Как определить какой кулер шумит в компьютере

Обновлено: 06.07.2024

Ошибочно полагать, что современный компьютер — это исключительно электронное устройство. Но это далеко не так. В конструкции ПК присутствует множество механических компонентов, в первую очередь — вентиляторы охлаждения (кулеры). Электродвигатели имеются и в конструкции винчестера и оптического дисковода, служащие для вращения дисков и перемещения считывающей головки.

Все эти вращающиеся компоненты создают шум при своей работе, особенно, если они сильно засорены, неправильно установлены либо в их лопасти (применительно только к кулерам) попал посторонний предмет. Рассмотрим все причины появления шума при работе компьютера.

Рекомендуем периодически очищать системный блок компьютера от пыли. Подробная инструкция с фотографиями доступна по ссылке .

Шумит винчестер

Со временем любой жесткий диск (не путать с внешним твердым накопителем) приходит в негодность, и основным признаком этого является появление шума в его работе. Сразу после включения компьютера можно слышать характерные звуки, издаваемые винчестером — потрескивания, скрежет и т.д. Обычно в таких случаях рекомендуется сразу заменить жесткий диск, предварительно переписав всю нужную информацию на другие носители. Если этого не сделать, есть шанс ее перманентной утери.

Далеко не каждый (если вообще такой существует) сервис-центр предлагают услуги по ремонту жестких дисков. Это довольно кропотливый и сложный процесс, требующий использования специнструмента. Выгодней просто приобрести новый винчестер и продолжить работу с компьютером. Обращаться к специалистам рентабельно только в том случае, если жесткий диск уже вышел из строя, и появилась необходимость восстановления с него важной информации.

Чтобы точно понять, что шум из компьютера издается именно по вине винчестеров, их можно на время отключить. В случае настольными ПК — достаточно открыть крышку системного блока, найти жесткие диски и отключить от них кабель питания и шлейф. Все это делается при выключенном компьютере. Если это ноутбук или нетбук — с нижней стороны корпуса должен присутствовать специальный отсек для жесткого диска, который нужно открыть (возможно, пригодится отвертка). Останется только вытащить винчестер из корпуса компьютера.

Вентилятор-вытяжка

Некоторые системные блоки настольных ПК имеют в своей конструкции сквозное отверстие и площадку для крепления "обратного" вентилятора. В задачу последнего входит ускорение вывода тепла из системного блока наружу. Использование данного кулера — не всегда обязательно, особенно, если речь идет об обычном домашнем/офисном компьютере, не подвергающемся высоким нагрузкам.

Вентилятор-вытяжку легко отключить. Для этого нужно снять крышку системного блока и отключить кулер от бортовой сети. Он может быть подключен напрямую к материнской плате либо к одному из разъемов блока питания.

Если источником шума являлся именно этот вентилятор, то его можно оставить в отключенном состоянии. Если же имеется необходимость в его использовании, устройство нужно будет очистить от накопившейся в нем пыли и смазать машинным маслом. Рассмотрим этот процесс.

Чистка и смазка вентиляторов ПК

Последующая инструкция может быть применена к большинству современных кулеров, используемых в настольных ПК (а также в некоторых ноутбуках), независимо от их назначения.

Вентилятор-вытяжка может иметь различную конфигурацию корпуса и размер, однако по части крепления ротора (деталь с лопастями) к статору (по сути — электродвигатель) они во всех случаях имеют схожую конструкцию. Шум в работе кулера создает грязь, просочившаяся в область между ротором и статором. С увеличением количества грязи снижается эффективность смазки, что сначала приводит к возникновению шума при вращении вентилятора, а затем и к его полной остановке. Чтобы не допустить выход из строя охлаждаемого электронного компонента, требуется следить за работоспособностью кулеров, выполняя их периодическую профилактику.

Делается это следующим образом (на примере вентилятора-вытяжки).

Первым делом нужно выключить компьютер и снять крышку системного блока, открутив пару винтов в боковой его части.

Вентилятор-вытяжка может находиться, как в самой крышке, так и в другой части системного блока компьютера. В нашем случае — первый вариант. На изображении выше заметить наличие винтов по углам корпуса вентилятор. Их нужно открутить, чтобы демонтировать кулер.

Первым делом после демонтажа вентилятора следует избавиться от наружной пыли. Для этого можно использовать обычную малярную кисть или даже тряпку. Очищая лопасти кулера, нужно быть осторожным, т.к. их легко повредить.

После удаления внешних загрязнений вентилятор нужно разобрать, отделив лопасти от корпуса. На обратной стороне корпуса можно увидеть наклейку круглой формы. Ее нужно отклеить.

Под наклейкой можно заметить металлическую деталь, поверх которой установлена пластиковая контр-шайба. Ее нужно демонтировать. Сделать это можно при помощи пары швейных игл или любых других тонких твердых предметов. Здесь важно не потерять контр-шайбу, т.к. эта маленькая деталь удерживает всю конструкцию вентилятора.

После снятия контр-шайбы лопасти могут быть легко отсоединены от корпуса.

Далее при помощи ватной палочки следует хорошо очистить внутренние области обеих частей кулера. При чистке электронных компонентов важно следить за целостностью медной обмотки. Она соединена с платой управления посредством двух очень тонких проводов, которые легко оборвать.

Сразу после очистки всю внутреннюю область (в особенности центральную часть) ротора и статора нужно смазать машинным маслом. Подойдет любое — автомобильное или даже ружейное. Смазывать можно при использовании той же ватной палочки или акварельной кисти.

Далее остается вставить лопасти обратно в корпус, а затем установить на свое место контр-шайбу.

Возможно, снятая в самом начале наклейка перестанет лепиться к корпусу. Вместо нее можно использовать скотч. Главное, залепить это маленькое отверстие, где расположена контр-шайба.

Вентилятор охлаждения блока питания

Блоки питания настольных компьютеров также сильно нагреваются во время работы, потому в их конструкцию обязательно встраивается охлаждающий вентилятор. Ввиду того, что данный кулер, как и вытяжка, осуществляет забор воздуха напрямую из помещения, он загрязняется пылью быстрее, чем установленные внутри системного блока вентиляторы.

Решение проблемы то же, что и в предыдущем случае. Однако здесь имеются некоторые нюансы. Чтобы извлечь данный кулер потребуется разобрать сам блок питания, т.к. первый располагается внутри него. Делается это следующим образом.

После снятия крышки системного блока от блока питания нужно отключить все подключенные к нему электронные компоненты — материнскую плату, жесткие диски, оптические приводы и т.д.

Далее нужно открутить винты, которыми блок питания крепится к системному блоку.

Блоки питания могут иметь различную конструкцию корпуса, однако способ их разборки одинаков. Первым делом следует найти на корпусе винты, удерживающие крышку устройства. Они могут иметь следующий вид (блоки питания с расположением кулера в верхней части — в крышке).

Есть и блоки питания с кулером в боковой части корпуса. Их тоже нужно разобрать.

Чтобы извлечь кулер в случае с блоками питания первого типа (с верхним расположением вентилятора), достаточно открутить следующие винты. Для блока с боковым кулер операция идентична.

После извлечения с вентилятором следует проделать все шаги из инструкции по их чистке и смазке из предыдущей главы статьи, а затем собрать и установить блок питания на место, подключив к нему все отключенные ранее компоненты ПК. Стоит добавить, что провод питания кулера может соединяться с платой посредством электрического гнезда либо быть впаянным в нее. В последнем случае операцию по очистке и смазке придется проводить без физического отключения вентилятора от блока питания.

Вентилятор охлаждения центрального процессора (ЦПУ)

Вентилятор ЦПУ, как правило, является самым мощным, что используется для охлаждения электронных компонентов компьютера. Данные кулеры охлаждают не сам процессор, а радиатор, служащий для первоначального отвода тепла. Потому вентиляторы для ЦПУ обычно продаются вместе с радиатором в заранее собранном виде. Сам кулер может крепиться к материнской плате различными способами — на винтах или специальных защелках.

Для извлечения кулеров подобной конструкции достаточно нажать на белые рычажки (второй расположен с противоположной стороны корпус). Вот пример винтового крепления вентилятора к материнской плате.

В данном случае нужно просто открутить четыре винта (вторая пара расположена с другой стороны корпуса).

После извлечения вентилятора из компьютера следует процесс его демонтажа с радиатора. Крепление кулера к последнему может также быть выполнено на винтах либо при помощи защелок.

Во многих случаях кулер ЦПУ может быть отсоединен от радиатора без необходимости извлечения последнего. Но все же лучше сделать это, потому как сам радиатор также нуждается в чистке.

Вентилятор охлаждения видеокарты

Подавляющее большинство современных видеокарт оснащаются собственным вентилятором охлаждения. Это особенности касается игровых графических карт, которые сильно нагреваются при своей работе. В некоторых случаях мощность вентилятора видеокарты может быть даже выше, чем у кулеров ЦПУ. Многие модели графических карт оснащаются не одним, а сразу несколькими вентиляторами. Как бы там ни было, шум при работе компьютера может исходить и по вине загрязнения кулеров видеокарты.

Для профилактики вентиляторов охлаждения видеокарты нужно проделать следующее.

Извлечь видеокарту из материнской платы:

Как и в случае с кулерами ЦПУ, вентилятор охлаждения видеокарты крепится к радиатору. И кулер, и радиатор могут иметь самую различную конструкцию и способы крепления друг к другу и плате. Но в большинстве случаев радиатор крепится к плате посредством пластиковых фиксаторов, а вентилятор — на винтах.

В данном приведенном случае кулер может быть отсоединен от радиатора после откручивания винтов, выделенных на изображении зелеными кружочками. Здесь нужно использовать тонкую отвертку, которая сможет поместиться между лопастями вентилятора.

Немного сложнее добраться до вентилятора видеокарт с подобной конструкцией системы охлаждения.

В таких видеокартах, чтобы добраться до кулера, сначала нужно снять крышку. Но на этом конструктивные различия заканчиваются.

Как устранить шум работы вентиляторов без демонтажа?

В некоторых случаях шум при вращении любого из вентиляторов можно устранить путем физического (механического) воздействия на них. Например, это можно сделать при легком надавливании на тот элемент конструкции вентилятора, к которому крепятся лопасти. Также иногда помогает остановка вращения кулера, что можно сделать путем вставки между лопастями вентилятора мягкого предмета (например, свернутая салфетка). Однако любой из этих способов устранения шума носит лишь временный характер. При длительном пребывании вентиляторов в неподвижном состоянии (при выключении компьютера) шум, как правило, появляется вновь.

Также очистку внешних элементов кулера от скопившейся грязи можно выполнить при помощи малярной кисти. Ее достаточно прислонить к вращающимся лопастям, т.е. при включенном компьютере. Если же под рукой имеется устройство для подачи воздуха под напором (воздушный компрессор), можно воспользоваться и им. Оба этих способа чистки не всегда действенны, т.к. при их использовании внутреннюю полость вентилятора невозможно очистить.

И ни один приведенных механических методов удаления загрязнений не поможет, если шум работы кулеров вызван отсутствием смазки подвижных элементов.

Повышение шума вентилятора бывает связано со следующими причинами.

1. Повышение скорости вращения для управляемых вентиляторов (например, на процессоре или на продвинутой видеокарте) . В этом случае очистка от пыли и/или организация лучшего воздухотока поможет и станет тише.

2. Высыхание/выработка смазки и/или износ трущихся деталей. Здесь сколько от пыли ни чисти, шуметь все равно будет. Просто улучшится охлаждение и снизится температура, но шум останется. В особо выдающихся случаях шум может скорее напоминать рев раненого дракона, особенно в первые минуты после включения :)
Необходима разборка шумящего вентилятора, аккуратная чистка, смазка КОНСИСТЕНТНОЙ смазкой оси, втулки или подшипников и последующая сборка обратно. Рекомендую для смазки использовать литол. Жидкие смазки категорически не советую: они легко вытекают из узлов трения и используются для смазки либо окунанием, либо под давлением, то есть далеко не в нашем случае.

3. Повышение вибрации от вращения вследствие нарушения балансировки вращающихся деталей (например, на одну из лопастей налипло много пыли или еще какая-нибудь грязь; или одна из лопастей вентилятора отломалась) . Если дело в грязи, то почистить. Если лопасть отломана — заменить вентилятор или кулер целиком.
Иногда слишком сильно вибрирует даже новенький вентилятор. В таких случаях можно попытаться снизить влияние вибрации, используя амортизирующие подкладки или эластичный подвес.

вруби музон погромче. СМАЖЬ ЕГО причем тут скорость вращения Провести профилактику системного блока, чистка пыли, смазка кулеров и вентиляторов .

Есть несколько причин:
1. Куллер забился пылью (на проце) .
2. Куллер забился пылью (на видеокарте)
3. Куллер забился пылью (на материнке) .
4. Куллер забился пылью (на блоке питания) .
5. На куллере износились подшипники (или при работе они перегреваются из-за отсутствия смазки)
6. Куллер слетел с крепления (из-за удара или других причин)

Для пунктов 1-4 - раскрутить и пройтись пылесосом на средней мощности с удлиненной насадкой (комп выключен) . Блок питания пылесосим через вентиляционные решетки (если есть уверенность в собственных силах - смело раскручиваем) .
Для пункта 5 - замена куллера (с блоком питания - можем поменять сами - либо придется менять весь Блок)
Для пункта 6 - лучшей замене резиночек, пластмассовых стяжек для крепления куллера будет НИТКА!

В недавнем обзоре продукции Thermaltake мы уже кратко коснулись этой темы и привели результаты наших измерений, не вдаваясь, однако, в методические детали. Теперь же мы подробно рассмотрим все основные моменты, относящиеся к акустическим свойствам кулеров, и дадим ответ на три сакраментальных вопроса:

  • Чем измерять?
  • Как измерять?
  • Как получить достоверный результат?

Что ж, приступим!

Исходные предпосылки

А начнем мы, пожалуй, с выяснения причин возникновения шума (нежелательного звука) при функционировании вентиляторов, установленных в компьютерных системах (в составе процессорных кулеров или же отдельно в компьютерном корпусе). Существует всего два основных механизма возникновения шума вентиляторов, и соответственно этот шум принято разделять на две категории:

  • аэродинамический шум
  • механический шум

Аэродинамический шум. Если основная причина возникновения аэродинамического шума, скажем так, тривиальна (вращение крыльчатки вентилятора), то физика этого явления достаточно сложна. Поэтому я не буду особенно вдаваться в детали, а лишь отмечу, что источником шума в этом случае являются вихри в турбулентном пограничном слое, возникающем на поверхности лопастей крыльчатки. Интенсивность шума здесь зависит от угла атаки и скорости вращения крыльчатки (чем больше угол атаки и выше скорость вращения, тем больше оказывается интенсивность аэродинамического шума). Спектр аэродинамического шума вентиляторов является непрерывным (широкополосный шум) и, как правило, имеет максимальную интенсивность на частоте:

Механический шум. Как следует из названия, источником такого шума являются подшипники вентиляторов. Среди пользователей бытует мнение, что механический шум возникает только вследствие износа или конструктивных дефектов подшипников и должен практически отсутствовать у исправных вентиляторов. В реальной жизни все обстоит иначе: идеальных подшипников, конечно же, не бывает! :)

Если взять в рассмотрение стандартный подшипник скольжения, то и на поверхности вала, и на внутренней поверхности втулки обязательно присутствуют микроскопические трещины, раковины и т.п. Очевидно, что при этом в паре вал-втулка возникает трение, и без шума тут уже не обойтись. Определенный шумовой вклад вносят и стопорные шайбы, которые вращаются (точнее говоря, проворачиваются) вместе с валом.

Что же касается конструктивных дефектов подшипника, то они могут серьезно усугубить ситуацию и значительно увеличить интенсивность шума. Наиболее существенным из них в случае подшипника скольжения является дисбаланс ротора (крыльчатки), который обычно приводит к так называемой эллипсности втулки (на поперечном срезе внутренняя поверхность втулки имеет форму эллипса вместо окружности). Такой дефект является причиной появления четко выраженных тонов в низко- и среднечастотной области спектра шума подшипника. Интенсивность шума при этом увеличивается, и в субъективном ощущении он становится весьма раздражающим. Также очень неблагоприятно влияют на акустические свойства вентилятора на подшипнике скольжения некачественная смазка (или ее недостаточность) и большой зазор между валом и втулкой.

Если обратиться теперь к подшипникам качения, то сама их конструкция предрасполагает к шуму. Ведь это целый комплекс трущихся деталей: внутреннее и внешнее кольцо (обоймы), тела качения (шарики), сепаратор. Более того, подшипники качения, в отличие от подшипников скольжения, очень восприимчивы к внешним механическим воздействиям (удары, падения и т.п.). И, как следствие, имеют богатый "букет" дефектов, что обычно приводит к более высокой интенсивности шума. Поэтому нет ничего удивительного в том, что вентиляторы на подшипниках качения даже в нормальном (исправном) состоянии обычно на 2-3 дБА шумнее своих "близнецов" на подшипниках скольжения.

Вообще говоря, существует еще одна категория шума, связанного с вентиляторами, в компьютерных системах. Это так называемая структурная вибрация. Но к ней мы обратимся несколько позже.

Сейчас же мы займемся рассмотрением нашего первого сакраментального вопроса и определим, какое средство измерений можно использовать в нашей исследовательской практике.

Его Величество Шумомер

Рис. 1. Контуры одинаковой громкости

На основе контуров одинаковой громкости (точнее, контуров, отвечающих уровням 40, 70 и 100 дБ) было предложено ввести в исследовательскую практику три методики частотной корректировки уровней звукового давления для учета особенностей восприятия звука человеком и получения простой одно-числовой характеристики вместо полного частотного анализа шума (в октавных или третьоктавных полосах частот) или же дополнительно к нему. Сейчас эти три методики именуются частотными характеристиками коррекции (взвешивания) A, B и C.

Рис. 2. Частотные характеристики корректирующих схем A, B и C

Надо заметить, что стандартом де-факто стала характеристика А, и результаты измерений уровней звука, скорректированных именно по этой характеристике, фигурируют в подавляющем большинстве нормативных и технических документов. Что касается характеристик B и С, то первая канула в лету, вторая же все еще находит применение в некоторых отраслях (в частности, при исследовании шума реактивных двигателей и военной техники).

Итак, первое требование к нашему шумомеру определено: наличие в нем хотя бы корректирующей схемы А. Ну, с этим проблем не будет, поскольку такая "примочка" есть практически во всех шумомерах (реализовать ее в "железе" не составляет особого труда). Далее, достаточно ли нам будет ограничиться только уровнем звука LA, скорректированным по характеристике A, и отказаться от проведения частотного анализа шума? В общем-то, достаточно, если мы хотим лишь ориентировочно подтвердить (или опровергнуть) соответствие конкретного кулера установленным гигиеническим нормам (почему мы имеем право в большинстве случаев "подменять" шум всей системы в целом шумом одного только кулера, я расскажу чуть позже). Но наша цель состоит не только в этом. Более важной задачей для нас является объективное сравнение шумовых характеристик различных кулеров, и в этом случае без проведения частотного анализа шума (в октавных или же третьоктавных полосах частот) о таком сравнении даже и заикнуться-то нельзя. Поэтому частотный анализ просто обязан быть неотъемлемой частью нашего эксперимента.

  1. Наиболее гибко провести частотный анализ шума можно только посредством специализированных анализаторов спектра, которые, как правило, чудовищно дороги (стоимость только программных средств обработки результатов эксперимента может насчитывать не одну тысячу "вечнозеленых").
  2. На практике обычно ограничиваются анализом шума в октавных полосах частот, и большинство современных прецизионных шумомеров имеют встроенные октавные полосовые фильтры, позволяющие проводить такой анализ. Шумомеры со встроенными октавными фильтрами, конечно, дешевле анализаторов спектра. Но и их цена лежит в пределах 5-10 тысяч, которые, как известно, на дороге не валяются.
  3. В некоторых случаях может потребоваться анализ шума в третьоктавных полосах частот. Фильтры, позволяющие проводить такой анализ, есть далеко не во всех шумомерах и зачастую являются опцией, поставляемой по отдельному заказу. Самое интересное, что эта "опция" обычно обходится заказчику в весьма кругленькую сумму и в очень "запущенных" случаях может составлять не менее 70-100% от стоимости самого шумомера!

Ну и, наконец, есть еще одно, уже третье по счету требование к нашему измерительному оборудованию: оно должно быть точным и иметь хорошую стабильность параметров. Здесь также возможно возникновение проблем, поскольку не все (даже относительно дорогие) шумомеры укомплектованы качественными высокочувствительными микрофонами и имеют действительно низкий уровень собственного шума, вносимого измерительным трактом.

Да, проблем масса. Но их все равно нужно было как-то решить. Скажу без лишней скромности: нам удалось это сделать, причем без особых потерь как в качестве, так и в количестве ;-)

Мы не стали гнаться за передовой измерительной техникой, а остановили свой выбор на "старичке" Bruel&Kjaer Type 2203, который является надежным аналоговым прибором, успешно "отпахавшим" почти двадцатилетний стаж работы без единого замечания.

Почему именно шумомер Bruel&Kjaer Type 2203? Потому, что данный прибор:

  • попал к нам в руки на наиболее приемлемых условиях ;-)
  • соответствует 1 классу точности по ГОСТ 17187-71 и занесен в Государственный реестр средств измерений
  • позволяет проводить оперативную калибровку внутренним источником эталонного напряжения
  • по качеству измерительного тракта не намного уступает самым современным шумомерам от Bruel&Kjaer и Larson Davis

В итоге, с привлечением прецизионного шумомера Bruel&Kjaer Type 2203 все три вышеуказанных требования, предъявляемые к нашему измерительному оборудованию, были практически полностью удовлетворены.

Конечно, одно только средство измерения (пусть даже самое современное и высокоточное) будет бесполезной игрушкой без хорошо выверенной методики проведения измерений, иными словами, без продуманного и качественно поставленного эксперимента. И, как вы правильно понимаете, речь заходит о том, что пора уже рассмотреть нашу методику измерения шума и ответить на второй сакраментальный вопрос :)

Постановка эксперимента

Поэтому, исходя из возможностей нашего оборудования (и наших собственных возможностей, которые далеко не всегда совпадают с нашими желаниями :)), при выборе методики эксперимента мы остановились на методе определения шумовых характеристик источников шума в свободном звуковом поле над звукоотражающей плоскостью (ГОСТ 12.1.026-80). Почему был выбран именно этот метод? Причин несколько:

Во-первых, данный метод не очень требователен к условиям проведения измерений. Эксперимент может быть поставлен как в полузаглушенных камерах, так и на открытых площадках и в помещениях.

Во-вторых, микрофон нашего шумомера имеет оптимальную (линейную) частотную характеристику именно в условиях свободного звукового поля.

В-третьих, данный метод позволяет ограничиться частотным анализом шума в октавных полосах частот вместо анализа в третьоктавных полосах. Для наших целей в большинстве случаев частотный анализ в третьоктавных полосах будет неоправдан как по затраченному на его проведение времени, так и по добротности результата.

Ну и, наконец, в-четвертых, мы имеем доступ к полузаглушенной камере.

Итак, похоже, пора заняться рассмотрением методики обработки результатов измерений и ответить на третий сакраментальный вопрос.

Обработка и анализ результатов измерений

Первоначально массив результатов измерений анализируется, и по условиям Таблицы 1 вносятся необходимые коррективы, учитывающие фоновый шум. Далее результаты усредняются по формуле:

Отечественный ГОСТ ограничивается представлением результата измерений только в виде Lm. Однако родственный зарубежный стандарт (ISO 3744) настаивает на представлении результата в несколько другой форме:

Полученные значения Ld округляются до ближайшего целого. Итогом обработки результатов является диаграмма, которая и публикуется в обзорах.

Дополнительный анализ

Не исключаю, что подобных критических настроений у наших читателей могло бы и не возникнуть, тем не менее, вопрос правомерности "подмены" шума всей системы в целом шумом только кулера чрезвычайно важен и требует рассмотрения. Что ж, давайте разберемся с этим делом!

Есть, конечно, методологический принцип наихудшего варианта: выбираем предварительно самую шумную компьютерную систему и проводим измерения уже на ее основе. Полученный при этом результат будет показывать самый высокий уровень шума из всех возможных и может считаться вполне объективной точкой отсчета для дальнейших оценок шума более "спокойных" систем. Но как выбрать этот пресловутый самый наихудший (в акустическом смысле) вариант из всего многообразия конфигураций? Ответа на такой вопрос нет, поскольку шумность системы зависит не только от самой этой системы, но и от кулера, установленного в ней. Речь здесь идет о структурной вибрации, упомянутой в начале статьи. Дело в том, что кулер является не только источником шума, но и источником вибрации. Вибрационные колебания (которые, как правило, лежат в диапазоне от 10 до 500 Гц) передаются на корпус через жесткие сочленения (крепеж кулера, крепеж материнской платы) и являются причиной дополнительного шума с частотами вплоть до 4 кГц и выше, в зависимости от конструкции корпуса (вследствие, так сказать, гармонического размножения колебаний). Поэтому вполне вероятно, что достаточно тихая система может серьезно подкачать в акустическом смысле при установке какого-то другого кулера с более высоким уровнем вибрации.

Результаты исследования оказались достаточно любопытными:

  1. Уровень звука LA системы без кулера (вместо него использовался медный радиатор Thermalright SK-6) не превышал 43-45 дБА (даже в корпусе Asustek FK600).
  2. При установке кулера Thermaltake Mini Copper Orb уровень звука всей системы составил 49-52 дБА (в зависимости от корпуса), т.е. увеличился относительно шума кулера в чистом виде всего на 1-4 дБА.
  3. При установке кулера GlobalWin FOP38 уровень звука составил 54-56 дБА, т.е. уменьшился относительно шума кулера на 1-3 дБА!

На основании результатов дополнительного частотного анализа шума, проведенного для каждого случая, мы пришли к следующим выводам:

Итак, что же мы имеем в итоге?

Во-первых, уровень звука LA компьютерных систем, начиненных кулерами с высокопроизводительными вентиляторами, практически не отличается от уровня звука LA собственно самих этих кулеров (в пределах погрешности измерений, указанной в разделе Обработка и анализ результатов измерений)! Поэтому мы имеем полное право сравнивать наши результаты с гигиеническими нормами шума (правда, сравнение это является только ориентировочным).

Во-вторых, при установке кулеров в корпуса меняется спектральный состав шума: наблюдается его сосредоточение в низкочастотной и среднечастотной областях.

Наконец, в-третьих, "толстостенные" брэндовые корпуса в субъективном отношении оказываются предпочтительней, чем кооперативно-китайские: у систем в "левых" корпусах шум смещен и усилен в среднечастотной области акустического спектра, соответственно, кажется более раздражающим, чем преимущественно низкочастотный шум систем в брэндовых корпусах, несмотря на почти что одинаковый в некоторых случаях уровень звука LA.

Ну что же, ответы на три сакраментальных вопроса, сформулированных в начале статьи, даны. Можно с более или менее спокойной совестью делать окончательные выводы ;-)

Выводы

Наш метод практически полностью соответствует требованиям ГОСТ 12.1.026-80. Благодаря этому, мы получаем достоверные и воспроизводимые результаты измерений шума, позволяющие проводить объективный сравнительный анализ кулеров по их шумовым характеристикам. Более того, на основе наших результатов можно давать ориентировочные оценки шума и всей компьютерной системы в целом в случае использования кулеров, оборудованных высокопроизводительными вентиляторами. Что же касается конструктивной критики в адрес нашей методики, то она, как всегда, только приветствуется! ;-)

Конфигурация компьютера
Процессор: Intel Core i7 7700K 4,2 ГГц
Материнская плата: MSI Z270 PC MATE
Память: Kingston DDR4 8 ГБ 2666 МГц HyperX Fury HX426C15FB/8
HDD: SSD Samsung 250 ГБ 850 EVO MZ-N5E250BW M.2 BOX+Hitachi 2.5" Travelstar Z7K500 HTS725050A7E630/0J38075 500 ГБ 32 МБ SATA3
Видеокарта: MSI GeForce GTX 1060 6144 Мб 192 бит GDDR5 GTX 1060 ARMOR 6G OCV1
Блок питания: SFX-500GD-С
ОС: Windows 10 Pro 1803 (Сборка ОС 17134.523)
Индекс производительности Windows: 8.5

Ув. собеседники, как определить, какой кулер гудит. Гудит как пылесос. После удара по крышке - замолкает на 2-3 минуты. Один раз после удара самостоятельно перезапустился.
В зависимости от того, какой кулер гудит подскажите как его выбрать и поменять.

Конфигурация компьютера
Процессор: 3600
Материнская плата: B450
Память: DDR4 2x8Gb 3533Mhz
HDD: SSD
Видеокарта: GTX 1066
Звук: проф.
Блок питания: SEASONIC SS-650HT-F3 , 06.2011г.
CD/DVD: Asus 24B3ST
Монитор: ASUS VP249H
ОС: Win 10
в это время залезть в системник и послушать какой , или по очереди надавить в сердцевину вентилятора пальцем .
В зависимости от того, какой кулер гудит подскажите как его выбрать и поменять. »

Для отключения данного рекламного блока вам необходимо зарегистрироваться или войти с учетной записью социальной сети.

Аккуратно выдвинуть системный блок, взять крестообразную отвёрточку, отвернуть пару винтиков сзади корпуса, снять боковую крышку, охренеть от количества пыли внутри, по очереди остановить пальцем каждый из кулеров. Когда станет тихо - виновник найден. Если нет, то это вентилятор в БП.

Читайте также: