувствительности приёма клиентов один и тот же роутер будет работать по-разному. В целом, подключение будет хорошим, если использовать диапазон 2,4 ГГц в пределах 20 метров, а 5 ГГц — в пределах 15 метров. Увеличить охват помогают антенны с коэффициентом высокого усиления, технология Beamforming и другие факторы.

Если скорости или покрытия роутера недостаточно, можно призадуматься об использовании OneMesh или Deco Mesh Wi-Fi.

1) OneMesh TM : недорогая Mesh-сеть с имеющимися устройствами TP-Link
Подробнее об устройствах OneMesh

Если роутер поддерживает функцию Speedtest®, можете запустить тест прямо из веб-интерфейса управления или приложения Tether.

Ниже представлено несколько способов повышения скорости Wi-Fi.

1) Подойдите ближе к Wi-Fi роутеру
От расстояния между роутером и вашим устройством зависит скорость Wi-Fi — чем ближе устройство к роутеру, тем лучше подключение.

2) Найдите хорошее место для Wi-Fi роутера
Для максимального покрытия размещайте Wi-Fi роутер посередине открытого пространства и подальше от электроники, от которой могут быть помехи, такой как микроволновые печи, холодильники и беспроводные телефоны.

3) Обновите прошивку Wi-Fi роутера
В новых прошивках могут быть исправлены надоедливые ошибки, оптимизирована производительность, а иногда даже добавлена поддержка более высокой скорости. Обновить прошивку роутера TP-Link можно в веб-интерфейсе управления роутера или в приложении Tether. Новые прошивки также доступны на официальном сайте TP-Link, откуда их можно бесплатно загрузить.

4) Смените диапазон и канал Wi-Fi
Если роутер двухдиапазонный (например, TP-Link Archer C7), для увеличения скорости и уменьшения помех можно сменить диапазон с 2,4 ГГц на 5 ГГц. Если у роутера только один диапазон 2,4 ГГц, попробуйте выбрать статический канал 1, 6 или 11.

5) Приоритизируйте сетевой трафик при помощи QoS
Онлайн-игры, видеозвонки и онлайн-фильмы сильно нагружают пропускную способность. Если на роутере (например, TP-Link Archer C4000) есть функция QoS (приоритизация), можно приоритизировать интернет‑трафик для конкретных онлайн-задач, таких как онлайн‑игры или стримы. Задачам с высоким приоритетом будет выделена дополнительная пропускная способность, поэтому они будут работать плавно даже при большой загруженности сети.


Усилители сигнала (RE)

Усилители сигнала это отличное решение при недостаточном Wi-Fi покрытии. Разместите усилитель примерно посередине между роутером и зоной Wi-Fi со слабым сигналом. Усилитель будет получать и повторять Wi-Fi сигнал роутера вокруг себя, таким образом расширяя покрытие беспроводной сети.

Для выбора подходящего усилителя для домашней сети перейдите в раздел усилителей сигнала.


Оборудование Powerline (PLC)

Адаптеры Powerline используют электропроводку для передачи данных и создания интернет-подключения там, где есть розетка. Это удобно, потому что для увеличения покрытия не нужно прокладывать по всему дому кучу кабелей Ethernet — просто подключите адаптеры Powerline в розетку, а затем подключите их к роутеру. Это создаст высокоскоростную сеть (почти такую же, как проводную), поскольку стены и другие преграды не смогут помешать, как это происходит с усилителями сигнала.

Для выбора подходящего оборудования Powerline для домашней сети перейдите в раздел оборудования Powerline.

Однако надо не забывать, что при этом оба адаптера Powerline должны находиться в одной электрической цепи. Если в доме несколько электрических цепей, нужно убедиться, что обе розетки, в которые вы подключаете адаптеры Powerline, относятся к одной и той же электрической цепи.


Mesh Wi-Fi

Mesh Wi-Fi это Wi-Fi система, созданная для устранения зон со слабым сигналом и обеспечения непрерывного Wi-Fi на каждом квадратном сантиметре дома. Одно из главных преимуществ заключается в том, что у всех устройств общее имя сети, поэтому не надо вручную переподключать свои устройства в поисках более мощного сигнала, как это происходит с точками доступа или адаптерами Powerline. При перемещении по дому телефон или планшет автоматически подключится к устройству Deco с самой высокой скоростью, благодаря чему образуется по-настоящему бесшовная сеть Wi-Fi.

Для выбора подходящего оборудования Mesh Wi-Fi перейдите в раздел оборудования Mesh Wi-Fi.

Wi-Fi (вай-фай) – это самая популярная, доступная и востребованная технология передачи данных в беспроводных компьютерных сетях. При наличии подключения к интернету технология Wi-Fi позволяет распределить интернет-трафик между максимально возможным числом пользователей и/или устройств. В нашей статье мы рассмотрим самые частые вопросы о вай-фай, интернете и беспроводной связи.

Wifi описание

Для чего нужен вайфай

Начнем с определения. Wi-Fi – это технология беспроводной передачи данных в рамках локальной сети, осуществляемой устройствами на основе стандарта IEEE 802.11. В текущем современном мире технология передачи данных окутывает всё большее число устройств: ТВ, телефон, пылесос, холодильник и даже чайник может уже использовать технологию Wi-Fi.


Диапазон 2.4 ГГц

В этот диапазон входят 13 частот, от 2401 МГц до 2461 МГц, и сравнивать его можно с диапазоном 5 ГГц, на котором работают сети поколения Wi-Fi 5 и Wi-Fi 6. Диапазон 2.4 Ггц:

  • охватывает большую территорию;
  • имеет более низкие скорость и коэффициент затухания;
  • распространяется дальше;
  • более загружен ввиду популярности;
  • имеет меньшее число каналов (13 вместо 17).


Диапазон 5 ГГц

Указанный диапазон используется сетями Wi-Fi 5 и Wi-Fi 6. Его отличают:

Ширина канала Wi-Fi

Говоря о вайфай, часто обсуждают ширину канала. Для Wi-Fi 4 стандартная ширина составляет 20 МГц, но может доходить и до 40 МГц. Простое определение гласит, что ширина – это пропускная способность канала, поэтому логично предположить, что при 40 МГц интернет будет «летать». Однако это верно, только если у нас нет соседей, поскольку при ширине в 20 МГц имеются три независимых канала, благодаря которым можно «развести» различные подключенные устройства. При ширине 40 МГц это невозможно, а значит, будут помехи, которые отрицательно повлияют на итоговую скорость.

Радиус действия

Как и с шириной, радиус действия сети зависит от ее стандарта. Для IEEE 802.11n, при максимальной скорости 600 Мбит/с, максимальный радиус действия в помещении составляет 70 м, а на открытой местности – 250 м.

уровень сигнала

Как подключить устройство к Wi-Fi

Теперь давайте разберемся, как подключить к беспроводной сети различные устройства.

Как подключить беспроводной интернет на компьютере и ноутбуке

Для подключения к Wi-Fi сети с компьютера или ноутбука понадобится роутер. Ноутбуки обычно оснащены встроенной сетевой картой, а вот компьютеру нужно либо обновлять сетевую плату (дорого), либо купить Wi-Fi адаптер.

Порядок подключения:

  • подключите роутер к интернету при помощи Ethernet-кабеля;
  • включите Wi-Fi в настройках роутера;
  • в панели задач Windows кликните на «Беспроводные сети»;
  • выберите сеть, к которой хотите подключиться.
  • введите пароль от сети и дождитесь подключения.
Можно отметить такую сеть галочкой и подключаться в дальнейшем по умолчанию.

Как им пользоваться на смартфоне

Для того чтобы подключиться к Wi-Fi на смартфоне, необходимо:

  • смахнуть экран вниз (Android) или вверх (iOS);
  • нажать на значок «Беспроводные сети», чтобы активировать сохраненное подключение.

Если вы еще ни разу не подключались к такой сети:

  • пройдите в «Настройки» и выберите подключение к Wi-Fi;
  • в списке беспроводных сетей выберите ту, к которой хотите подключиться;
  • при необходимости, если сеть защищена, введите пароль.


Обязательно отметьте возможность подключаться по умолчанию, если вы планируете и дальше пользоваться этой сетью.

От чего зависит скорость

Скорость соединения зависит от ряда факторов, как со стороны провайдера и пользователя, так и со стороны самой технологии. Перечислим некоторые из них.

Со стороны провайдера:

  • загруженность каналов;
  • качество оборудования.

Со стороны пользователя:

  • качество оборудования (роутер, сетевой адаптер) и коммуникаций (интернет-розетки);
  • расстояние от роутера до устройства;
  • параметры подключаемого устройства.

Оптимальное расположение роутера

Интересно!

Если новейшие гаджеты поддерживают «старые» конфигурации сети, то вот старое, хоть и работающее, устройство может и не «подружиться» с продвинутой сетью.
  • программное обеспечение (например, антивирус или торрент)
  • вредоносные программы.

Со стороны беспроводного интернета:

  • Мощность и загруженность серверов;
  • Качество линий связи за пределами сети провайдера;
  • Помехи от других вай фай сетей, бытовых приборов и местоположения роутера относительно беспроводной сети.

Преимущества и недостатки Wi-Fi

Как и любая технология, вайфай имеет плюсы и минусы.

Плюсы:

  • Беспроводная сеть (можно не спотыкаться о провода);
  • Покрытия в пределах 70 м вполне достаточно для домашних нужд;
  • Одна точка доступа – много устройств;
  • Более высокая скорость;
  • Если подключать смартфон к вайфай, батарея телефона прослужит дольше;
  • Безопасные новейшие протоколы.

Минусы:

  • Задержки в сети (актуально для геймеров);
  • Ограничение скорости Wi-Fi – снижение скорости у пользователя;
  • «Естественное» глушение сигнала в домашних условиях;
  • Помехи с другими устройствами на частоте 2.4 МГц;
  • Плохая безопасность устаревших протоколов защиты.

Как настроить сеть вай фай в доме

Роутер, или маршрутизатор – главный способ настроить сеть вай фай у вас дома. Ниже рассмотрим все аспекты выбора роутера и задачи, которые он будет выполнять.


Подключение роутера

Для начала сам роутер необходимо подключить к сети интернет. Это делается при помощи специальных кабелей, которые могут подсоединить роутер не только к компьютеру или ноутбуку, но игровой консоли или ТВ-приставке.


Как зайти в роутер

Зайдя в роутер, можно сменить пароль, название сети, настроить роутер или изменить его настройки. Для этого требуется открыть в браузере компьютера или телефона специальный цифровой IP-адрес и ввести указанные на задней панели роутера логин и пароль. Зачастую это адреса 192.168.1.1, или 192.168.0.1 и совпадающие логин и пароль admin.


Важно!

Логин и пароль роутера – это не данные для подключения к сети Wi-Fi!

Настройка Wi-Fi при первом включении

При первом подключении Wi-Fi необходимо:

  • все так же в настройках роутера установить подключение к интернету при помощи логина и пароля провайдера интернет-услуг, тип нужного подключения – PPPoE;
  • далее, отметить в настройках роутера опцию беспроводного подключения;
  • задать уникальное имя для своей сети.

Интересно!

Можно оставить название сети «MGTS_GPON_5752», можно переименовать в «Home», а можно придумать и свой, экзотичный, вариант.

В дальнейшем именно к этой сети будет подключен роутер и все другие устройства.

Индикаторы роутера полезнейшая информация для настройки и использования

На роутере есть несколько индикаторов, которые передают ценную информацию о состоянии устройства и подключения:


  • PWR (Power) – питание – активен
  • SYS (LOS) – параметры – мигает
  • WLAN – интернет (Wi-Fi) – мигает
  • LAN 1-4 – порты сети – мигает
  • WAN (PON) – интернет – мигает
  • QSS (WPS) – подключение к Wi-Fi сети – активен.

Обобщая, можно сказать, что, если функция работает, то индикатор или горит зеленым светом, или мигает. Если функция не работает, индикатор не мигает, либо, как в случае с WAN, горит оранжевым светом.

Основные настройки сети Wi-Fi

К основным настройкам беспроводной сети относятся:

  • Название (SSID) – упомянутое выше простое или уникальное название;
  • Защита – только WPA/WPA2;
  • ПарольPSK – 8 символов или больше;
  • Канал – также упомянутые выше 20 МГц или 40 МГц, но в большинстве случаев следует указать Auto, а роутер сам выберет подходящий канал.

Алгоритмы защиты сети Wi-Fi

Для защиты сети Wi-Fi от взлома выделяют три основных алгоритма:

  • настройка клиента и точки доступа на использование одного SSID, который не выбирается по умолчанию;
  • разрешение точке доступа связывать только с теми клиентами, чьи MAC-адреса знает точка доступа;
  • настройка клиентов на аутентификацию в точке доступа и шифрование трафика.

Большинство пользователей выбирают первый вариант. Однако стоит заметить, что такие предосторожности не всегда целесообразны и могут создать дополнительные сложности при эксплуатации Wi-Fi сети. Подробнее о защите беспроводных сетей можно прочитать здесь.


Сколько нужно антенн

Обычно у роутера антенны либо встроенные, либо внешние. В зависимости от модели и функционала их может быть одна или четыре. Вид и число антенн улучшает качество беспроводного подключения, но никак не влияет на стандарт Wi-Fi или количество интернет-трафика согласно тарифному плану.

Главное отличие роутеров с точки зрения вида антенн в следующем:

  • Роутер со встроенной антенной более компактный, но и сигнал менее мощный;
  • Роутер с одной или несколькими внешними антеннами передает более стабильный и сильный сигнал, однако требует больше места. Иногда к такому роутеру можно подключать дополнительные антенны.

Роутеры по типу подключения

По типу подключения роутеры делятся на проводные и беспроводные.

  • Проводные роутеры имеют только порты WAN/LAN и не могут использоваться в качестве точки доступа для Wi-Fi сети. Однако именно проводные роутеры оптимально подходят, когда идет большая нагрузка на интернет, например, для игровых консолей и стриминговых платформ.
  • Беспроводные роутеры обладают антенной, которая как раз и раздает интернет по сети Wi-Fi. Порты WAN/LAN также присутствуют. Такие роутеры подходят для рутинных, незатратных действий, как, например, передать фото в интернете.

Роутеры по типам портов и разъемов

По типам портов и разъемов роутеры делятся на 5 типов:

ADSL-роутеры: принимают сигнал по телефонному кабелю. Имеют крайне низкую по современным параметрам скорость приема и передачи данных.

Ethernet-роутеры: имеют порт WAN и различаются по протоколу IEEE. Самый распространенный сегодня тип.

3G/4G роутеры: используют пакетную передачу данных. Качество работы зависит от покрытия, которое предоставляет оператор.

Роутеры с подключением к оптическим сетям PON: в качестве WAN-порта здесь используется оптический пигтейл SC. Их главный недостаток – недостаточная защита от перехвата данных.

Универсальные роутеры: соединяют несколько технологий, обычно ADSL + Ethernet, либо Ethernet + 3G. Также оснащены дополнительными портами и встроенными модулями связи.

Выбор стандарта сети Wi-Fi

Сегодня большинство роутеров рассчитаны на работу со стандартами Wi-Fi 4, Wi-Fi 5 и Wi-Fi 6. При выборе модели роутера следует помнить, что стандарты имеют обратную совместимость. Иначе говоря, роутер с характеристикой более нового стандарта (5 или 6) будет раздавать стандарт Wi-Fi 4, а вот роутер Wi-Fi 4 может и не настроиться на новейший стандарт.

Посмотреть видео, что такое Wi-Fi и как он работает

И напоследок – видео для чайников для пущей наглядности. Теперь вы точно запомните, что такое Wi-Fi и как он работает.

Обзор технологии Wi-Fi

Wi-Fi остается одной из наиболее перспективных технологий беспроводной связи. Она стремительно развивается и принимает в себя новые беспроводные решения, позволяющие увеличить скорость передачи данных. Даже с развитием LTE-сетей, Wi-Fi не остается в стороне, а скорее получает дополнительную ветку развития, разгружая трафик в наиболее востребованных участках сети.

Wi-Fi для применения внутри помещений в рамках установленной законодательством мощности излучения не требует получения разрешения на использование частот. Кроме того, организация Wi-Fi-сети в условиях дома или небольшого офиса довольно проста, благодаря чему, зачастую, можно обойтись своими силами. Тем не менее, при проектировании сети с высокими требованиями к качеству связи, плотности покрытия и пропускной способности, как правило, прибегают к помощи специалистов. Развертывание Wi-Fi-сети занимает на порядок меньше времени по сравнению с прокладкой СКС до рабочих мест. Именно за простоту настройки, развертывания, относительную дешевизну и удобство, Wi-Fi по праву считают одной из перспективных и активно развивающихся технологий.

Требования к Wi-Fi-оборудованию описаны в наборе стандартов IEEE 802.11. С выпуском каждого нового стандарта, к 802.11 добавлялась буква, например, 802.11a/b/n и т.д. На сегодняшний день насчитывается несколько десятков разновидностей стандартов Wi-Fi. Не все стандарты были направлены на увеличение скорости передачи данных, некоторые из них затрагивают вопросы безопасности (например, 802.11i), другие включали описание работы роуминга (802.11r) и т.д.


При этом следует отметить, что не все перечисленные стандарты Wi-Fi служат для организации беспроводных локальных сетей как привычные нам роутеры, работающие в диапазонах 2.4 и 5 ГГц (стандарты 802.11 a/b/g/n/ac). Такие стандарты как 802.11ad и 802.11ay изначально планировалось выпустить для передачи данных на небольшие расстояния – от 1 до 10 метров – и, в перспективе, использовать их для организации высокоскоростных интерфейсов передачи данных, например для подключения мониторов к ПК и передачи изображения в формате 8K. Однако, в результате развития 5G-сетей и переходом в диапазон до 100 ГГц, устройства с поддержкой 802.11ad стали применяться для организации радиодоступа вне помещений (но для таких частот должны быть обеспечены условия прямой видимости).

Таким образом, у Wi-Fi большое будущее, которое позволит использовать данную технологию в совершенно разных приложениях. Несомненно, данная технология найдет свое место как в 5G-сетях, IoT-решениях, так и в VR-приложениях:

Обзор технологии Wi-Fi

Применимость различных стандартов Wi-Fi

Диапазон 2.4 ГГц

Большинство обычных клиентских маршрутизаторов и бытовых Wi-Fi-устройств работает в двух частотных диапазонах: 2,4 ГГц (802.11 b/g/n) и 5 ГГц (802.11 a/n/ac).

В диапазоне 2,4 ГГц стандартами определено 14 каналов. Некоторые из них могут быть недоступны в ряде стран (например, 14 канал разрешен для использования только в Японии). Каналы с номерами 1, 6 и 11 считаются полностью не пересекающимися по частотам и называются, как ни странно, "непересекающимися". Но на деле всегда остается "неучтенка", и если точки доступа расположены достаточно близко друг к другу, то и непересекающиеся каналы становятся пересекающимися:

Обзор технологии Wi-Fi

Каждый канал занимает ширину в 20 МГц. В некоторых случаях, стандартами разрешено использовать ширину канала равную 40 МГц (см. раздел Агрегация каналов). Номера каналов и их центральные частоты приведены на рисунке.

Обзор технологии Wi-Fi

Каналы Wi-Fi в диапазоне 2.4 ГГц

Использование непересекающихся каналов удобно в том случае, когда требуется организовать равномерное радиопокрытие таким образом, чтобы рядом расположенное оборудование не мешало друг другу, увеличивая тем самым стабильность и качество связи:

Обзор технологии Wi-Fi

Одним из недостатков диапазона 2,4 ГГц является его высокая загруженность и малое количество каналов. Помехи для Wi-Fi-сети могут создавать не только другие Wi-Fi-устройства и точки доступа, но и Bluetooth-устройства, работающие в этом же частотном диапазоне. Даже обычная бытовая СВЧ-печь способна очень сильно влиять на качество соединения в диапазоне 2,4 ГГц. Для минимизации взаимных влияний мощность Wi-Fi-передатчиков строго ограничена и регламентирована. Использование мощного передатчика требует получения разрешения в радиочастотном центре.

Более перспективным, с точки зрения меньшей загруженности и наличия большего числа каналов, является частотный диапазон 5 ГГц.

Диапазон 5 ГГц

В частотном диапазоне 5 ГГц доступно 23 неперекрывающихся канала по 20 МГц. Можно даже отметить, что 5-гигагерцовый диапазон состоит только из неперекрывающихся каналов, так как на такой частоте перекрытие создает существенные коллизии. Здесь уже можно использовать не только ширину 20/40 МГц, но и каналы шириной в 80 МГц (основной + вспомогательный). Ниже изображено расположение каналов в диапазоне 5 ГГц:

Обзор технологии Wi-Fi

  • Первый блок (Lower, нижний) каналов UNII-1 лежит в диапазоне частот от 5180 до 5240. При этом доступные непересекающиеся каналы по 20 МГц: 36, 40, 44, 48;
  • Второй блок (Middle, средний) UNII-2 лежит в диапазоне частот от 5260 до 5320. При этом доступные непересекающиеся каналы по 20 МГц: 52 56 60 64;
  • Третий блок (Extended, расширенный) UNII-2 лежит в диапазоне частот от 5500 до 5700. При этом доступные непересекающиеся каналы по 20 МГц: 100 104 108 112 116 120 124 128 132 136 140;
  • Четвертый блок UNII-3 - частота от 5745 до 5805, доступные непересекающиеся каналы по 20 МГц: 149 153 157 161;
  • Отдельно существуют 3 группы каналов: Japan (каналы: 8, 12, 16; диапазон 5040-5080) US Public Safety (каналы: 184, 188, 192, 196; диапазон 4920-4980) ISM (канал 165, частота 5825);
  • Стандартом 802.11ac предусмотрено использование групп UNII-1, UNII-2 (обе) и UNII-3, т.е. суммарно 23 канала. Благодаря чему, при использовании ширины канала в 80 МГц, доступно 5 непересекающихся каналов. Этой же спецификацией предусмотрена возможность объединения 2-х каналов по 80 МГц, что в итоге дает 160 МГц.

Carrier Aggregation - агрегация каналов

Под агрегацией следует понимать логическое объединение нескольких параллельных каналов передачи в один. Стандартами допускается использование полосы пропускания 40 МГц в диапазоне 2,4 ГГц. В диапазоне 5 ГГц ширина каналов может быть увеличена до 40, 80, 160 МГц с занятием частот соседних каналов для увеличения пропускной способности сети:

Обзор технологии Wi-Fi

Это и называется агрегированием. В случае использования широкой полосы пропускания, стабильность соединения может снижаться в силу взаимных влияний различных сетей друг на друга. Однако, несомненно, увеличение ширины канала позволяет многократно увеличить скорость передачи данных.

В этом разделе приводится описание технологий, которые нашли применение в беспроводных сетях стандарта 802.11 и позволили многократно увеличить скорости передачи данных – MIMO и Beamforming.

MIMO - Multiple Input Multiple Output

Технология MIMO оказала большое влияние на развитие Wi-Fi. Буквально несколько лет назад никто не думал о том, что будут существовать беспроводные устройства с пропускной способностью в сотни мегабит в секунду. Возникновение новых скоростных стандартов связи, в том числе 802.11n произошло во многом благодаря MIMO.

Наиболее простое определение, которое можно дать технологии MIMO – это многопотоковая передача данных. Аббревиатура переводится с английского как "несколько входов, несколько выходов". В отличие от своего "родителя" (Single Input / Single Output), в устройствах с поддержкой MIMO сигнал передается на одном радиоканале с помощью нескольких приемников и передатчиков.

Одной из основных характеристик технологии MIMO является количество антенн, работающих на прием и передачу. Обозначается NxM, где N - количество передающих антенн, а M - приемных. Например, MIMO типа 3х2 означает, что радиосистема имеет 3 передающие антенны и 2 принимающие. Кроме того, в MIMO применяется пространственное мультиплексирование. Иначе говоря, технология одновременной передачи данных нескольких пакетов по одному каналу. Благодаря такому "уплотнению" канала, его пропускную способность можно увеличить в два и более раз.

Как только технология беспроводной передачи данных Wi-Fi начала пользоваться большим спросом, быстро стали возрастать и требования к скорости. Впервые технология MIMO появилась в стандарте 802.11n, который дал возможность увеличить канальную скорость беспроводного соединения с 54 Мбит/сек до 600 Мбит/сек. Стандарт 802.11n дает возможность применять как стандартную ширину канала в 20 МГц, так и использовать широкополосную линию в 40 МГц. Таким образом можно получить в несколько раз увеличенную пропускную способность каналов, которые используются в данный момент. С помощью объединения MIMO с более широкой полосой пропускания канала, получается достаточно мощный способ повышения физической скорости передачи.

Типы MIMO

Для различного количества пользователей, между которыми в одно и тоже время идет передача данных, существует два типа технологий:

SU-MIMO – система для одного пользователя (Single User - SU). Используется, когда в определенный промежуток времени потоки данных идут только к одному пользователю. Технология предоставляет многоканальные входные и выходные потоки одному устройству. Пока Wi-Fi-устройство адресата получает или принимает данные, другие пользователи находятся в ожидании.

MU-MIMO – система для нескольких пользователей (Multi User - MU). Позволяет нескольким пользователям принимать одновременно потоки данных. Она опирается на технологии SU-MIMO, но дает одновременную связь точки доступа с несколькими устройствами. MU-MIMO создает до 4 одновременных подключений, передавая по 4 потока данных одновременно. В результате пользователи не делят между собой соединение и улучшается производительность сети.

Обзор технологии Wi-Fi

Разница между технологиями SU и MU-MIMO

Особенности технологии

До появления стандарта 802.11ax, технология MU-MIMO работала только в диапазоне 5 ГГц. С появлением 802.11ax MU-MIMO стала доступной и на 2.4 ГГц. В продаже сетевого оборудования появляется все больше двухдиапазонных маршрутизаторов с поддержкой данной технологии.

MU-MIMO использует технологию Beamforming. Благодаря ей, сигналы распространяются не хаотично, а в направлении беспроводного устройства. Эта направленность позволяет увеличить дальность сигнала и повысить скорость передачи данных.

К сожалению, невозможно обслуживать бесконечное количество пользователей и потоков данных. Например, роутер с поддержкой трех потоков может одновременно работать только с тремя Wi-Fi-устройствами без задержек.

Чтобы пользоваться преимуществами метода, принимающее устройство должно иметь поддержку MU-MIMO. В данном случае, достаточно одной антенны и пользовательское устройство примет поток данных от роутера.

Компании, выпускающие смартфоны, роутеры, точки доступа и другие сетевые устройства уже заложили в них поддержку технологии. Как гарантируют производители, во многих современных устройствах, они учли также аппаратные требования для поддержки MU-MIMO, и теперь достаточно обновить ПО на своем гаджете, и пользователь получит поддержку данной технологии.

Сигнал, который передается с помощью архитектуры MU-MIMO, сложно перехватить, что повышает безопасность беспроводной сети.

На первых этапах развития технологии существовала трудность совмещения устройств, работающих с поддержкой MIMO и без нее. Однако на данный момент это уже не так актуально – практически каждый современный производитель беспроводного оборудования использует ее в своих устройствах. Также, одной из проблем при появлении технологии передачи данных с помощью нескольких приемников и нескольких передатчиков, являлась цена устройства.

Beamforming - автоматическое формирование луча

В последних моделях Wi-Fi-маршрутизаторов все чаще можно увидеть такую "опцию" как Beamforming. Beamforming, согласно техническим спецификациям современных Wi-Fi-устройств, это технология, позволяющая направлять излучаемый сигнал не во все стороны, как это происходит обычно, а "концентрированно" в сторону абонента. Это увеличивает отношение сигнал/шум, и как следствие - скорость передачи данных:

Обзор технологии Wi-Fi

Особенно это актуально в местах, где много различных перекрытий сигналов и множество других источников радиопомех, работающих в нелицензируемом диапазоне частот 2.4 и 5 ГГц.

Следует отметить, что главной сложностью при внедрении beamforming в устройства является сложность настройки антенн в сочетании с грамотным программным обеспечением. В недорогих моделях роутеров зачастую наличие beamforming является лишь маркетинговым ходом. Сильно повысить стабильность приема в отдаленных участках помещения не получится. Beamforming стал частью стандарта, начиная с 802.11ac, во втором поколении этих устройств (wave 2).

MCS в Wi-Fi сетях

  • Тип модуляции. Модуляция - это метод передачи данных. Чем сложнее модуляция, тем выше скорость передачи данных. Более сложные модуляции требуют хороших условий передачи, низкого уровня помех и отсутствия препятствий на пути прохождения сигнала.
  • Скорость кодирования информации. Этот параметр указывает на то, какая часть потока данных фактически используется для передачи "полезной" информации. Это значение выражается в виде дроби, например, 5/6 или 83,3% используемого потока данных.
  • Количество пространственных потоков. Используя технологию MIMO, в настоящее время возможно запускать до 8 пространственных потоков. Фактически это позволяет использовать одну и ту же область частотного пространства для передачи и приема нескольких потоков данных.
  • Ширина канала передачи. Это значение определяет, какая ширина канала будет использована для передачи. Ширина канала может быть максимум 40 МГц для диапазона 2.4 ГГц и 160 МГц для диапазона 5 ГГц. В диапазоне 60 ГГц ширина канала может составлять до 2 ГГц (стандарт 802.11ad/ay).
  • Длительность защитного интервала. Защитный интервал фактически представляет собой очень короткую паузу между передачей пакетов, чтобы можно было игнорировать любую ложную информацию. Более длительные интервалы защиты обеспечивают более надежную беспроводную связь.


Чем выше индекс MCS, тем "сложнее" вышеперечисленные параметры передачи. Значение индексов MCS для различных стандартов Wi-Fi приводится в таблице ниже. В расширенной виде с таблицей MCS можно ознакомиться по ссылке.

Читайте также: