Как подобрать резистор на материнской плате

Обновлено: 07.07.2024

Также, как и выводные резисторы, SMD-резисторы для монтажа на поверхность рассчитаны на определённую мощность рассеивания. Но, как её узнать?

На самом деле, определить мощность SMD резистора не так уж и сложно. Мощность рядовых чип-резисторов, которых в современной электронике огромное множество, можно определить исходя из их размеров.

Далее представлена таблица №1, в которой указано соответствие типоразмера SMD-резистора и его мощности рассеивания. Отмечу, что в таблице указан типоразмер в дюймовой системе кодировки, а реальные размеры указаны в миллиметрах (длина и ширина). Сделано это исходя из удобства.

Дело в том, что до сих пор наибольшее распространение получила система кодирования типоразмера чип-резисторов в дюймах. Её используют все: производители, поставщики и магазины. А для того, чтобы определить типоразмер, а, следовательно, и мощность, мы должны замерить длину и ширину резистора обычной линейкой или другим более точным инструментом, шкала которого проградуирована в миллиметрах.

Определение типоразмера SMD-резистора по ширине и длине его корпуса

Если у вас на руках имеется SMD-резистор, мощность которого требуется узнать, то, сделав замеры обычной линейкой, можно быстро определить его типоразмер и соответствующую ему мощность рассеивания.

Определение типоразмера SMD резистора и его мощности

Таблица №1. Соответствие мощности SMD-резистора и его типоразмера.

В таблице №1 также указаны типовые мощности и для SMD-резисторов с широкими боковыми электродами (выводами). В документации такие резисторы называются Long Side Termination Chip Resistors или Wide Terminal Chip Resistors.

Такое положение дел нужно учитывать, если вы собираетесь использовать резистор, мощность которого была определена исходя из размеров. При этом, нужно остановиться на наименьшем значении мощности, взятом из таблицы №1.

Определение мощности SMD-резистора по его размеру

Если этим пренебречь, то может случится так, что вам попадётся резистор с меньшей мощностью, например, 0,25W вместо 0,5W, а это уже чревато его перегревом и выходом из строя при работе в реальной схеме.

Хотелось бы отметить, что сведения в таблице №1 в основном относятся к стандартным SMD-резисторам, то есть таким, которые широко и в большом количестве используются при производстве электроники.

Их характеристики, в том числе и мощность рассеивания, может существенно отличатся от усреднённых значений, которые приведены в таблице №1 и являются типовыми для стандартных SMD-резисторов, количество которых в электронной схеме может быть просто огромным.

Типовые мощности тонкоплёночных резисторов (Thin film chip resistors) также соответствуют значениям из таблицы №1. Резисторы для некоторых областей применения, например, для автомобильной электроники (avtomotive grade), могут иметь мощность чуть выше той, что указана в таблице №1.

Как узнать мощность резисторных SMD-сборок?

Для резисторных SMD-сборок мощность в технической документации указывается на элемент (per element), а иногда ещё и на сборку вцелом (per package). Обычно, чип-сборка состоит из набора 2, 4, или 8 резисторов стандартного типоразмера. Например, набор типоразмера 0408 соответствует четырём SMD резисторам типоразмера 0402.

Внешний вид и размеры чип-резисторной сборки

Так вот, типовая мощность одного резистора в такой сборке мало чем отличается от стандартной мощности отдельного SMD-резистора такого же типоразмера.

Чип-сборка типоразмера 0612 на 4 резистора с выводами типа convex (т.е. выпуклыми). Мощность на элемент 0,1W.

Определение мощности смд-сборки типоразмера 0612

Ориентировочная мощность такой сборки 0,25W на элемент. Это если исходить из соображения, что типовая мощность для типоразмера 1206 составляет минимум 0,25W.

Кривая снижения мощности SMD-резистора и диапазон рабочей температуры.

В англоязычной тех. документации мощность рассеивания называется Power Dissipation (иногда Rated dissipation), а обозначается как P70. Нижнему индексу (70) соответствует температура окружающей среды, при которой резистор способен долговременно выдерживать указанную мощность.

График снижения мощности (Power Derating Curve)

Приведённый график является типовым для стандартных толстоплёночных резисторов. Для специализированных SMD-резисторов график снижения мощности может существенно отличаться. Например, так он выглядит для резисторов серии PHT (Vishay).

График снижения мощности для чип-резисторов серии PHT(Vishay)

Мощные SMD-резисторы.

Существует мнение, что максимальная мощность рассеивания SMD резисторов ограничена их физическими размерами и параметрами резистивного слоя, например, сечением. И это так. Несмотря на это, среди резисторов для поверхностного монтажа есть и модели повышенной мощности.

К таким можно отнести чип резисторы серии PCAN (Vishay). Особенностью данных резисторов является подложка из нитрида алюминия (aluminum nitride, AlN), которая обладает повышенной теплопроводностью. 90% тепла от резистивного слоя SMD-резистора проходит через тело компонента, то есть через его подложку (substrate). Керамика на основе алюмонитрида (нитрида алюминия) обладает высокой теплопроводностью, что позволяет быстрее отводить тепло от резистивного слоя. К тому же, керамика на основе алюмонитрида нетоксична.

Тепловая модель отвода тепла от чип-резистора

Кроме этого нижняя часть контактных электродов данных чип-резисторов имеет увеличенную площадь, за счёт которой удаётся уменьшить тепловое сопротивление между проводящим слоем резистора и контактными площадками на печатной плате.

Такое сочетание технических решений позволяет преодолеть мощностные ограничения для стандартных типоразмеров смд-резисторов. Для сравнения, приведу значения мощности рассеивания для четырёх типоразмеров, доступных в данной серии.

Тонкоплёночные прецизионные чип резисторы повышенной мощности серии PCAN (Vishay)
Высокомощные SMD- резисторы серии PCAN (Vishay)
Типоразмер, inch Мощность, W
0603 0,5
0805 1
1206 2
2512 6

Как видим, для типоразмера 2512 мощность составляет 6 Вт. Стандартный SMD-резистор такого же типоразмера, как правило, имеет мощность не более 1 или 2 Вт.

Так же есть чип-резисторы с более скромными характеристиками, например, серии PHP (Vishay). В ней уже используется подложка из рядового, хотя, и высокочистого оксида алюминия (alumina, Al2O3), который широко используется в качестве материала для подложки в стандартных SMD-резисторах.

Из особенностей: увеличенная площадь нижних электродов Wraparound-типа. Допустимая мощность для типоразмера 2512 данной серии составляет 2,5 Вт. Это на 0,5. 1,5 ватта больше, чем у стандартных резисторов аналогичного размера.

Внешний вид и таблица мощностей для серии чип-резисторов PHP (Vishay)

Работа чип-резисторов на таких мощностях возможна с одной оговоркой, – это соблюдение правил монтажа на печатную плату. Об этом прямо сообщается в технической документации на серию.

Какие бы технические ухищрения не использовались для увеличения мощностных характеристик SMD-резисторов, но тепло всё равно отводить куда-то надо. Именно поэтому, к таким резисторам предъявляются особые требования монтажа их на плату.

Основными способами отвода избытка тепла от резистивного слоя SMD-резистора являются соединительные контакты медных проводников, поверхность печатной платы и внешнее охлаждение.

В печатных платах под поверхностный монтаж элементов, избытки тепла от элементов отводятся в толщу платы и медные полигоны, которые служат своеобразным радиатором. В некоторых случаях может применятся принудительное внешнее охлаждение (например, вентиляторы).

Добрый день, продолжаем наши публикации после небольшого технического перерыва и начнём с простой задачи. Первоначально, конечно, стоит обратить внимание на то какую роль в данном случае выполняет резистор в схеме. Стоит выделить несколько основных ролей:

1 Ограничение по току (например мы ограничиваем максимально допустимый выходной ток) Тогда расчёт исходя из того, что максимальный ток, будет в момент максимального напряжения.

Например, Есть источник напряжения в 5 вольт, и мы подключаем нагрузку к ключу Y, получаем следующую схему:

Обратите внимание, что мы условно добавили Rогр., которое в зависимости от задачи будет ограничивать ток в выходной цепи. например есть требование, что максимально допустимый ток коллектора 300 ма (достаточно большой ток для слаботочных схем). Если мы знаем сопротивление нагрузки, тогда подбираем, сопротивление ограничения, исходя из из того что минимальное Rцепи = 5/0,3 = 16,67 Ом. Rогр=16,67-Rн. Если же R нагрузки не известно, то R ограничения не менее 16,67 Ом. Здесь возникает один нюанс связанный с номиналом. Все мы знаем, что круглых и треугольных кирпичей не бывает, все они имеют форму параллелепипида(прямоугольная форма) так как это стандарт. Аналогично и с сопротивлением, любое значения например в виде числа "ПИ"не бывает, есть набор стандартов, мы его приводим в таблице:

Далее смотрим какое отклонение допустимо в нашем случае и тем рядом пользуемся. например Е12, тогда при погрешности в 10% мы можем использовать сопротивление с номиналом 18 или 22 Ома. Отметим, что ряд Е12 содержит в себе 12 номиналов в диапазоне от 1 до 10, при этом данные значения применимы и для десятков, и сотен и тысяч, и так далее. Итак значение в 18 Ом допустимо "на грани" так как при максимальной погрешности в -10% мы получим значение в 16,2. Это на самом деле легко поправимо, просто измеряется тестером и смотрится подходит оно к нам. Именно этим и определяется стоимость электро компонентов, чем выше точность, тем выше стоимость, Есть так называемые прецизионные (высокоточные), элементы.

После того как подобрали, номинал сопротивления, подбираем мощность резистора. В ашем случае это будет 5*0,3=1,5 Вт.

Конечно же, чтобы схема проработала долго и качественно, нужно брать номинал по мощности не менее 1,5 Ватт, нам подходит 2 Ватта.

Следующие роли сопротивления:

2 Делитель напряжения (несколько сопротивлений)

3 Обратная связь по напряжению

4 Обратная связь по току.

5 Элемент RC цепи и ряд других.

Обязательно научимся рассчитывать и в других ролях номиналы сопротивления, но это уже отдельная история.

В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам определить сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.

Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.

Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.

SMD резисторы

SMT технология (от англ. Surface Mount Technology ) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких видов резисторов – SMD резистор.

SMD резисторы – это миниатюрные резисторы, предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

фото smd резисторов


Многофункциональный прибор для проверки транзисторов, диодов, тиристоров.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Размеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 25,4.

Размеры SMD резисторов и их мощность

таблица размеры SMD резисторов: 0201, 0420, 0603, 0805, 1206, 1210, 1218, 2010 и 2512

Следовательно исходя из приведенной выше таблицы по размеру корпуса можно определить мощность smd резистора.

Маркировка SMD резисторов

Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан особый способ маркировки позволяющий определить тот или иной номинал smd резистора. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо две цифры и букву, имеющая название EIA-96. Далее приводиться расшифровка smd резисторов.

Маркировка с 3 и 4 цифрами

В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.

Маркировка SMD резистора 3 цифрами

Маркировка SMD резистора 4 цифрами

Еще несколько примеров определения сопротивлений в рамках данной системы:

  • 450 = 45 х 10 0 равно 45 Ом
  • 273 = 27 х 10 3 равно 27000 Ом (27 кОм)
  • 7992 = 799 х 10 2 равно 79900 Ом (79,9 кОм)
  • 1733 = 173 х 10 3 равно 173000 Ом (173 кОм)

Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.

Маркировка SMD резистора менее 10 ом

Маркировка EIA-96

SMD резисторы повышенной точности (прецизионные) в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.

Маркировка EIA-96

Эта система маркировки состоит из трех элементов: две цифры указывают код номинала резистора, а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:

таблица Маркировка EIA-96

И в завершении для закрепления материала приведем примеры маркировки smd резисторов:

При работе с электрической схемой возникают ситуации, когда необходимо проверить сопротивление резистора. Это может понадобиться при проверке исправности или подгонке его величины под требуемое значение, которое отличается от номинального. Проверять сопротивление можно, не выпаивая резистор, или после его выпайки. В этой статье я расскажу, как правильно проверить резистор мультиметром.

Содержание статьи

Особенности измерения сопротивления резистора мультиметром

Для того, чтобы узнать сопротивление резистора, нужно воспользоваться обычным мультиметром. Принцип измерений основан на законе Ома, который гласит, что сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональной от сопротивления. Определение сопротивления происходит косвенным путем по формуле R = U/I. То есть, при известных напряжении и силе тока легко определить сопротивление.

Если ранее применялись стрелочные тестеры, то сегодня радиолюбители для проверки исправности резисторов чаще всего используют цифровые мультиметры с круговым переключателем, с помощью которого выставляется тип рабочего режима и диапазон измерений.

Как проверить резистор тестером

Цифровой тестер для проверки резисторов

Для измерения величины R переключатель выставляют в диапазон Ω. В комплекте к такому прибору идет один комплект щупов, имеющих разную расцветку. Принято красный щуп вставлять в отверстие com, а черный – VΩCX+.

Как проверить резистор не выпаивая: визуальная проверка

Процесс проверки резистора на работоспособность непосредственно на плате без полной выпайки является довольно трудоемким занятием, поэтому предварительно можно определить сгоревшую деталь визуально. Прежде всего осматривают корпус на предмет повреждений и сколов, надежности закрепления выводов.

О неисправностях свидетельствуют:

  • Потемнение корпуса. Сгоревший резистор имеет потемневшую поверхность – полностью или частично в виде колечек. Слабое потемнение не свидетельствует о неисправности, а только о перегреве, который не привел к полному выходу детали из строя.
  • Появление характерного запаха.
  • Стирание маркировки.
  • Наличие на плате сгоревших дорожек

Если условия позволяют, то неисправный резистор выпаивают, а на его место впаивают новый с таким же номиналом.

Внимание! Осмотр не гарантирует точного определения исправности, резистор может выглядеть как новый даже при оборванном контакте.

Подготовка мультиметра к проведению измерений: какие установить настройки

Перед измерениями прибор готовят к работе. Для этого его включают и концы щупов закорачивают между собой. Если на дисплее появляются нули, то прибор исправен и в цепи нет обрыва. На дисплее могут отражаться не нули, а доли Ома.

Как проверить резистор тестером

Подготовка прибора к проверке

При разомкнутых щупах на исправном мультиметре отображается цифра 1 и диапазон измерений. Кабельные шнуры подключают в соответствии с тем режимом, который вам необходим, – «Прозвонка» или «Измерение».

Как прозвонить резистор

Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.

Как прозвонить резистор

Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.

Как определить номинал резистора по маркировке

Для определения работоспособности желательно знать номинал. Как определить номинал резистора по цветовой маркировке, мы подробно рассказали в этой статье.

Немного дополним информацию о способах маркировки SMD резисторов. Из-за малого размера на них практически невозможно нанести традиционную цветовую маркировку, поэтому предусмотрена особая система идентификации. В обозначение входят: 3 или 4 цифры, 2 цифры и буква.

В первой системе первые две или три цифры характеризуют численное значение резистора, а последняя является показателем множителя, обозначающим степень, в которую возводят 10 для получения окончательного результата. Если сопротивление ниже 1 Ом, то для определения местонахождения запятой служит символ R. Например, сопротивление 0,05 Ом выглядит как 0R05.

Высокоточные (прецизионные) резисторы имеют очень малые размеры, поэтому нуждаются в компактной маркировке. Она состоит из трех цифр – первые две являются кодом, а третья – множителем. Каждому коду соответствует трехзначное значение сопротивления, определяемое по таблице. Такая маркировка выполняется в соответствии со стандартом EIA-96, разработанным для резисторов с допуском по сопротивлению не выше 1%.

Таблица кодов для прецизионных резисторов

Код Значение Код Значение Код Значение Код Значение Код Значение Код Значение
01 100 17 147 33 215 49 316 65 464 81 681
02 102 18 150 34 221 50 324 66 475 82 698
03 105 19 154 35 226 51 332 67 487 83 715
04 107 20 158 36 232 52 340 68 499 84 732
05 110 21 162 37 237 53 348 69 511 85 750
06 113 22 165 38 243 54 357 70 523 86 768
07 115 23 169 39 249 55 365 71 536 87 787
08 118 24 174 40 255 56 374 72 549 88 806
09 121 25 178 41 261 57 383 73 562 89 825
101242618242267583927457690845
111272718743274594027559091866
121302819144280604127660492887
131332919645287614227761993909
141373020046294624327863494931
151403120547301634437964995953
161433221048309644538066596976

Проверка сопротивления постоянного резистора

После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.

Как проверить сопротивление резистора

Как проверяют сопротивление резистора

При обрыве цепи на экране горит «1».

Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера.

Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.

СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.

Проверка переменного резистора

Проверка без выпайки из схемы переменных резисторов, имеющих как минимум три ножки, более сложная, по сравнению с проверкой постоянного резистора.

Как проверить сопротивление переменного резистора

Наиболее легким вариантом является положение резистора в самом начале схемы, поскольку одна из крайних «ножек» подключается через емкость. Поэтому по постоянному току приравнивается к свободно висящей. Такой способ измерения позволяет определить общее сопротивление, которое присутствует между крайними контактами.

Провести точные измерения сопротивления резистора позволяет его выпайка из схемы. Аналогично выпаянной, проверяется и новая деталь. Этапы измерений:


Всем приветы! Охлаждение ПК дело непростое, а иногда неблагодарное. Баланс между шумом и температурой иногда найти затруднительно. Могут быть разные варианты: шумно/горячо, шумно/холодно, тихо/горячо и тихо/холодно. И последний вариант, как правило требует либо дополнительных денежных вливаний, либо долгой и упорной настройки, например в виде занижения напряжения, при сохранении частоты и стабильности. Но иногда бывают и ситуации, когда просто собираешь сборную солянку из кучи подручных кулеров и вентиляторов и вся эта братия шумит, аки взлетающий самолёт. Поэтому, вентиляторы нужно (если требуется) душить и на помощь приходят резисторы и реобасы, вот о первых и пойдет речь. Встречаем, резистор для 3-пинового компьютерного вентилятора! Погнали!

Посылка шла около месяца. В почтовом пакете, был пакетик с клейкой полосой. А внутри насыпном наши 10 резисторов.



















Если верить маркировке резистора, то у нас тут 27 Ом, в описании 47.3 Ом: Замерил тестером получил 25.9 Ом, но тестер престарелый, может и погрешность измеряемого и измерителя в одну сторону клонят.


Я также заказывал и для 4-пин вентилей, но они до сих пор не пришли. Изначально планировал сделать обзор на оба сразу, но теперь не знаю, придут ли другие.

Важнее то, что пришли именно на 3 пина, т.к. 4-пиновые чаще всего без проблем регулируются материнками. А вот с 3-мя бывают проблемы. До сих пор встречаются дешёвые материнские платы, которые не умеют регулировать обороты на 3-pin вентиляторах. Если 4-пин там ШИМ регулировка, то в 3-пин более грубая, за счёт напряжения.

Если вы подключите к 4-пин разъёму на материнской плате, 3-пин вентилятор, то ШИМ регулировка работать не будет, т.к. и не должна, в таком случае в BIOS'e материнской платы может быть настройка метод регулировки, часто там 3 пункта «PWM» — родная ШИМ регулировка, «DC» или «Voltage» — регулировка за счёт изменения напряжения, «Auto» — само думает, что с вашим вентилем делать. Например:




4-пин вентиляторы в свою очередь умеют регулировать обороты за счёт напряжения, у них просто напросто нет выбора. И количество оборотов и характер их изменения может отличаться от ШИМ регулировки, поэтому эксперименты по поиску идеального соотношения шум/температура лягут на ваши плечи.

Некоторые вентиляторы при снижении напряжения противно гудят. Этим страдали корпусные вентиляторы с подсветкой, которые были в комплекте с корпусом Zalman Z9 Plus. В тихой комнате стоял очень неприятный «зуд», который проникал в голову и ты не знал, куда от него деться. Поэтому выявлять эту беду придется опять таки вам.

Про количество вентиляторов в корпусе, нужны ли они вообще там и про грамотное направление потоков воздуха внутри мы говорить не будем. Это тема отдельного холивара, мы просто посмотрим, протестируем и обсудим небольшую штуку, для снижения оборотов и тем самым снижения шума.

Вернёмся к резисторам.

Подобные резисторы иногда идут к вентиляторам в комплекте. И опять же иногда сильно выручают. Можно шумному «карлсону» немного сбить напряжения, тем самым он скинет оборотов и соответственно станет тише.

Также можно попробовать поставить 2-3 резистора подряд, но необходимо проверить, чтобы вентилятор смог стартовать. У разных вентиляторов порог старта разный, поэтому проверять обязательно.

Перейдем собственно к тестированию. Стенд у нас все тот же. Феном и кулер Залман с родным 4-пин вентилятором, который до сих пор жив и не издает лишних звуков. К слову сказать к нему шел резистор в комплекте. К этому стенду будем подключать вентиляторы.

В качестве подопытных возьмём 3 разных вентилятора:


1-й 80мм — с кулера от 939 сокета:


2-й 120мм — какой-то корпусный CoolerMaster.


3-й 140мм — корпусный с Fractal Design Define R4.

Узнавать об оборотах будем через AIDA64, вентиляторы подключались к материнской плате к разъему SYS_FAN, все регулировки оборотов выключены.

Без резистора:

1 резистор:

2 резистора:

3 резистора:

Без резистора:

1 резистор:

2 резистора:

Далее каждый резистор уменьшал все меньшее и меньшее количество оборотов. Потом я соорудил вот такую вот хрень:


10 обозреваемый резисторов + 1 какой у меня был. Вентилятор стартовал, но ооооочень медленно, обороты ни одна программа не фиксировала, но он крутился и не издавал посторонних звуков.

Без резистора:

1 резистор:

2 резистора:

Далее я подключил через разветвитель-двойничок 2 одинаковых вентилятора из того же корпуса:

1 резистор:

2 резистора:

3 резистора:

Обороты в целом чуть пониже, но режутся все также хорошо.

Посторонних шумов нет.

В общем и целом штука годная, иногда даже необходимая. Обороты режет, не греется. Стоит недорого, как за готовое решение. Тут не надо ничего паять и разбирать, к тому же при выходе из строя или просто замене вентилятора, мы просто отключим резистор и все, выпаивать не придется. Будем надеяться, что на 4-пина все таки придут и попробуем их в деле.

Как вариант, можно купить переменный резистор и впаять вместо того, что есть. Так мы получим нужные обороты с помощью одного только «устройства» и избавимся от гирлянды. И получим мы мини реобас, главное не забудьте про мощность. А если впаять его в двойник/тройник, то получим регулировку сразу всех подключенных к нему вентиляторов и будет аналог Zalmam Fan Mate 2. Это будет в любом случае дешевле, чем покупать настоящий реобас за $10/$20/$40.

Читайте также: