Как подключить гибридный инвертор к компьютеру

Обновлено: 04.07.2024

Приветствую на канале. Сегодня речь пойдет о том, как немного по другому использовать инвертор 12-220 вольт. И сразу скажу, что при попытке повторить ниже сказанное, вы берете на себя всю ответственность за технику, здоровье и жизнь. Помните, что используется опасное для жизни напряжение. Будьте осторожны! Соблюдайте технику безопасности.

Итак, любой импульсный автомобильный или домашний инвертор сначала повышает напряжение до постоянных 300-сот вольт, а только потом преобразует их в переменные 50 герц 220 вольт. А инверторы с большими железными трансформаторами сразу преобразуют 12 вольт в 220 вольт 50 герц, с ними данный метод не прокатит.

Последовательность работы инвертора с железным трансформатором. Последовательность работы инвертора с железным трансформатором.

Смысл заключается в том, что мы будем брать с инвертора те самые 300 вольт постоянного напряжения. Сразу возникает вопрос, зачем? Ну тут несколько моментов. Первое, мы немного увеличим КПД (коэффициент полезного действия), а может и очень существенно, об этом далее. Второе, сильно уменьшим пульсации. Момент номер три, это если вдруг у инвертора сдохли высоковольтные транзисторы, мы сможем использовать его не ремонтируя. Достаточно будет выпаять неисправные детали. Правда если инвертор слишком "умный", и не увидит выходного напряжения, то может выключится и показать ошибку.

Но у метода который я предлагаю естественно есть один недостаток, но об этом чуть позже.

Я буду показывать на примере инвертора Ritmix RPI-6001.

Разобрав инвертор мы видим большой электролитический конденсатор на 47мкф 400 вольт. В разных инверторах разное количество и зависит от мощности, в более мощных инверторах может быть несколько штук. Припаяем к ногам этого конденсатора провода с розеткой.

Подключим инвертор к напряжению 12 вольт и проверим сколько вольт в розетке. По мультиметру можно понять, что на выходе примерно 320 вольт постоянного напряжения.

Теперь о достоинствах и недостатках. Этим постоянным напряжением, можно питать огромное количество современной техники, например жк телевизоры, ноутбуки, компьютеры, мониторы, телефонные зарядные устройства, светодиодные лампочки, люминисцентные сберегайки, лампы накаливания, паяльники, обогреватели, электроинструмент не имеющий регуляторов мощности. Электроинструмент лучше не включать по этому методу, так как он включится, а выключится не сможет. Это несет опасность для человека. Симисторы выключаются при переходе через ноль. При питании от постоянного напряжения перехода через ноль нет. Вобщем можно включать любую технику работающую на импульсных блоках питания, и технику для которой не важно постоянное или переменное напряжение. А вот с двигателями переменного тока, такой фокус не прокатит, и с обычными железными трансформаторами тоже, просто произойдет короткое замыкание. С другой стороны, и в штатную розетку инвертора, тоже не стоит включать движки переменного тока и трансформаторы. Потому что они будут греться. Виной тому прямоугольные импульсы на выходе, напоминающие меандр. Как правило напряжение такой формы, обзывают как модифицированная синусоида.

Такой формы напряжение на штатном выходе инвертора. Такой формы напряжение на штатном выходе инвертора.

Предвижу вопрос, почему не сгорит электроника, если вместо положенных 220-ти вольт мы подадим более 300-сот? 220 вольт это действующее значение напряжения, а 300 вольт амплитудное, так вот электроника с импульсными источниками питания как раз работает на амплитудном значении, которое равно более чем 310 вольт. Если мы выпрямим диодным мостом сетевые 220 вольт, поставим сглаживающий конденсатор, мы получим на выходе амплитудное значение напряжения. Поэтому сразу питать технику напряжением 300 вольт постоянки, нет ничего страшного.

В итоге данная доработка подойдет не во всех случаях, но если грамотно пользоваться, то будет полезной.

А теперь о том почему я рекомендую подключаться именно так. Все просто, в розетке с постоянным напряжением нет сильных пульсации, тогда как в штатной розетке инвертора, как я уже писал, не синусоида как положено, а меандр и некоторой технике это очень не нравится. Компьютерная техника может тормозить, на экране монитора, телевизора возможны полосы. В колонках возможно жужжание, с разной техникой и разными инверторами конечно по разному, где-то эти проблемы более выражены, где-то менее. Но более чем уверен, многие сталкивались с данной проблемой. Когда я перешёл на данный метод, все стало работать как положено.

Ну и как я уже говорил повышается кпд, так как из схемы исключаются выходные полевые транзисторы которые образуют H мост, который формирует модифицированную синусоиду. Нет транзисторов, соответственно нет лишних сопротивлений. В данном инверторе используются транзисторы UF740L.

Сопротивление открытого канала этих транзисторов 0,55 ома. Для двух транзисторов это уже 1,1 ом. Так как каждую полуволну образуют два транзистора. Немного конечно для высокого напряжения, но всё же.

Но H мост - не самое страшное, КПД сильно упадет если в штатную розетку подключать современную электронику с импульсными источниками питания которые на входе имеют фильтры питания. А любой, деже самый китайский блок имеет фильтр. Нет, ну бывает откровенный хлам без фильтров, но сейчас не об этом. Так вот, если модифицированную синусоиду гнать на фильтр, то потребление существенно возрастает. Фильтр будет жужжать и греться.

Холостое потребление инвертора примерно 300 миллиампер. 3,48 Ватт. Холостое потребление инвертора примерно 300 миллиампер. 3,48 Ватт. Потребление 1,17А при подключенном фильтре, без нагрузки. 14,04 Ватт. Потребление 1,17А при подключенном фильтре, без нагрузки. 14,04 Ватт.

С постоянным напряжением 300 вольт такого нет.

Рекомендую на проводе поставить предохранитель и фильтр питания. Ну и не забывать что можно включать, а что нельзя, в эту розетку. С этим нужно быть внимательным, иначе можно сжечь как инвертор так и технику!

Фильтр питания с предохранителем для постоянного напряжения . Фильтр питания с предохранителем для постоянного напряжения .

Сейчас подключим светодиодную лампочку, какой стороной включать вилку в розетку, значения не имеет. Но кстати некоторые устройства могут не работать в одном из положении вилки. Это может быть в тех случаях когда внутри стоит однополупериодный выпрямитель, иначе говоря, не четыре диода, а один.

Привет geektimes. В предыдущей части было рассказано о тестировании контроллера заряда. Днем батарея заряжается, вечером или ночью накопленный заряд можно использовать. Ту систему можно считать законченной, что-либо принципиально новое добавить в нее уже сложно. Все работает, текущей емкости батареи в 12ач хватает для вечернего освещения комнаты светодиодной лентой и зарядки разных гаджетов. Все работает, однако есть и недостатки:

— Аккумуляторные батареи — достаточно дорогой и не совсем долговечный компонент.
— Накопленную энергию банально некуда девать. За все время я ни разу не разряжал батарею более чем на 50%.
— В солнечный день уже утром к 9-10 утра батарея полностью заряжена, соответственно, солнечные панели простаивают впустую.

В итоге, настала очередь протестировать следующий, более современный и широко используемый подход — отдачу электроэнергии непосредственно в электросеть. Технология весьма актуальна, т.к. устраняет все вышеприведенные недостатки — электроэнергия отдается в домашнюю электросеть и потребляется другими устройствами.

Как это работает, подробности под катом. Желающие также могут просмотреть краткую видеоверсию в youtube.

Grid tie инвертор

Схема подключения инвертора к электросети очень проста:


По сути grid tie не сильно отличается от обычного преобразователя 12-220В, хотя есть несколько существенных отличий:

— grid tie синхронизируется с периодами сетевого напряжения,
— grid tie автоматически прекращает выработку, если сеть отключается (из соображений безопасности, например если сеть обесточили для ремонта),
— grid tie может использовать технологию MPPT (maximum power point tracking) и находить точку отдачи максимальной мощности для солнечных панелей.

Чем в итоге удобно использование grid tie?
— Уменьшаются счета за электричество: потребление дома от городской сети уменьшается на величину, соответствующую выработке инвертора.
— Уменьшается нагрузка на городскую электросеть.
— Система проста в подключении и эксплуатации.

На рынке есть 2 вида инверторов:

— «Стандартные» (название условно), которые ставятся в доме, и к ним подается напряжение от панелей. Мощность может варьироваться от 250Вт до нескольких киловатт, цена вопроса от 60$ до 6000$.


— Микроинверторы. Ставятся прямо на панель, таким образом прямо с панели получается сетевое напряжение 220В. Способ удобен тем, что не нужно тянуть толстые провода низкого напряжения, ну и надежность системы в целом получается выше.


Система легко параллелится и расширяется, примерно так:


В общем, все это достаточно интересно чтобы протестировать.

Тестирование

Перед тестированием «балконной» системы выявилась одна проблема — инверторов для такого малого масштаба просто не производят. Типичные параметры grid tie инвертора — мощность от 250Вт и напряжение панелей 22-65 или 45-90В. У меня же 2 параллельно соединенные солнечные панели по 50Вт давали 12-21В. Наконец, после поисков на ebay была найдена практически единственная модель с длинным названием 500W MPPT Micro Grid Tie Inverter 10.5-28V. Слово «micro» тут явно маркетинг, т.к. возможности крепления на панели не предусмотрено. Инвертор выглядит примерно так (фото со страницы продавца).


И собственно, тестирование. Все просто, инвертор подключается в розетку через ваттметр, который удобен для оценки показаний. Солнечные панели выходят на восточную сторону, и уже в 9 утра при солнечной погоде выработка составила 30Вт.

Все хорошо, я только успеваю порадоваться «до чего техника дошла», как слышу весьма громкий шум — в инверторе включился кулер. На габаритах инвертора китайцы сэкономили, и высокооборотный 40мм кулер дает такой шум и свист воздуха, что его слышно в соседней комнате. Конечно, в идеале обороты кулера должны были бы регулироваться в зависимости от температуры инвертора, но в моем случае это не работало. Т.к. использовать инвертор на полную мощность 500Вт я не планирую, то просто заказал другой, менее шумный кулер, которого для 100-200Вт вполне должно хватить.

Кстати, внутренности инвертора выглядят так:


Вот так нагреваются его части во время работы, температура компонентов до 40 градусов:


Это в принципе немного, с другой стороны, и мощность всего лишь 1/10 от максимальной. Было бы интересно проверить его нагрев при полных 500Вт, но такой возможности нет.

Другой недостаток проявился вечером, когда солнечные панели дают мало энергии — инвертор пытается включиться, загорается светодиод, но напряжение панелей от нагрузки проседает и он выключается, затем процесс повторяется снова. Вряд ли такие включения-выключения полезны для электронных компонентов, с другой стороны, ничего сильно страшного тут в принципе нет. Разработчики могли бы предусмотреть более интеллектуальный способ отключения инвертора, с другой стороны, это самая дешевая модель на рынке, да и работа от 100Вт панели для 500-ваттного инвертора не является штатной.

Итог: судя по ваттметру, целиком за солнечный день в сеть со 100-ваттной панели было отдано 0.25КВт*ч. В ценах на электричество желающие могут пересчитать сами, как и срок окупаемости инвертора (его цена около 80$). Пиковая мощность, зафиксированная ваттметром, составила 65Вт, а средняя мощность в утреннее время (панели направлены на восток) 30-40Вт. (Теоретически, со 100-ваттной панели можно получить 80-90Вт мощности, если развернуть ее более правильным образом и использовать более толстые провода).

Следующий день был пасмурным с дождем, и инвертор вполне ожидаемо, не запустился вообще. Он пытался включиться утром каждые 5 секунд, запуская при этом кулер, и «вззз-вззз» было слышно по всей комнате. В общем, с таким инвертором будильник по утрам точно не нужен. Хотя это не проблема инвертора как такового — во-первых, 500-ваттный инвертор просто не рассчитан на использование 100-ваттной панели, во-вторых, он не предназначен для установки в комнате.
Когда дождь закончился и небо относительно прояснилось, инвертор запустился, отдаваемая в сеть мощность составила около 12Вт.


Заключение

Технология grid tie работает, почти как ожидалось, даже с небольшими панелями балконного размера. «Почти», т.к. мощности панелей недостаточно для работы инвертора на полную мощность. В то же время, даже в таком виде инвертор работает, отдавая в сеть энергию уже при 10-20Вт выработки. Для моих балконных панелей пиковая мощность, зафиксированная ваттметром, составила 65Вт, а средняя в утреннее и солнечное время суток примерно 30-40Вт.

В ясный солнечный день в сеть со 100-ваттной панели было отдано 0.25КВт*ч. Кстати, 0.25КВт*ч это много или мало? Этого достаточно для 15 минут работы микроволновки, 30 минут работы компьютера, 24 часов работы светодиодной лампы или 2-3 использований небольшого электрического чайника.

Однако показанный выше инвертор я не могу рекомендовать для балконной установки — лучше брать микро-инвертор, не содержащий кулеров, ну и мощность панелей должна составлять не менее 200Вт при напряжении 20-40В.

PS: C отдачей электроэнергии в сеть есть еще один интересный вопрос — что будет если суммарная выработка панелей больше, чем потребляемая мощность?

Ответ не так прост как кажется, тут есть 2 варианта.

Если установлен обычный счетчик, то он просто считает энергию «по модулю», так что излишки энергии уйдут в общедомовую сеть к соседям, а счетчик просуммирует ее как потребленную — за отданную соседям энергию еще и придется заплатить (что конечно обидно).

Современные счетчики умеют считать «экспорт» и «импорт» электроэнергии, эти пункты показаний есть отдельно в меню. В идеале, это должно учитываться при платежах и расчетах. Увы, возможность экспорта энергии в сеть в РФ пока что официально отсутствует. В Европе такая возможность разумеется, есть. Из стран СНГ реализация электроэнергии доступна в Армении, Украине, Казахстане и Белоруссии. Поэтому устанавливая grid tie инвертор, нужно либо рассчитывать мощность так, чтобы вся она потреблялась домашними устройствами, либо устанавливать дополнительный модуль (grid tie limiter), предотвращающий отдачу в сеть если она больше потребляемой. В России решить вопрос с экспортом электроэнергии обещали в 2018 году, как оно будет, пока неизвестно. Очевидно, что из всех проблем, это не самая насущная в стране, так что быстрого решения вопроса не предвидится. Пока что, как подсказывает гугл, в России есть только один дом, владелец которого в частном порядке оформил возможность экспорта энергии в сеть, но это скорее исключение. В случае балкона, о реализации излишков речи конечно не идет, но даже 50-100 ватт энергии вполне могут пригодиться для компенсации работы WiFi-роутера или мини-сервера, не говоря уже о холодильнике.

Следующей в очереди на тестирование стоит батарея ионисторов, которую планируется использовать для накопления электроэнергии. Что из этого получится, я не знаю сам. Также планируется выложить на youtube видеодемонстрации работы системы, но это занимает больше времени чем планировалось.

Что такое силовая электроника? Без сомнения — это целый мир! Современный и полный комфорта. Многие представляют себе силовую электронику как что-то «магическое» и далекое, но посмотрите вокруг — почти все, что нас окружает содержит в себе силовой преобразователь: блок питания для ноутбука, светодиодная лампа, UPS, различные регуляторы, стабилизаторы напряжения, частотники (ПЧ) в вентиляции или лифте и многое другое. Большинство из этого оборудования делает нашу жизнь комфортной и безопасной.

Разработка силовой электроники по ряду причин является одной из сложнейших областей электроники — цена ошибки тут очень высока, при этом разработка силовых преобразователей всегда привлекала любителей, DIYщиков и не только. Наверняка вам хотелось собрать мощный блок питания для какого-то своего проекта? Или может быть online UPS на пару кВт и не разориться? А может частотник в мастерскую?

Сегодня я расскажу о своем небольшом открытом проекте, а точнее о его части, который позволит шагнуть в мир разработки силовой электроники любому желающему и при этом остаться в живых. В качестве демонстрации возможностей я покажу как за 15 минут собрать инвертор напряжения из 12В DC в 230В AC с синусом на выходе. Заинтриговал? Поехали!



Причины появления проекта

В последние пару лет разработка силовых преобразователей составляет около 90% моих заказов, основные трудозатраты уходят в основном на разработку ПО и макетирование, проектирование схемотехники + финальная трассировка платы от общих затрат составляет обычно не более 10-15%. Тут приходит понимание, что процесс макетирования, в который входит разработка ПО, необходимо как-то сократить и оптимизировать.

Выхода как всегда есть минимум два: купить готовую отладку, например, у Texas Instrumets или Infineon, но они обычно заточены под конкретную задачу и стоят от 500 до 5000$, при этом нет гарантии, что будет похожий заказ и данное вложение с высокой вероятностью просто не окупится.
Второй вариант — делать самому, но делать основательно это почти тоже самое, что запустить "+1 ревизию железа", что выльется в дополнительные траты для заказчика. Если делать не основательно, то как обычно все будет на соплях и где-нибудь что-то отвалится и пока макет, комплектующие и сроки.
Спустя какое-то время, я обратили внимание на очевиднейшее решение. Оно настолько простое и очевидное, что долго удивлялся почему такого еще не сделал тот же TI или Infineon. Сейчас расскажу о своем «просветление».

Давайте рассмотрим несколько наиболее популярных топологий силовых преобразователей:










  • Все топологии включают в себя основные компоненты — конденсаторы, транзисторы и индуктивность (дроссель или трансформатор). Это 3 кита силовой электроники;
  • Транзисторы включены везде одинаково и образуют так называемый «полумост». Из него построены почти все топологии преобразователей;
  • Вариант включения связки «полумост + конденсатор» не меняется на всех топологиях. Меняется тип индуктивности и варианты включения полумостов.


Из этого можно сделать вывод, что имея некий стандартный модуль в виде связки «полумост + конденсатор» можно построить любой преобразователь, добавляя лишь нужный дроссель или трансформатор. Поэтому очевидным решения для упрощения прототипирования было создание вот такого модуля:

Борьба добра со злом

К сожалению ограниченное количество часов в сутках и банальная лень диктуют свои условия. К необходимости изготовить данный модуль я пришел еще год назад, но реализация постоянно переносилась под лозунгом — «на следующих выходных точно сделаю!».

Наверно идея так бы и осталась лежать на полке, если бы не 2 события. Во-первых, ко мне пришли в один месяц 2 заказчика и каждый хотел сложный и интересный в реализации преобразователь, а главное готовы были очень хорошо заплатить. Хотя учитывая, что он из Европы, то может для них этого и дешево еще оказалось)) Оба проекта для меня были интересны, например, один из них «трехфазный стабилизатор напряжения с гальванической развязкой (sic!)», то есть 3-х фазный PFC + 3 мостовых преобразователя (phase shifted) + синхронный выпрямитель + 3-х фазный инвертор. Все это на SiC и очень компактное. В общем я взялся за 2 больших заказа, каждый из них по

800 человеко-часов и срок 6 месяцев. В итоге меня «заставили» искать пути оптимизации.

Во-вторых, мне неожиданно написали ребята из компании PCBway, многие наверняка у них платы заказывали, и предложили по сотрудничать. Они очень активно поддерживают открытые железячные проекты, то есть ту самую инициативу CERN — Open Source Hardware. Сотрудничество простое, понятное для обеих сторон — они снабжают меня бесплатно платами для моих проектов, а я их открываю, ну и выкладываю на их сайте, в других местах уже по желанию. Для меня это стало дополнительной мотивацией, а главное совесть моя чиста, т.к. я уже несколько лет заказываю у них платы и на прототипы, и для серийного производства при этом рассказываю о них знакомым и партнерам. Теперь мне за это еще и плюшка в виде бесплатных плат для мелких проектов, можно чаще писать на хабр))

И тут лед тронулся, было решено создать не просто описанный ранее модуль, а целый комплект разработчика силовой электроники и сделать его открытым и доступным каждому.

Структура проекта

В начале статьи я упомянул, что расскажу сегодня лишь про одну часть — это силовой модуль полумоста. Он один уже позволяет создать преобразователь, просто прикрутив управляющую схему, например, отладку STM32-Discovery, Arduino, TMS320, TL494 или чем вы там владеете. Привязка к какой либо платформе или МК нет вообще.

Только это не весь проект, а часть)) Из чего состоит готовый силовой преобразователь? В первую очередь силовая часть, чтобы она заработала нужен некий модуль управления, чтобы понять что происходит нужна индикация, а чтобы понять что происходит с безопасного расстояния еще и интерфейс, например, Modbus RTU или CAN.

В итоге общая структура проекта выглядит так:


Вероятно в будущем еще напишу программку для расчета трансформаторов и дросселей, как обычных, так и планарных. Пока что так. Разные части диаграммы в черновом варианте уже реализована и обкатаны в двух проектах, после небольших доработок по ним так же будут написаны статьи и доступны исходники.

Силовой модуль полумоста

Теперь пришло время подробнее посмотреть на сегодняшнего героя. Модуль универсален и позволяет работать с транзисторами Mosfet и IGBT, как низковольтными, так и высоковольтными ключами до 1200В.

  • Гальваническая развязка управляющей (цифровой) стороны от силовой. Напряжение пробоя изоляции 3 кВ;
  • Верхний и нижний ключ независимы, каждый имеет свой гальванически развязанный драйвер и гальванически развязанный dc/dc;
  • Применен современный драйвер от компании Infineon — 1EDC60I12AHXUMA1. Импульсный ток открытия/закрытия — 6А/10А. Максимальная частота — 1 МГц (проверено до 1.5 МГц стабильно);
  • Аппаратная защита по току: шунт + ОУ + компаратор + оптрон;
  • Максимальный ток — 20А. Ограничен не ключами, а размером радиатора и толщиной медных полигонов.

В статье фигурирует 1-я ревизия модуля, она полностью рабочая, но будет 2-я ревизия, в которой устранятся чисто конструктивные недочеты и поменяются разъемы на более удобные. После завершения создания документации, закинул gerber в PCBway и мне через 6 дней в дверь постучался курьер и вручил вот такую прелесть:


Еще через неделю наконец-то привезли на собаках комплектующие из одного прекрасного отечественного магазина. В итоге все было смонтировано:



Тут ничего сложного или магического нет. Обычный полумост: 2 ключа внизу, 2 вверху, можете паять по одному. Драйвер как выше писал из семейства 1ED, очень злой и бессмертный. Везде по питанию есть индикация, включая +12В на выходе dc/dc. Защита реализована на логическом элементе AND, в случае превышения тока компаратор выдаст +3.3В, они засветят оптрон и он притянет один из входов AND к земле, что означает установление лог.0 и ШИМ-сигнал с драйверов пропадет. AND с 3-мя входами использован специально, в следующей ревизии планирую сделать еще и защиту от перегрева радиатором и завести сигнал ошибки туда же. Все исходники будут в конце статьи.

Собираем макет инвертора

Долго думал на чем бы продемонстрировать работу модуля, чтобы и не сильно скучно, и полезно, и не сильно сложно, чтобы повторить мог любой. Поэтому остановился на инверторе напряжения, такие используют для работы с солнечными панелями, если что-то бахнет по низковольтной стороне — не страшно, а по высоковольтной — просто когда включите не суйте туда руки.

Сам инвертор до безобразия простой, кстати, МАП Энергия клепают именно такие, вот вам пример даже коммерческой реализации сей идеи. Работа инвертора заключается в том, чтобы сформировать из постоянного напряжения 12В переменное синусоидальной формы с частотой 50 Гц, ведь именно с таким привык работать обычный трансформатор на 50 Гц. Я использую какой-то советский, вроде ОСМ, 220В обмотка заводская и используется как вторичка, а первичная

8В намотана медной шиной. Выглядит это так:


И это чудовище всего на 400 Вт! Вес трансформатора около 5-7 кг по ощущениям, если уронить на ногу, то в армию точно не возьмут. Собственно в этом и заключается минус инверторов с «железными» трансформаторами, они огромные и тяжелые. Плюс их в том, что данные инверторы оооочень простые, не требует никакого опыта для создания и конечно же дешевые.

Теперь давайте соединим модули и трансформатор. На самом деле модуль для разработчика должен представляться просто как «черный ящик» у которого есть вход 2-х ШИМов и 3 силовых вывода: VCC, GND и собственно выход полумоста.


Теперь из этих «черных ящиков» давайте изобразим наш инвертор:


Ага, понадобилось всего 3 внешних элемента: трансформатор + LC фильтр. Для последнего дроссель я изготовил просто намотав провод от модуля до трансформатора на кольцо из материала Kool Mu размер R32 с проницаемость 60, индуктивность около 10 мкГн. Конечно же дроссель надо бы рассчитать, но нам же надо за 15 минут)) Вообще если будете гонять что-то подобное на 400 Вт, то нужно кольцо размером R46 (это внешний диаметр). Емкость — 1-10 мкФ пленка, этого достаточно. На самом деле в качестве экономии можно конденсатор не ставить, ибо емкость обмотки трансформатора здоровая… в общем у китайцев и МАПа именно так и сделали)) Дроссель выглядит вот так:


Остается накинуть тестовую нагрузку на выход, у меня это пара светодиодных лампочек на 20 Вт (ничего другого наглядного не оказалось под рукой), сами они кушают 24Вт, КПД однако. Так же ток холостого хода трансформатора около 1А. С АКБ будет кушать около 5А. В итоге имеем такой стенд:


Так же в макете используется АКБ Delta HR12-17 соответственно на 12В и емкостью 17 А*ч. Управлять преобразователем будем с отладочной платы STM32F469-Discovery.

Изначально для управления предполагалось использовать мою STM32VL-Disco, полученную на выставке еще в 2010-м, но так случилось, что именно на этом макете ей суждено было умереть уже когда весь код написан и макет запущен. Забыл про щупы осциллографа и объединил 2 земли, аминь. В итоге все было переписано на STM32F469NIH6, именно эта отладка имелась под рукой, поэтому будет 2 проекта: для F100 и для F469, оба проверены. Проект собран для TrueSTUDIO, версия эклипса от ST.

Вообще в своей другой статье ооочень подробно и наглядно рассказал как формировать синусоидальный сигнал, как писать код и прочее прочее. Прочитать можно — тут.

Прочитали? Хотите собрать? Держите проект:


Стоит обратить внимание, что я на один полумост (модуль) подаю 2 сигнала, рисующих синус, а на другой 2 сигнала задающие 50 Гц. При чем одна диагональ «красный+желтый», а другая «синий+зеленый». В статье, что дал выше про это подробно написано, если вдруг не поняли. Теперь как подали сигналы, накидываем на оба полумоста +12В и GND от лабораторного блока питания. Сразу АКБ не советую, если где-то ошиблись, то может сгореть что-то. Защита на плате спасает от превышения тока, но не от явных косяков, когда плюс и минус перепутали, а вот лабораторник спасает. 12В и 1А для тестов хватит. Берем щуп осциллографа, его земляной провод на выход первого полумоста, а сам щуп на выход другого полумоста и должна быть такая картинка:


Где синус спросите вы? Дело в том, что сопротивление входа осциллографа большое и он не представляет из себя нагрузку, поэтому ток не протекает и синусу взяться не откуда. Добавим нагрузку, я смастерил из резисторов 10 Ом нагрузку 90 Ом просто включив последовательно 9 штук. Цепляем нагрузку к выходам полумостов и видим такую картину:


У вас так же? Значит пришла пора подключать дроссель, трансформатор, нагрузку и пробовать запускать. Achtung! Нельзя включать данный макет без нагрузки, ибо на холостом ходе на выходе может быть до 350. 380В. Чтобы такого не было нужна нагрузка или ОС. Последней у нас не будет, это тема отдельной статьи, можете в качестве факультатива прикрутить П-регулятор простейший, шаблон проекта у вас уже есть.

Включение

После включения получаем на выходе около 230В, выход конечно не стабилизированный и будет плавать 230В +-30В, для тестов пойдет, в другой статье доработаем макет как решусь рассказать про П и ПИ-регуляторы и их реализацию.

Теперь можно насладиться результатом работы, а при необходимости упихать все в коробку и даже применить в хозяйстве или на даче для обеспечения себя светом и прочими прелестями.

Вы наверняка заметили задержку между «щелчком», то есть подачей питания на Discovery и включением ламп — это время, которое МК потратил на инициализацию. Эту задержку можно уменьшить, если писать в регистр разом одну цифру, а не дробить запись регистра на кучу строк. Я раздробил исключительно для наглядности. Хотя и это не страшно, с кодом на HAL задержка в 3 раза дольше и народ как-то живет с ним))

Пока не забыл, исходники проекта:

  • Принципиальна схема — PDF
  • BOM — Excel
  • Gerber-files — RAR

Осталось посмотреть как там с температурами на плате, нет ли каких-то особо горячих мест. 5-6А это конечно мало, но если сквозной ток идет или еще какая серьезная ошибка, то этого хватит, чтобы превратить плату в чайник:


Как видите самым горячим элементом является dc/dc модуль для гальванической развязки, это который на 2 Вт, он нагревается аж до 34 градусов, ну еще и шунт. Сами же транзисторы и радиатор имеют температуру окружающей среды после 30 минут работы преобразователя))

Благодарности и планы

В ближайшее время я планирую написать про DSP board и по управлять уже не с отладки discovery, а уже со «специализированного» модуля. Платы 2-й ревизии на него уже пришли от тех же PCBway, жду компоненты и сразу писать.

Надеюсь статья и сама идея вам понравились. В дальнейшем на этих же модулях покажу как собрать частотник, mppt контроллер, а может и еще чего интересного. Если у вас есть вопросы, то не стесняйтесь их задавать в комментариях или в личку, если у вас вдруг нет полноценного аккаунта, постараюсь ответить на все вопросы.

Теперь немного благодарностей компании PCBway, на самом деле очень хорошо, что они поддерживают open source движуху. Может скоро железячники даже догонять софтописателей по количеству и качеству открытых проектов.

Гибридный инвертор — преобразователь постоянного тока в переменный, позволяющий использовать солнечные батареи и получать напряжение от альтернативных источников.

Это универсальный инструмент в преобразовании тока и обеспечении надежного электроснабжения.

Ниже рассмотрим, что это за устройство, и как оно работает. Разберем отличия от БПП, возможности оборудования и популярные модели.

Что такое гибридный инвертор, принцип действия

Начнем с теоретической части и разберемся с особенностями оборудования.

Гибридный инвертор — устройство, позволяющее параллельно использовать напряжение от источников постоянного (DC) и переменного (AC) тока. Приоритет отдается какому-то одному источнику, а второй находится «на подхвате» и подключается в случае потери напряжения.

Основная функция — преобразование постоянного тока в переменный с дальнейшим подключением к электрической сети дома для бесперебойного электроснабжения.

В качестве источника DC может выступать солнечная батарея, небольшая гидроэлектростанция, ветряная мельница и т. д.

Принцип действия гибридного оборудования зависит от времени суток:

  • День. В этот период энергия солнца попадает на фотоэлемент, преобразуется в электричество и подается к инвертору для преобразования. На выходе получается напряжение, максимально подходящее для бытовой сети. После этого устройство питает электрическую сеть дома, заряжает АКБ, а при чрезмерном заряде сбрасывает «лишнее» в общую сеть по «зеленому» тарифу.
  • Вечер, ночь. С учетом выбранного режима гибридный инвертор подает напряжение на дом от АКБ или от бытовой сети.

Благодаря переключению режимов, обеспечивается круглосуточная подача электричества в бытовую сеть без сбоев (даже при потере одного из источников питания).

В зависимости от применяемой модели гибридный инвертор может иметь следующие возможности:

  • «подмешивание» энергии от АКБ;
  • добавление мощностей оборудования и электросети;
  • регулировка частоты тока на выходе;
  • подключение сетевых фотоэлектрических инверторов;
  • автоматическое переключение цепи питания потребителей и т. д.

Где применяется

Гибридный инвертор пользуется спросом в домашнем хозяйстве, когда необходимо зарезервировать основной источник питания и обеспечить бесперебойную поставку электроэнергии.

Более мощное оборудование применяется на электростанциях для подачи электричества по зеленому тарифу.

  • зеленый тариф;
  • автономное питание дома;
  • солнечные электростанции с мощностью до 5000 Вт;
  • ответственные объекты;
  • ветряные электростанции небольшой мощности.

Сфера применения гибридного инвертора постоянно расширяется, но она ограничена высокой стоимостью оборудования.

Читайте также: