Как сделать часы на ардуино уно дисплей lcd 1602

Обновлено: 04.07.2024

В качестве примера подключим дисплей к управляющей плате Arduino Uno.

Подключение к Arduino

Вывод Обозначение Пин Arduino Uno
1 GND GND
2 VCC 5V
3 VO GND
4 RS 11
5 R/W GND
6 E 12
7 DB0
8 DB1
9 DB2
10 DB3
11 DB4 5
12 DB5 4
13 DB6 3
14 DB7 2
15 VCC 5V
16 GND GND

Для упрощения работы с LCD-дисплеем используйте встроенную библиотеку Liquid Crystal. В ней вы найдёте примеры кода с подробными комментариями.

Вывод текста

Для вывода первой программы приветствия, воспользуйтесь кодом вроде этого:

Кириллица

Существует два способа вывода кириллицы на текстовые дисплеи:

Рассмотрим оба способа более подробно.

Таблица знакогенератора

Дисплейный модуль хранит в памяти две страницы знакогенератора, которые состоят из различных символов и букв.

Для вывода символа на дисплей необходимо передать его номер в шестнадцатеричной системе из таблицы знакогенератора.

Вы можете смешивать в одной строке обычные символы и явные коды как угодно. Единственный нюанс в том, что после того, как компилятор в строке видит последовательность \x , он считывает за ним все символы, которые могут являться разрядами шестнадцатеричной системы даже если их больше двух. Из-за этого нельзя использовать символы из диапазона 0-9 и A-F следом за двузначным кодом символа, иначе на дисплее отобразится неправильная информация. Чтобы обойти этот момент, можно использовать тот факт, что две записанные рядом строки склеиваются.

Сравните две строки кода для вывода надписи «Яeee»:

Переключение страниц знакогенератора

Дисплейный модуль хранит в памяти две страницы знакогенератора. По умолчанию установлена нулевая страница. Для переключения между страницами используйте методы:

Дисплей не может одновременно отображать символы разных страниц.

Рассмотрим пример, в котором одна и та же строка будет отображаться по-разному — в зависимости от выбранной страницы.

Полную таблицу символов с кодами можно найти в документации к экрану.

Использование библиотеки LiquidCrystalRus

Совсем не обязательно мучатся со знакогенератором, чтобы вывести русский символ. Для решения проблемы скачайте и установите библиотеку LiquidCrystalRus.

Это копия оригинальной библиотеки LiquidCrystal с добавлением русского языка. Добавленный в библиотеку код трансформирует русские символы UTF8 в правильные коды для текстового экрана.

В качестве примера выведем фразу «Привет от Амперки» на дисплей.

Примеры работы для Espruino

В качестве примера подключим дисплей к управляющей плате Iskra JS.

Подключение к Iskra JS

Вывод Обозначение Пин Iskra JS
1 GND GND
2 VCC 5V
3 VO GND
4 RS P11
5 R/W GND
6 E P12
7 DB0
8 DB1
9 DB2
10 DB3
11 DB4 P5
12 DB5 P4
13 DB6 P3
14 DB7 P2
15 VCC 5V
16 GND GND

Для работы с LCD-дисплеем из среды Espruino существует библиотека HD44780.

Вывод текста

Для вывода программы приветствия, воспользуйтесь скриптом:

Кирилица

Вывод кирилицы на дисплей с помощью платформы Iskra JS доступен через встроенную в дисплей таблицу знакогенератора.

Таблица знакогенератора

Дисплейный модуль хранит в памяти две страницы знакогенератора, которые состоят из различных символов и букв.

Для вывода символа на дисплей необходимо передать его номер в шестнадцатеричной системе из таблицы знакогенератора.

Вы можете смешивать в одной строке обычные символы и явные коды как угодно. Единственный нюанс в том, что после того, как компилятор в строке видит последовательность \x , он считывает за ним все символы, которые могут являться разрядами шестнадцатеричной системы даже если их больше двух. Из-за этого нельзя использовать символы из диапазона 0–9 и A–F следом за двузначным кодом символа, иначе на дисплее отобразится неправильная информация. Чтобы обойти этот момент, можно использовать тот факт, что две строки записанные рядом склеиваются.

Сравните две строки кода для вывода надписи «Яeee»:

Переключение страниц знакогенератора

Дисплейный модуль хранит в памяти две страницы знакогенератора. По умолчанию установлена нулевая страница. Для переключения между страницами используйте методы:

Дисплей не может одновременно отображать символы разных страниц.

Рассмотрим пример, в котором одна и та же строка будет отображаться по-разному — в зависимости от выбранной страницы.

Полную таблицу символов с кодами можно найти в документации к экрану.

Комнатный термометр

Дисплей удобен для отображения показаний модулей и сенсоров. Сделаем задатки «Умного Дома», а именно «комнатный термометр».

Самые простые часы на основе Arduino и LCD (ЖК дисплей) из тех что мы когда-то делали. Нам потребуются только Arduino UNO, 16x2 ЖК-дисплей и две кнопки. Никаких резисторов, никаких потенциометров.

Комплектующие

Начинаем с деталей, которые нам понадобятся для проекта цифровых часов на Ардуино Уно:

    & Genuino UNO x 1
  • Стандартный ЖК-дисплей Adafruit - 16x2 (белый на синем) x 1
  • Кнопочный переключатель SparkFun 12 мм × 2
  • Макетная плата половинного размера × 1
  • Провода перемычки (на выбор)

Что за идея

Ранее мы делали один сложный проект с цифровыми часами, о котором мы расскажем в следующих уроках, и нашли в процессе несколько проблем. После этого мы решили поделиться этой проблемой со всеми. Основная проблема в том как оценивается длительность секунды.

По факту - сделать правильную секунду в цифровых часах не так просто. Нужно правильно работать с циклами. Мы нашли много комментариев на англоязычных сайтах:


На скриншоте выше видно, что код реализован таким образом, что теперь инкремент s будет выполняться каждую 1 секунду и не больше, в зависимости от времени выполнения цикла loop<>.

В связи с этим резисторы и потенциометры мы полностью удалили.

Кнопки настройки времени вы можете использовать встроенные в микросхему ATmega328P.


pinMode(hs, INPUT_PULLUP) избегает использования внешнего Pullup. Подробнее о INPUT_PULLUP читайте в нашем Справочнике программиста Ардуино.

Избегайте потенциометра ЖК-дисплея.

Контрастность ЖК-дисплея может быть установлена с помощью сигнала PWM (Широтно-импульсная модуляция (ШИМ, англ. pulse-width modulation (PWM))) Arduino.

То же самое для подсветки, которая питается сигналом ШИМ (PWM) Arduino, поэтому её можно установить как вкл/выкл с помощью Arduino.

Схема проекта

Принципиальная схема нашего проекта выглядит таким образом:


Схема соединения всех комплектующих для наших цифровых часов Ардуино выглядит так:


Код проекта вы можете скачать или скопировать ниже. Код содержит комментарии. Обычно мы рекомендуем копировать код из скачанного файла, т.к. при копировании могут выявляться некоторые ошибки.

Также не забываем, что мы в самом начале подключаем библиотеку LiquidCrystal, которую вы можете скачать в разделе Библиотеки на нашем сайте.

Результат


На этом пока всё, надеемся, что ваши цифровые часы Ардуино идут точно секунда в секунду.


В предыдущем уроке 18, мы подключили Trema RTC часы реального времени с Trema кнопками и LCD I2C дисплеем к arduino Uno, написали скетч, для установки времени при помощи кнопок.

Теперь расширим функционал получившихся часов, добавив к ним функцию будильника. А код, который будет выполняться при срабатывании будильника выведем в отдельную функцию "Func_alarm_action()", чтоб Вы смогли легко его найти и изменить. Например, при срабатывании будильника, открывать жалюзи, включать свет или музыку, включить через реле тостер или кофе-машину и т.д.

Нам понадобится:

    х 1шт.
  • RTC модуль Trema на базе чипа DS1307 х 1шт.
  • LCD дисплей LCD1602 IIC/I2C(синий) или LCD1602 IIC/I2C(зелёный) х 1шт. х 1шт. х 1шт. х 3шт. х 2шт. х 1шт.
  • Trema-модуль светодиод х 1шт. (белый, синий, красный, оранжевый или зелёный)

Для реализации проекта нам необходимо установить библиотеки:

  • Библиотека iarduino_RTC (для подключения RTC часов реального времени DS1302, DS1307, DS3231)
  • Библиотека LiquidCrystal_I2C_V112 (для подключения дисплеев LCD1602 по шине I2C)

О том как устанавливать библиотеки, Вы можете ознакомиться на странице Wiki - Установка библиотек в Arduino IDE .

Видео:


Схема подключения:

Подключение модулей RTC и LCD, данного урока, осуществляется к аппаратным выводам SDA, и SCL.

RTC модуль Trema на базе чипа DS1307 / LCD дисплей на базе чипа LCD1602 Arduino Uno
GND GND
Vcc +5V
SDA (Serial DAta) A4
SCL (Serial CLock) A5

Подключение кнопок: кнопка «SET» к выводу 2, кнопка «UP» к выводу 3 и копка «DOWN» к выводу 4.

Зуммер подключаем к выводу 5, а светодиод к выводу 13 (дублируя встроенный в arduino).

RTC часы с будильником на Arduino Uno

Алгоритм работы кнопок следующий:

  • В режиме вывода даты/времени/будильника (обычный режим):
    • Кратковременное нажатие на кнопку SET переключает режимы вывода: даты/времени/будильника
    • Удержание кнопки SET переводит часы в режим установки даты/времени/будильника (зависит от того, каким был режим вывода)
    • Кнопки UP и DOWN, в режиме вывода будильника, активируют/деактивируют будильник.
      Если будильник активен, то в правом верхнем углу экрана появляется значок будильника.
    • Кратковременное нажатие на кнопку SET - переход между устанавливаемыми параметрами (сек, мин, час, дни, мес, год, д.н.)
    • Удержание кнопки SET выводит часы из режима установки
    • Каждое нажатие на кнопку UP увеличивает значение устанавливаемого параметра даты или времени
    • Каждое нажатие на кнопку DOWN уменьшает значение устанавливаемого параметра даты или времени
    • Удержание любой кнопки в течении 1 секунды, отключает сигнализацию (без выполнения их действий, в любом режиме)

    Код программы:

    Работа кнопок, вывод и установка времени, описывались в уроке 18, в этом уроке рассмотрим работу будильника:

    В начале кода добавляем две константы: PIN_alarm_TONE и PIN_alarm_LED, указывающие номера выводов зуммера и светодиода.
    А также добавляем четыре переменные: VAR_alarm_MIN , VAR_alarm_HOUR , VAR_alarm_FLAG1 и VAR_alarm_FLAG2 .

    • VAR_alarm_MIN - переменная в которой хранится значение минут, при котором сработает будильник (по умолчанию 0 минут)
    • VAR_alarm_HOUR - переменная в которой хранится значение часов, при котором сработает будильник (по умолчанию 0 часов)
    • VAR_alarm_FLAG1 - флаг разрешения работы будильника, false - не активен, true - активен (по умолчанию true - активен)
    • VAR_alarm_FLAG2 - флаг указывающий на то, что будильник сработал "сигнализация" (по умолчанию false - не сработал)

    Последняя переменная которую мы добавили - MAS_alarm_SYM, она содержит изображение символа будильника для вывода на дисплей.

    В функции loop, после вывода информации на дисплей, добавляем проверку: не пора ли включить будильник?

    • если будильник включён (установлен флаг VAR_alarm_FLAG1)
    • если в текущем времени 0 секунд (time.seconds==00)
    • если количество минут текущего времени (time.minutes) равно количеству минут установленных в будильнике (VAR_alarm_MIN)
    • если количество часов текущего времени (time.Hours) равно количеству часов установленных в будильнике (VAR_alarm_HOUR)
      то устанавливаем флаг VAR_alarm_FLAG2 (указывающий на то, что будильник сработал)
    • если установлен флаг VAR_alarm_FLAG2, то запускаем действия будильника (действия описаны в функции Func_alarm_action)
      Так как проверка будильника и запуск функции Func_alarm_action() находится внутри условия if(millis()%1000==0), то действия будильника будут выполняться один раз в секунду.

    Теперь всё готово для создания полного кода:

    Разберемся в коде действий будильника:

    Действия будильника описаны в функции Func_alarm_action().

    В этой функции мы включаем светодиод, далее подаём три коротких звуковых сигнала (с частотой 2000Гц, длительностью и паузой 100мс), после чего выключаем светодиод.

    Если Вам необходимо выполнить действие будильника однократно, а не каждую секунду после его срабатывания, то начните выполнение действий со сброса флага VAR_alarm_FLAG2, присвоив ему значение false.

    С ардуиной познакомился с месяц назад, заказал деталек — стали приходить — начал потихоньку вникать. Вообще — глобально я хочу собрать бортовой компьютер в авто — для вывода оперативной информации и сброса ошибок. Ну а пока тернеруюь на кошках__)

    Решил собрать часы.


    Потом пришел заранее заказанный модуль I2C — символьный LCD. Модуль этот основан на микрухе которая расширяет порты ввода вывода. тоесть по 2м проводам данные входят — а по 8 выводам расходятся на экран. Вещь дюже полезная, на ибээ их полно.


    Стало совсем красиво.

    Есть некоторая загвоздка. дело в том что в библиотеке с которой работает экран по i2c протоколу — нерабочие примеры((( Это у меня отняло какое-то время для понимания сути процессов))

    Кратенько для тех кто купит переходник — в каждом переходнике зашит его адрес, адрес можно узнать с помощью сканера адресов или аналитическим методом. На платке есть перемычки — если ихзапаять, адрес будет 0x20, а если перемычки сводобные — адрес будет 0x27. Адресация нужна для правильной инициализации переходника и работы с LCD экраном.

    Сразу понятно будет не все, но после суток-двух копания в инете, прийдет понимание.

    У меня оказался Третий вариант как по ссылке. Разобравшись что куда, выяснил что адрес у него 0x27, эта цифра нужна для обращения к экрану.

    А теперь важное.

    Есть 2 рабочих варианта (может даже больше)

    Обе эти библиотеки НЕ СОВМЕСТИМЫ!

    Так что ставим второй вариант, если не заработает — ставим первый и переписываем пример под свою библиотеку, благо там не много.

    Я честно уже не помню почему выбрал второй вариант и где взял примеры, главное, что все работает))

    После настройки экрана по двум проводам, пришли RTC модуль — часы реального времени на микрухе 1307. Общаются они по тем же 2м проводам, то есть портов на ардуине не занимают вообще.

    Примеры в ней хорошие, рабочие, все сразу стало понятно. Адрес в часах зашит жестко (я не понял как его менять)


    Теперь при отключении питания, часы не сбрасываются)))

    Итак, особенностью часов является отображение 3х чисел в виде столбиков, секундыи минуты слева -направо, часы — наоборот справа-налево.

    Используется 8 собственных символов, которые создают индикацию. Сначала сдеал 9 — начали скакать символы, смотрел — думал — оказалось что максимальное количество собственных символов — 8. Поэтому в качестве полного закрашенного квадрата используется системный знак по коду, а процентное заполнение — нарисовано в массиве битами.

    Я думаю что в коде все понятно.

    Функция Map — «растягивает» отображаемый промежуток в 24 часа на то количество клеток, которое нужно. так же и с минутами и секундами, но там растягивается другой диапазон.

    Сначала делал без мапа — не смог найти функцию округления, коэффициенты были целыми числами — и растягивался диапазон всегда то больше — то меньше чем нужно. А мап меня спас))

    В остальном все довольно просто, не забываем стирать квадраты, когда цикл часов начинается занова.

    Читайте также: