Как расшифровать хэш игры нвути

Обновлено: 06.07.2024

Enter your hashes here and we will attempt to decrypt them for free online.

What is this tool

Hashes.com is a hash lookup service. This allows you to input an MD5, SHA-1, Vbulletin, Invision Power Board, MyBB, Bcrypt, Wordpress, SHA-256, SHA-512, MYSQL5 etc hash and search for its corresponding plaintext ("found") in our database of already-cracked hashes.

It's like having your own massive hash-cracking cluster - but with immediate results!

We have been building our hash database since August 2007.

We are not cracking your hash in realtime - we're just caching the hard work of many cracking enthusiasts over the years.

In cryptography, SHA-1 (Secure Hash Algorithm 1) is a cryptographic hash function which takes an input and produces a 160-bit (20-byte) hash value known as a message digest – typically rendered as a hexadecimal number, 40 digits long. It was designed by the United States National Security Agency, and is a U.S. Federal Information Processing Standard. Since 2005 SHA-1 has not been considered secure against well-funded opponents, and since 2010 many organizations have recommended its replacement by SHA-2 or SHA-3. Microsoft, Google, Apple and Mozilla have all announced that their respective browsers will stop accepting SHA-1 SSL certificates by 2017. SHA1 Decrypt.

The MySQL5 hashing algorithm implements a double binary SHA-1 hashing algorithm on a users password. MySQL Decrypt.

NT (New Technology) LAN Manager (NTLM) is a suite of Microsoft security protocols that provides authentication, integrity, and confidentiality to users. NTLM is the successor to the authentication protocol in Microsoft LAN Manager (LANMAN), an older Microsoft product. The NTLM protocol suite is implemented in a Security Support Provider, which combines the LAN Manager authentication protocol, NTLMv1, NTLMv2 and NTLM2 Session protocols in a single package. Whether these protocols are used or can be used on a system is governed by Group Policy settings, for which different versions of Windows have different default settings. NTLM passwords are considered weak because they can be brute-forced very easily with modern hardware. NTLM Decrypt.

SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by the United States National Security Agency (NSA). They are built using the Merkle–Damgård structure, from a one-way compression function itself built using the Davies–Meyer structure from a (classified) specialized block cipher. SHA-2 includes significant changes from its predecessor, SHA-1. The SHA-2 family consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 bits: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256. SHA256 Decrypt.

быстро расшифровать хеш

Нередко бывает нужно узнать пароль, имея на руках только хеш. Для перебора вариантов можно использовать свой компьютер, но гораздо быстрее воспользоваться уже существующей базой данных. Даже в общедоступных базах содержатся десятки миллионов пар хеш — пароль, и поиск по ним через облачный сервис занимает считаные секунды.

В мире существует несколько зеттабайт цифровых данных, но далеко не вся эта информация уникальна: повторы разбросаны по миллиардам носителей и серверов. Независимо от типа данных, для работы с ними требуется решать одни и те же принципиальные задачи. Это снижение избыточности за счет частичного устранения повторов (дедупликация), проверка целостности, инкрементное создание резервных копий и авторизация пользователей. Конечно, последний аспект интересует нас больше всего, однако все эти технические приемы базируются на общих методах обработки данных с использованием хеширования. Существуют облачные сервисы, которые позволяют использовать эту процедуру быстрее — с хорошо известными целями.

Обычно хеши записываются в шестнадцатеричном виде. Так их гораздо удобнее сравнивать на вид, а запись получается в четыре раза короче двоичной. Самые короткие хеши получаются при использовании Adler-32, CRC32 и других алгоритмов с длиной дайджеста 32 бита. Самые длинные — у SHA-512. Кроме них, существует с десяток других популярных хеш-функций, и большинство из них способно рассчитывать дайджесты промежуточной длины: 160, 224, 256 и 384 бита. Попытки создать функцию с увеличенной длиной хеша продолжаются, поскольку чем длиннее дайджест, тем больше разных вариантов может сгенерировать хеш-функция.

Предельный объем исходных данных, который может обработать хеш-функция, определяется формой их представления в алгоритме. Обычно они записываются как целое 64-битное число, поэтому типичный лимит составляет 264 бит минус единица, или два эксабайта. Такое ограничение пока не имеет практической значимости даже для очень крупных дата-центров.

Уникальность хеша — одно из его ключевых свойств, определяющее криптостойкость системы шифрования. Дело в том, что число вариантов возможных паролей теоретически бесконечно, а вот число хешей всегда конечное, хоть и очень большое. Дайджесты любой хеш-функции будут уникальны лишь до определенной степени. Степени двойки, если быть точным. К примеру, алгоритм CRC32 дает множество всего из 232 вариантов, и в нем трудно избежать повторений. Большинство других функций использует дайджесты длиной 128 или 160 бит, что резко увеличивает число уникальных хешей — до 2’28 и 2160 соответственно.

Совпадение хешей от разных исходных данных (в том числе паролей) называют коллизией. Она может быть случайной (встречается на больших объемах данных) или псевдослучайной — используемой в целях атаки. На эффекте коллизии основан взлом разных криптографических систем — в частности, протоколов авторизации. Все они сначала считают хеш от введенного пароля или ключа, а затем передают этот дайджест для сравнения, часто примешивая к нему на каком-то этапе порцию псевдослучайных данных, или используют дополнительные алгоритмы шифрования для усиления защиты. Сами пароли нигде не сохраняются: передаются и сравниваются только их дайджесты. Здесь важно то, что после хеширования абсолютно любых паролей одной и той же функцией на выходе всегда получится дайджест одинакового и заранее известного размера.

Псевдореверс

Провести обратное преобразование и получить пароль непосредственно из хеша невозможно в принципе, даже если очистить его от соли, поскольку хеширование — это однонаправленная функция. Глядя на полученный дайджест, нельзя понять ни объем исходных данных, ни их тип. Однако можно решить сходную задачу: сгенерировать пароль с таким же хешем. Из-за эффекта коллизии задача упрощается: возможно, ты никогда не узнаешь настоящий пароль, но найдешь совершенно другой, дающий после хеширования по этому же алгоритму требуемый дайджест.

Методы оптимизации расчетов появляются буквально каждый год. Ими занимаются команды HashClash, Distributed Rainbow Table Generator и других международных проектов криптографических вычислений. В результате на каждое короткое сочетание печатных символов или вариант из списка типичных паролей хеши уже вычислены. Их можно быстро сравнить с перехваченным, пока не найдется полное совпадение.

Раньше на это требовались недели или месяцы процессорного времени, которые в последние годы удалось сократить до нескольких часов благодаря многоядерным процессорам и перебору в программах с поддержкой CUDA и OpenCL. Админы нагружают расчетами таблиц серверы во время простоя, а кто-то арендует виртуальный кластер в Amazon ЕС2.

Поиск хеша гуглом

Далеко не все сервисы готовы предоставить услугу поиска паролей по хешам бесплатно. Где-то требуется регистрация и крутится тонна рекламы, а на многих сайтах можно встретить и объявления об услуге платного взлома. Часть из них действительно использует мощные кластеры и загружает их, ставя присланные хеши в очередь заданий, но есть и обычные пройдохи. Они выполняют бесплатный поиск за деньги, пользуясь неосведомленностью потенциальных клиентов.

Вместо того чтобы рекламировать здесь честные сервисы, я предложу использовать другой подход — находить пары хеш — пароль в популярных поисковых системах. Их роботы-пауки ежедневно прочесывают веб и собирают новые данные, среди которых есть и свежие записи из радужных таблиц.

Как расшифровать хеш

Как расшифровать хеш

Поэтому для начала просто напиши хеш в поисковой строке Google. Если ему соответствует какой-то словарный пароль, то он (как правило) отобразится среди результатов поисковой выдачи уже на первой странице. Единичные хеши можно погуглить вручную, а большие списки будет удобнее обработать с помощью скрипта BozoCrack

Искать XOR вычислять

Популярные алгоритмы хеширования работают настолько быстро, что к настоящему моменту удалось составить пары хеш — пароль почти для всех возможных вариантов функций с коротким дайджестом. Параллельно у функций с длиной хеша от 128 бит находят недостатки в самом алгоритме или его конкретных реализациях, что сильно упрощает взлом.

В девяностых годах крайне популярным стал алгоритм MD5, написанный Рональдом Ривестом. Он стал широко применяться при авторизации пользователей на сайтах и при подключении к серверам клиентских приложений. Однако его дальнейшее изучение показало, что алгоритм недостаточно надежен. В частности, он уязвим к атакам по типу псевдослучайной коллизии. Иными словами, возможно преднамеренное создание другой последовательности данных, хеш которой будет в точности соответствовать известному.

kak-vhislit-hash

Изнурительную атаку перебором устраивать придется только в случае действительно сложных паролей (состоящих из большого набора случайных символов) и для хеш-функций с дайджестами большой длины (от 160 бит), у которых пока не нашли серьезных недостатков. Огромная масса коротких и словарных паролей сегодня вскрывается за пару секунд с помощью онлайн-сервисов.

Расшифровка хеша онлайн

1. Проект «Убийца хешей» существует уже почти восемь лет. Он помогает вскрыть дайджесты MD5, SHA-160 и NTLM. Текущее количество известных пар составляет 43,7 миллиона. На сайт можно загружать сразу несколько хешей для параллельного анализа. Пароли, содержащие кириллицу и символы других алфавитов, кроме английского, иногда находятся, но отображаются в неверной кодировке. Еще здесь проводится постоянный конкурс взлома паролей по их хешам и доступны утилиты для облегчения этой задачи — например, программы для объединения списков паролей, их переформатирования и устранения повторов.

Hash Killer не дружит с кириллицей, но знает кириллические пароли.

Сервис Hashkiller

Расшифровка хэш онлайн

«Убийца хешей» нашел три пароля из пяти за пол секунды.

hashkiller

Расшифровать хеш онлайн

2. Крэк-станция поддерживает работу с хешами практически всех реально используемых типов. LM, NTLM, MySQL 4.1+, MD2/4/5 + MD5-half, SHA-160/224/256/384/512, ripeMD160 и Whirlpool. За один раз можно загрузить для анализа до десяти хешей. Поиск проводится по индексированной базе. Для MD5 ее объем составляет 15 миллионов пар (около 190 Гб) и еще примерно по 1,5 миллиона для каждой другой хеш-функции.

Онлайн сервис Crackstation

По уверениям создателей в базу включены из Англоязычной версии Википедии и большинство популярных паролей, собранных из общедоступных списков. Среди них есть и хитрые варианты со сменой регистра, литспиком, повтором символов, зеркалированием и прочими трюками. Однако случайные пароли даже из пяти символов становятся проблемой — в моем тесте половина из них не была найдена даже по LM-хешам.

3. CloudCracker бесплатный сервис мгновенного поиска паролей по хешам MD5 и SHA-1. Тип дайджеста определяется автоматически по его длине.

CloudCracker

CloudCracker

Пока CloudCracker находит соответствия только хешам некоторых английских слов и распространенных паролей, вроде admin123. Даже короткие пароли из случайных наборов символов типа D358 он не восстанавливает по дайджесту MD5.

MD5Decode

MD5Decode

Если число проходов не указано, то функция вычисляет хеш в один проход. Собственного поиска на сайте пока нет, но пароль или его хеш можно написать прямо в адресной строке браузера, добавив его после адреса сайта и префикса /encrypt/.

MD5Decrypt

MD5Decrypt

MD5Decrypt находит составные словарные пароли, но хеши на анализ при ни мает только по одному

6. Еще один сайт, MD5Lab получил хостинг у CloudFare в Сан-Франциско. Искать по нему пока неудобно, хотя база растет довольно быстро. Просто возьми на заметку.

Строго говоря, к хеш-функциям в криптографии предъявляются более высокие требования, чем к контрольным суммам на основе циклического кода. Однако эти понятия на практике часто используют как синонимы.

Универсальный подход

Среди десятка хеш-функций наиболее популярны MD5 и SHA-1, но точно такой же подход применим и к другим алгоритмам. К примеру, файл реестра SAM в ОС семейства Windows по умолчанию хранит два дайджеста каждого пароля: LM-хеш (устаревший тип на основе алгоритма DES) и NT-хеш (создается путем преобразования юникодной записи пароля по алгоритму MD4). Длина обоих хешей одинакова (128 бит), но стойкость LM значительно ниже из-за множества упрощений алгоритма.

Постепенно оба типа хешей вытесняются более надежными вариантами авторизации, но многие эту старую схему используют в исходном виде до сих пор. Скопировав файл SAM и расшифровав его системным ключом из файла SYSTEM, атакующий получает список локальных учетных записей и сохраненных для них контрольных значений — хешей.

Аналогичная проблема существует и в других системах авторизации. Например, в протоколах WPA/WPA2, широко используемых при создании защищенного подключения по Wi-Fi. При соединении между беспроводным устройством и точкой доступа происходит стандартный обмен начальными данными, включающими в себя handshake. Во время «рукопожатия» пароль в открытом виде не передается, но в эфир отправляется ключ, основанный на хеш-функ-ции. Нужные пакеты можно перехватить, переключив с помощью модифицированного драйвера адаптер Wi-Fi в режим мониторинга. Более того, в ряде случаев можно не ждать момента следующего подключения, а инициализировать эту процедуру принудительно, отправив широковещательный запрос deauth всем подключенным клиентам. Уже в следующую секунду они попытаются восстановить связь и начнут серию «рукопожатий».

Сохранив файл или файлы с хендшейком, можно выделить из них хеш пароля и либо узнать сам пароль, либо найти какой-то другой, который точка доступа примет точно так же. Многие онлайн-сервисы предлагают провести анализ не только чистого хеша, но и файла с записанным хендшейком. Обычно требуется указать файл рсар и SSID выбранной точки доступа, так как ее идентификатор используется при формировании ключа PSK.

Проверенный ресурс CloudCracker о котором в последние годы писали все кому не лень, по-прежнему хочет за это денег. Gpuhash принимает биткоины. Впрочем, есть и бесплатные сайты с подобной функцией. Например, DarklRCop.

Пока с помощью онлайн-сервисов и радужных таблиц находятся далеко не все пары хеш — пароль. Однако функции с коротким дайджестом уже побеждены, а короткие и словарные пароли легко обнаружить даже по хешам SHA-160. Особенно впечатляет мгновенный поиск паролей по их дайджестам с помощью Гугла. Это самый простой, быстрый и совершенно бесплатный вариант.

Этичный хакинг и тестирование на проникновение, информационная безопасность

Что такое хеши и как они используются

Хеш-сумма (хеш, хеш-код) — результат обработки неких данных хеш-функцией (хеширования).

Это свойство хеш-функций позволяет применять их в следующих случаях:

Одним из применений хешов является хранение паролей. Идея в следующем: когда вы придумываете пароль (для веб-сайта или операционной системы) сохраняется не сам пароль, а его хеш (результат обработки пароля хеш-функцией). Этим достигается то, что если система хранения паролей будет скомпрометирована (будет взломан веб-сайт и злоумышленник получит доступ к базе данных паролей), то он не сможет узнать пароли пользователей, поскольку они сохранены в виде хешей. Т.е. даже взломав базу данных паролей он не сможет зайти на сайт под учётными данными пользователей. Когда нужно проверить пароль пользователя, то для введённого значения также рассчитывается хеш и система сравнивает два хеша, а не сами пароли.

По этой причине пентестер может столкнуться с необходимостью работы с хешами. Одной из типичных задач является взлом хеша для получения пароля (ещё говорят «пароля в виде простого текста» - поскольку пароль в виде хеша у нас и так уже есть). Фактически, взлом заключается в подборе такой строки (пароля), которая будет при хешировании давать одинаковое значение со взламываемым хешем.

Для взлома хешей используется, в частности, Hashcat. Независимо от выбранного инструмента, необходимо знать, хеш какого типа перед нами.

Как определить тип хеша

Существует большое количество хешей. Некоторые из них являются универсальными и применяются различными приложениями, например, MD5, SHA1, CRC8 и другие. Некоторые хеши применяются только в определённых приложениях (MySQL, vBulletin) и протоколами.

Кроме популярных хешей, разработчики могут использовать различные сочетания универсальных хешей (например, посчитать хеш с помощью MD5, а затем для полученной строки получить хеш SHA1), либо итерированные (с повторением) хеши (например, для пароля рассчитывается MD5 хеш, затем для полученной строки вновь рассчитывается MD5 хеш, затем для полученной строки вновь считается MD5 – и так тысячу раз).

Применительно к взлому, иногда хешем называют сформированную определённым образом строку или файл, которые не применяются целевым приложением, но которые были рассчитаны исходя из исходных данных так, что позволяют взломать пароль целевого файла или протокола.

Пример такой строки для WinZip: $zip2$*0*3*0*b5d2b7bf57ad5e86a55c400509c672bd*d218*0**ca3d736d03a34165cfa9*$/zip2$

Пример строки для взлома пароля файла PDF 1.7 Level 8 (Acrobat 10 - 11): $pdf$5*6*256*-4*1*16*381692e488413f5502fa7314a78c25db*48*e5bf81a2a23c88f3dccb44bc7da68bb5606b653b733bcf9adaa5eb2c8ccf53abba66539044eb1957eda68469b1d0b9b5*48*b222df06deb308bf919d13447e688775fdcab972faed2c866dc023a126cb4cd4bbffab3683ecde243cf8d88967184680

Обычно пентестеру известен источник хеша и он знает его тип. Но бывают исключения. В этой ситуации необходимо «угадать» какой хеш перед нами.

Это можно сделать сравнивая исходный хеш с образцами. Либо исходя из количества символов и используемого набора символов.

Также можно использовать инструменты, которые значительно ускоряют этот процесс. Программами для определения типа хеша являются hashID и HashTag.

hashID

Эта программа по умолчанию уже установлена в Kali Linux. Она идентифицирует различные типы хешей, используемых для шифрования данных, в первую очередь, паролей.

hashID – это инструмент, написанный на Python 3, который поддерживает идентификацию более 220 уникальных типов хешей используя регулярные выражения.

Использование программы очень простое:

Пара важных замечаний:

  • хеш всегда лучше указывать в одинарных кавычках (а не без кавычек и не в двойных)
  • имеется опция -m, при использовании которой выводится информация о режиме Hashcat

Хеш режимы Hashcat – это условное обозначение типа хеша, которое необходимо указать с опцией -m, --hash-type.

К примеру, мне необходимо идентифицировать хеш $S$C33783772bRXEx1aCsvY.dqgaaSu76XmVlKrW9Qu8IQlvxHlmzLf:


Как можно увидеть по скриншоту, это Drupal > v7.x в Hashcat для взлома данного хеша необходимо указать режим 7900.

Идентифицируем хеш $1$VnG/6ABB$t6w9bQFxvI9tf0sFJf2TR.:

Получаем сразу несколько вариантов:


MD5cryp – это алгоритм, который вызывает тысячу раз стандартный MD5, для усложнения процесса.

Для справки: MD5 использовался для хеширования паролей. В системе UNIX каждый пользователь имеет свой пароль и его знает только пользователь. Для защиты паролей используется хеширование. Предполагалось, что получить настоящий пароль можно только полным перебором. При появлении UNIX единственным способом хеширования был DES (Data Encryption Standard), но им могли пользоваться только жители США, потому что исходные коды DES нельзя было вывозить из страны. Во FreeBSD решили эту проблему. Пользователи США могли использовать библиотеку DES, а остальные пользователи имеют метод, разрешённый для экспорта. Поэтому в FreeBSD стали использовать MD5 по умолчанию. Некоторые Linux-системы также используют MD5 для хранения паролей.

Ещё один хеш $6$q8C1F6tv$zTP/eEVixqyQBEfsSbTidUJfnaE2ojNIpTwTHava/UhFORv3V4ehyTOGdQEoFo1dEVG6UcXwhG.UHvyQyERz01:


Программа говорит, что это SHA-512 Crypt – т.е. SHA512 (Unix).

HashTag

HashTag – это инструмент на python, который разбирает и идентифицирует различные хеши паролей на основе их типа. HashTag поддерживает определение более 250 типов хешей и сопоставляет их с более чем 110 режимами hashcat. HashTag способен идентифицировать единичный хеш, разобрать единичный файл и определить хеши внутри него или обойти директорию и все поддиректории в поисках потенциальных файлов хешей и идентифицировать все найденные хеши.

Т.е. это аналогичная предыдущей программа.

По умолчанию в Kali Linux она отсутствует, поэтому требуется её скачать:

Идентифицируем те же самые хеши:




Как видим, результаты аналогичны.

Примеры хешей

Большое количество классических хешей, а также хешей, специально составленных для взлома пароля и хеш-файлов вы найдёте здесь.

На той странице вы можете:

  • попытаться идентифицировать свой хеш по образцам
  • найти ошибку в составленном хеше для взлома пароля, сравнив его с правильным форматом
  • проверить работу программ по идентификации хеша

Программы hashID и HashTag не всегда правильно идентифицируют хеш (по крайней мере, в явных ошибках замечена hashID).

К примеру, меня интересует хеш c73d08de890479518ed60cf670d17faa26a4a71f995c1dcc978165399401a6c4:53743528:


Это явно ошибочный результат, поскольку соль после двоеточия будто бы была отпрошена при идентификации хеша.

Получаем более правильный результат:


В действительности это sha256($pass.$salt).

Как рассчитать хеш (контрольную сумму)

В Linux имеются программы для расчёта и сверки популярных хешей:

Все эти программы установлены по умолчанию в большинстве дистрибутивов Linux, они позволяют рассчитать хеши для файлов или для строк.

Применение всех этих программ похожее – нужно указать имя файла, либо передать по стандартному вводу строку.

Если для расчёта хеша строки вы используете echo, то крайне важно указывать опцию -n, которая предотвращает добавление символа новой строки – иначе каждый хеш для строки будет неверным!

Пример подсчёта хеша SHA1 для строки test:

Ещё один способ передачи строки без добавления конечного символа newline

Этот же результат можно получить следующей конструкцией:

Программы для вычисления различных хешей

Кроме перечисленных встроенных в Linux утилит, имеются другие программы, способные подсчитывать контрольные суммы. Часто они поддерживают сразу несколько алгоритмов хеширования, могут иметь дополнительные опции ввода и вывода (поддерживают различные форматы и кодировки), некоторые из них подготовлены для выполнения аудита файловой системы (выявления несанкционированных изменений в файлах).

Список некоторых популярных программ для вычисления хешей:

Думаю, используя русскоязычную справку с примерами использования, вы без труда сможете разобраться в этих программах самостоятельно.

Последовательное хеширование с использованием трубы (|)

Но это неправильный вариант. Поскольку результатом выполнения в любом случае является непонятная строка из случайных символов, трудно не только обнаружить ошибку, но даже понять, что она есть. А ошибок здесь сразу несколько! И каждая из них ведёт к получению абсолютно неправильных данных.

Даже очень бывалые пользователи командной строки Linux не сразу поймут в чём проблема, а обнаружив первую проблему не сразу поймут, что есть ещё одна.

Очень важно помнить, что в строке вместе с хешем всегда выводится имя файла, поэтому выполняя довольно очевидную команду вроде следующей:

Выше уже рассмотрено, как из вывода удалять « -», кажется, теперь всё должно быть в порядке:

Давайте разобьём это действие на отдельные команды:

Второй этап хеширования:

Это и есть правильный ответ.

Проблема в том, что когда выводится промежуточный хеш, к нему добавляется символ новой строки, и второй хеш считается по этой полной строке, включающей невидимый символ!

Используя printf можно вывести результат без конечного символа новой строки:

Результат вновь правильный:

С printf не все дружат и проблематично использовать рассмотренную конструкцию если нужно хешировать более трёх раз, поэтому лучше использовать tr:

Вновь правильный результат:

Или даже сделаем ещё лучше – с программой awk будем использовать printf вместо print (это самый удобный и короткий вариант):

Как посчитать итерированные хеши

Итерация – это повторное применение какой-либо операции. Применительно к криптографии, итерациями называют многократное хеширование данных, которые получаются в результате хеширования. Например, для исходной строки в виде простого текста рассчитывается SHA1 хеш. Полученное значение вновь хешируется – рассчитывается SHA1 хеш и так далее много раз.

Итерация – очень эффективный метод для борьбы с радужными таблицами и с полным перебором (брут-форсом), поэтому в криптографии итерированные хеши очень популярны.

Криптографические хеш-функции — незаменимый и повсеместно распространенный инструмент, используемый для выполнения целого ряда задач, включая аутентификацию, защиту файлов и даже обнаружение зловредного ПО. Как они работают и где применяются?


Криптографические хеш-функции — незаменимый и повсеместно распространенный инструмент, используемый для выполнения целого ряда задач, включая аутентификацию, проверку целостности данных, защиту файлов и даже обнаружение зловредного ПО. Существует масса алгоритмов хеширования, отличающихся криптостойкостью, сложностью, разрядностью и другими свойствами. Считается, что идея хеширования принадлежит сотруднику IBM, появилась около 50 лет назад и с тех пор не претерпела принципиальных изменений. Зато в наши дни хеширование обрело массу новых свойств и используется в очень многих областях информационных технологий.

Что такое хеш?

Если коротко, то криптографическая хеш-функция, чаще называемая просто хешем, — это математический алгоритм, преобразовывающий произвольный массив данных в состоящую из букв и цифр строку фиксированной длины. Причем при условии использования того же типа хеша длина эта будет оставаться неизменной, вне зависимости от объема вводных данных. Криптостойкой хеш-функция может быть только в том случае, если выполняются главные требования: стойкость к восстановлению хешируемых данных и стойкость к коллизиям, то есть образованию из двух разных массивов данных двух одинаковых значений хеша. Интересно, что под данные требования формально не подпадает ни один из существующих алгоритмов, поскольку нахождение обратного хешу значения — вопрос лишь вычислительных мощностей. По факту же в случае с некоторыми особо продвинутыми алгоритмами этот процесс может занимать чудовищно много времени.

Как работает хеш?

Например, мое имя — Brian — после преобразования хеш-функцией SHA-1 (одной из самых распространенных наряду с MD5 и SHA-2) при помощи онлайн-генератора будет выглядеть так: 75c450c3f963befb912ee79f0b63e563652780f0. Как вам скажет, наверное, любой другой Брайан, данное имя нередко пишут с ошибкой, что в итоге превращает его в слово brain (мозг). Это настолько частая опечатка, что однажды я даже получил настоящие водительские права, на которых вместо моего имени красовалось Brain Donohue. Впрочем, это уже другая история. Так вот, если снова воспользоваться алгоритмом SHA-1, то слово Brain трансформируется в строку 97fb724268c2de1e6432d3816239463a6aaf8450. Как видите, результаты значительно отличаются друг от друга, даже несмотря на то, что разница между моим именем и названием органа центральной нервной системы заключается лишь в последовательности написания двух гласных. Более того, если я преобразую тем же алгоритмом собственное имя, но написанное уже со строчной буквы, то результат все равно не будет иметь ничего общего с двумя предыдущими: 760e7dab2836853c63805033e514668301fa9c47.

Впрочем, кое-что общее у них все же есть: каждая строка имеет длину ровно 40 символов. Казалось бы, ничего удивительного, ведь все введенные мною слова также имели одинаковую длину — 5 букв. Однако если вы захешируете весь предыдущий абзац целиком, то все равно получите последовательность, состоящую ровно из 40 символов: c5e7346089419bb4ab47aaa61ef3755d122826e2. То есть 1128 символов, включая пробелы, были ужаты до строки той же длины, что и пятибуквенное слово. То же самое произойдет даже с полным собранием сочинений Уильяма Шекспира: на выходе вы получите строку из 40 букв и цифр. При всем этом не может существовать двух разных массивов данных, которые преобразовывались бы в одинаковый хеш.

Вот как это выглядит, если изобразить все вышесказанное в виде схемы:

Как работает хеширование

Для чего используется хеш?

Отличный вопрос. Однако ответ не так прост, поскольку криптохеши используются для огромного количества вещей.

Для нас с вами, простых пользователей, наиболее распространенная область применения хеширования — хранение паролей. К примеру, если вы забыли пароль к какому-либо онлайн-сервису, скорее всего, придется воспользоваться функцией восстановления пароля. В этом случае вы, впрочем, не получите свой старый пароль, поскольку онлайн-сервис на самом деле не хранит пользовательские пароли в виде обычного текста. Вместо этого он хранит их в виде хеш-значений. То есть даже сам сервис не может знать, как в действительности выглядит ваш пароль. Исключение составляют только те случаи, когда пароль очень прост и его хеш-значение широко известно в кругах взломщиков. Таким образом, если вы, воспользовавшись функцией восстановления, вдруг получили старый пароль в открытом виде, то можете быть уверены: используемый вами сервис не хеширует пользовательские пароли, что очень плохо.

Еще один пример, покруче. Не так давно по тематическим сайтам прокатилась новость о том, что популярный облачный сервис Dropbox заблокировал одного из своих пользователей за распространение контента, защищенного авторскими правами. Герой истории тут же написал об этом в твиттере, запустив волну негодования среди пользователей сервиса, ринувшихся обвинять Dropbox в том, что он якобы позволяет себе просматривать содержимое клиентских аккаунтов, хотя не имеет права этого делать.

Впрочем, необходимости в этом все равно не было. Дело в том, что владелец защищенного копирайтом контента имел на руках хеш-коды определенных аудио- и видеофайлов, запрещенных к распространению, и занес их в список блокируемых хешей. Когда пользователь предпринял попытку незаконно распространить некий контент, автоматические сканеры Dropbox засекли файлы, чьи хеши оказались в пресловутом списке, и заблокировали возможность их распространения.

Как при помощи хеша ловить вирусы?

Криптографические хеш-функции также могут использоваться для защиты от фальсификации передаваемой информации. Иными словами, вы можете удостовериться в том, что файл по пути куда-либо не претерпел никаких изменений, сравнив его хеши, снятые непосредственно до отправки и сразу после получения. Если данные были изменены даже всего на 1 байт, хеш-коды будут отличаться, как мы уже убедились в самом начале статьи. Недостаток такого подхода лишь в том, что криптографическое хеширование требует больше вычислительных мощностей или времени на вычисление, чем алгоритмы с отсутствием криптостойкости. Зато они в разы надежнее.

Кстати, в повседневной жизни мы, сами того не подозревая, иногда пользуемся простейшими хешами. Например, представьте, что вы совершаете переезд и упаковали все вещи по коробкам и ящикам. Погрузив их в грузовик, вы фиксируете количество багажных мест (то есть, по сути, количество коробок) и запоминаете это значение. По окончании выгрузки на новом месте, вместо того чтобы проверять наличие каждой коробки по списку, достаточно будет просто пересчитать их и сравнить получившееся значение с тем, что вы запомнили раньше. Если значения совпали, значит, ни одна коробка не потерялась.

Читайте также: