Как в памяти компьютера запишется число 258 какая ячейка потребуется 25810 1000000102

Обновлено: 03.07.2024

Тебе известно, что компьютер работает только с двоичным кодом. \(0\) и \(1\) обозначают два устойчивых состояния: вкл/выкл, есть ток/нет тока и т. д. Оперативная память представляет собой контейнер, который состоит из ячеек. В каждой ячейке хранится одно из возможных состояний: \(0\) или \(1\). Одна ячейка — \(1\) бит информации или представляет собой разряд некоторого числа.

Целые числа в памяти компьютера хранятся в формате с фиксированной запятой . Такие числа могут храниться в \(8\), \(16\), \(32\), \(64\)-разрядном формате.

Для целых неотрицательных чисел в памяти компьютера выделяется \(8\) ячеек (бит) памяти.

Минимальное число для такого формата: \(00000000\). Максимальное: \(11111111\).

Переведём двоичный код в десятичную систему счисления и узнаем самое большое число, которое можно сохранить в восьмибитном формате.

1 × 2 7 + 1 × 2 6 + 1 × 2 5 + 1 × 2 4 + 1 × 2 3 + 1 × 2 2 + 1 × 2 1 + 1 × 2 0 = 255 10 .

Если целое неотрицательное число больше \(255\), то оно будет храниться в \(16\)-разрядном формате и занимать \(2\) байта памяти, то есть \(16\) бит.

Подумай! Какое самое большое число можно записать в \(16\)-разрядном формате?

Чем больше ячеек памяти отводится под хранение числа, тем больше диапазон значений.

В таблице указаны диапазоны значений для \(8\), \(16\) и \(32\)-разрядных форматов.

Скриншот 16-09-2021 004411.jpg

Для \(n\)-разрядного представления диапазон чисел можно вычислить следующим образом: от \(0\) до 2 n − 1 .

Запишем целое беззнаковое число \(65\) в восьмиразрядном представлении. Достаточно перевести это число в двоичный код.

Это же число можно записать и в \(16\)-разрядном формате.

Скриншот 16-09-2021 004807.jpg

Для целых чисел со знаком в памяти отводится \(2\) байта информации (\(16\) бит). Старший разряд отводится под знак: \(0\) — положительное число; \(1\) — отрицательное число. Такое представление числа называется прямым кодом.

Скриншот 16-09-2021 005135.jpg

Для хранения отрицательных чисел используют дополнительный и обратный коды, которые упрощают работу процессора. Но об этом ты узнаешь в старших классах.

Формы организации учащихся на уроке: индивидуальная, фронтальная

Используемое оборудование: компьютеры, интерактивная доска

Программное обеспечение: презентация к уроку, проверочный тест.

I. Организационный момент

Приветствие, проверка письменного домашнего задания.

II. Актуализация полученных знаний

Учащиеся (несколько человек) проходят тест на компьютерах по теме: «Системы счисления». (Приложение 1)

Для остальных учащихся фронтальный опрос.

Вопросы для фронтального опроса:

III. Изучение нового материала (Презентация)

  • форма с фиксированной точкой (применяется к целым числам)
  • форма с плавающей точкой (применяется к вещественным числам)

Представление целых чисел в форме с фиксированной запятой

Часть памяти компьютера, в которой хранится одно число – ячейка. Минимальный размер ячейки, где может храниться целое число – 8 бит или 1 байт.
Представим число 4210 в двоичной системе счисления, а затем представим как будет выглядеть это число в памяти компьютера.
4210 = 1010102.

Запишем полученное число в восьмиразрядную ячейку. Запись в ячейку производится с конца, то есть последняя цифра числа записывается в последний разряд ячейки, потом предпоследнюю цифру в предпоследний разряд ячейки и так далее пока не закончится число. Свободные разряды слева заполняются нулями.

Самый старший разряд (первый слева) – хранит знак числа. Если число положительное, то этот разряд равен 0, если отрицательное – 1.

Таким образом, самое большее положительное число, которое можно вписать в восьмиразрядную сетку имеет вид:

И это число 11111112 = 12710
Максимальное целое положительное число, помещающееся в восьмиразрядную ячейку, равно 127.

Рассмотрим представление в памяти компьютера целых отрицательных чисел

  1. Записать внутреннее представление соответствующего ему положительного числа
  2. Записать обратный код полученного числа заменой во всех разрядах 0 на 1, и 1 на 0.
  3. К полученному числу прибавить 1.

Представим внутреннее представление числа – 4210 в восьмиразрядной ячейке: 4210 = 1010102

1) 00101010
2) 11010101 это обратный код
3) + 1
11010110 получили представление числа – 4210 в восьмиразрядной ячейке.

Старший разряд получил значение 1 автоматически. Единица в старшем разряде – признак отрицательного числа.
Сложим числа 42 и – 42. Должны получить 0, проверим:

+ 00101010
11010110
100000000 получили число, старший разряд которого выходит за пределы восьмиразрядной ячейки, таким образом восьмиразрядная ячейка заполнена нулями, т.е. полученное при сложение число равно 0.

Представление восьмиразрядного отрицательного числа – Х дополняет представление соответствующего положительного числа Х до значения 2 8 . Поэтому представление отрицательного целого числа называется дополнительным кодом.

Диапазон представления целых чисел в восьмиразрядной ячейке:

В 16-рядной ячейке можно получить числа диапазоном:

В 32-разрядной ячейке можно получить числа диапазоном:

Общая формула для диапазона целых чисел в зависимости от разрядности N ячейки:

Представление целых чисел в форме с плавающей запятой.

Вещественные числа это тоже, что и действительные числа. Из курса математике вам известно, что к действительным числам относятся целые и дробные числа.
Всякое вещественное число X записывается в виде произведения мантиссы m и основания системы счисления p в некоторой целой степени n, которую называют порядком:

Например, число 25,324 = 0,25324 · 10 2
мантисса m = 0,25324, n = 2 – порядок. Порядок указывает, на какое количество позиций и в каком направлении должна сместится десятичная запятая в мантиссе.
Чаще всего для хранения вещественных чисел в памяти компьютера используется 32-разрядная или 64-разрядная ячейка. В первом случае это будет с обычной точностью, во-втором случае с удвоенной точностью. В ячейке хранятся два числа в двоичной системе счисления: мантисса и порядка.
Диапазон вещественных чисел ограничен, но он значительно шире, чем при представление целых чисел в форме с фиксированной запятой.
Например, при использовании 32-разрядной ячейки этот диапазон следующий:

Результаты машинных вычислений с вещественными числами содержат погрешность. При удвоенной точности погрешность уменьшается. Выход из диапазона (переполнение) приводит к прерыванию работы процессора.

IV. Закрепление изученного материала

Выполнить самостоятельно задания №3(а,б) и №4(а,б) на странице учебника 105 с последующей проверкой

а) Записать внутреннее представление числа 32 в восьмиразрядную ячейку 3210 = 1000002

Значит внутреннее представление числа 32 в восьмиразрядную ячейку: 00100000

б) Записать внутреннее представление числа –32 в восьмиразрядную ячейку
32 имеет представление 00100000
Обратный код 11011111
+1
11100000
Значит внутреннее представление числа –32 в восьмиразрядную ячейку: 11100000

а) Определить какому десятичному числу соответствует двоичный код 00010101 восьмиразрядного представления целого числа.

Видим, что первый разряд – 0, значит число положительное.

Переведём число 101012 в десятичную систему счисления:

1 · 2 4 + 0 · 2 3 + 1 · 2 2 + 0 · 2 1 + 1 · 2 0 = 16 + 4 + 1 = 2110

Значит двоичный код 00010101 восьмиразрядного представления целого числа 2110.

б) Определить какому десятичному числу соответствует двоичный код 11111110 восьмиразрядного представления целого числа.

Видим, что первый разряд – 1, значит число отрицательное. Для нахождения десятичного числа выполним алгоритм дополнительного кода в обратном порядке, а именно:

1) Вычтем из данного числа 1

2) Заменим 1 на 0 и 0 на 1

3) Переведём двоичное число 102 в десятичную систему счисления.

Таким образом, двоичный код 11111110 восьмиразрядного представления целого числа 210.

Задание: представить вещественное число

в нормализованной форме с плавающей точкой в десятичной системе счисления.

а) 0,0050589 = 0,50589 · 10 –2
б) 1234,0456 = 0,12340456 · 10 4

V. Итог урока

– Сегодня на уроке вы узнали, каким образом хранятся числа в памяти компьютера. Как зависит диапазон значений чисел от размера ячейки, в которой хранится число.
Выставление оценок за урок (тест и задания №3, №4)


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности



2. Раздавайте видеоуроки в личные кабинеты ученикам.


3. Смотрите статистику просмотра видеоуроков учениками.

Конспект урока "Представление чисел в компьютере"

На данном уроке мы с вами узнаем, как представляются целые и вещественные числа в компьютере.

А начнём мы с вами с целых чисел.

Как вы уже знаете, целые числа – это множество чисел, которое состоит из натуральных чисел, чисел, противоположных натуральным, и нуля.

Итак, оперативная память представляет собой таблицу, то есть состоит из ячеек.

Каждая ячейка оперативной памяти представляет собой физическую систему, которая состоит из некоторого числа однородных элементов. Эти элементы обладают двумя устойчивыми состояниями, которые соответствуют двум числам – нулю и единице. Каждый такой элемент предназначен для хранения одного из битов – разряда двоичного числа. Поэтому каждый элемент ячейки называется битом или разрядом.

То есть, можно сказать, что каждая ячейка оперативной памяти содержит число, представленное в двоичной системе счисления, так как вся информация представлена в памяти компьютера именно в этой системе счисления. Каждая ячейка также включает в себя некоторое количество клеточек (ячеек). В каждой клеточке содержится число ноль или один. Это зависит от того, какой код соответствует изначальному числу.

Давайте рассмотрим одну ячейку, которая состоит из n разрядов.

Она разбита на n клеточек. n обозначает количество разрядов или битов, отведённых под исходное число. Первая клеточка слева – это (n-1)-й разряд. Вторая – (n-2)-й разряд и так далее. Последняя клеточка – это 0-й разряд.

Можно сказать, что разряд – это степени для числа два в двоичной системе счисления.

Для представления целых чисел в компьютере существует несколько различных способов, которые отличаются друг от друга количеством разрядов и наличием или отсутствием знакового разряда. Обычно под целые числа отводится 8, 16, 32 или 64 разряда или бита.

Существует беззнаковое и знаковое представление чисел. Беззнаковое представление можно использовать только для неотрицательных чисел, отрицательные же числа представляются только в знаковом виде.

Беззнаковое представление используется для таких объектов, как адреса ячеек; счётчиков, например, количество символов в тексте; чисел, которые обозначают дату и время; размеров графических изображений в пикселях и много другое.

Для этих данных используется беззнаковое представление, так как они никак не могут быть отрицательными числами.

Давайте рассмотрим таблицу максимальных значений для беззнаковых целых n -разрядных чисел:

В первом столбце указано количество битов, во втором минимальное значение, а в третьем – максимальное значение.

Минимальное значение во всех строка равно нулю. А вот максимальное вычисляется по формуле 2 n – 1. То есть максимальное восьмиразрядное число будет равно 255.

2 8 – 1 = 256 – 1 = 255.

Максимальное значение целого неотрицательного числа достигается в том случае, когда во всех разрядах ячейки хранятся единицы.

Давайте разберёмся на примере.

Возьмём восьмиразрядную ячейку и поместим в неё максимально допустимое число 255.

Исходя из этого можем сказать, что наша ячейка состоит из 8 разрядов или клеточек. При переводе числа 255 в двоичную систему счисления получим 8 единиц. То есть в каждой клеточке будет содержаться по единице.

Число разрядов n=8. Давайте над каждой клеточкой расставим соответствующий разряд начиная с крайней левой.

Давайте вспомним общий вид нашей ячейки.

То есть ячейка из n разрядов, в нашем случае 8, состоит из n клеточек (снова из 8), а каждый разряд вычисляется по формуле n – 1, n – 2 и так далее. В зависимости от того, на каком месте находится ячейка.

А если мы возьмём все наши единицы и проставим над ними наши разряды, то мы можем перевести наше число из двоичной системы счисления в десятичную уже известным нам образом.

Если же брать число 256, то мы не сможем поместить его в восьмиразрядную ячейку, так как оно будет состоять из единицы и восьми нулей, а клеточек у нас 8.

Если мы возьмём число 65 535, то в двоичной системе счисления оно будет состоять из 16 единиц. А если шестнадцатиразрядную ячейку снова представить, как строку, состоящую из 16 клеточек и расставить соответствующие разряды, то она будет выглядеть следующим образом:

Для получения компьютерного представления беззнакового целого числа достаточно перевести его в двоичную систему счисления и дополнить полученный результат слева нулями до стандартной разрядности.

Давайте рассмотрим, как будет выглядеть число 125 в восьмиразрядном и шестнадцатиразрядном представлениях. Для этого переведём наше число в двоичную систему и получим следующее:

Наше число состоит из 7 цифр. Поместим его в восьмиразрядную ячейку.

Но ячеек 8, а цифр 7. В таком случае помещаем наше число в крайние справа семь ячеек, а в первую левую запишем ноль.

Он не повлияет на наше число, но все разряды ячейки должны быть заполнены цифрами.

А если мы поместим это же число в шестнадцатиразрядную ячейку, то получим 9 ячеек слева, заполненных нулями, а в остальных 7 будет располагаться наше число.

То есть можно сказать, что мы записываем наше число в двоичной системе счисления, а затем дополняем эту двоичную запись незначащими нулями слева в зависимости от того, из скольких разрядов состоит наше представление числа.

Это то, что касается беззнакового представления чисел.

При представлении числа со знаком (плюсом, если это положительное число, и минусом, если это отрицательное число) самый старший разряд, то есть тот, который находится слева, отводится под знак числа, а остальные разряды – под само число. Если число положительное, то в самый старший разряд (самую левую клеточку) пишется цифра 0, а если отрицательное, то 1.

Такое представление чисел называется прямым кодом. Такие коды в компьютере используются для хранения положительных чисел в запоминающих устройствах, для выполнения операций с положительными числами.

Например, число 56 в двоичной системе будет равно: 1110002.

Оно в себя включает 6 цифр. Запишем его в восьмиразрядную ячейку.

Две оставшиеся слева клеточки заполним нулями, так как число положительное.

А если бы наше число было отрицательным, то оно выглядело бы следующим образом.

В старший разряд мы поставили единицу, так как число отрицательное.

Для выполнения операций с отрицательными числами используется дополнительный код, который позволяет заменить операцию вычитания сложением.

Дополнительный код целого отрицательного числа может быть получен по следующему алгоритму:

· записать прямой код модуля числа;

· инвертировать его (заменить единицы нулями, нули – единицами);

· прибавить к инверсному коду единицу.

Давайте рассмотрим применение этого алгоритма на примере.

Нам дано число –25. При переводе в двоичную систему модуля числа получим следующее число: 110012.

Теперь смотрим на первый пункт. Нам необходимо записать прямой код модуля числа. Возьмём восьмиразрядный код. То есть наше число будет записано в клеточки, а в трёх пустых клеточках слева от него – нули.

Далее во втором пункте нам необходимо инвертировать наше число, то есть заменить единицы нулями, а нули – единицами. Получим следующее:

Теперь нам осталось, исходя из третьего пункта, прибавить к числу единицу. Получим следующее число:

Всё, что говорилось ранее, относилось к представлению целых чисел. Для представления вещественных чисел используется немного другой способ. Давайте рассмотрим его.

Любое вещественное число A может быть записано в экспоненциальной форме:

m – мантисса числа.

q – основание системы счисления.

p – порядок числа.

Возьмём для примера число 1 345 572. Его можно представить различными способами:

С экспоненциальной формой записи вы наверняка уже встречались. Например, считая на калькуляторе, вы могли получить следующее число: 1,34Е + 6.

Оно обозначает следующее: 1,34 · 10 6 . То есть знак Е – это основание десятичной системы счисления.

Из примера, можно сделать вывод, что положение запятой может изменяться.

Для единообразия мантиссу обычно записывают как правильную дробь, которая имеет после запятой цифру, отличную от нуля. То есть наше число 1 345 572 будет выглядеть следующим образом: 1 345 572 = 0,1345572 • 10 7 .

Вещественное число может занимать в памяти компьютера 32 или 64 разряда.

То есть наша ячейка в памяти может состоять из 32 или 64 клеточек. При этом выделяются разряды для хранения знака мантиссы, знака порядка, порядка и мантиссы.

Давайте разберёмся на примере. Возьмём число 125 в десятичной системе счисления и запишем её в тридцатидвухразрядную ячейку.

Для начала нам нужно перевести число 125 в двоичную систему счисления. Получим следующее: 12510 = 11111012.

Теперь запишем это число в экспоненциальной форме.

Ставим равно. Мантиссой числа будет следующее: 0,1111101.

Ставим знак умножения. q – это основание системы счисления. В нашем случает это двоичная система счисления. Число 2 в двоичной системе счисления будет состоять из цифр 1 и 0. Запишем его.

11111012 = 0,1111101 · 10.

p – это порядок числа или же степень. Мы с вами перенесли наше число на семь знаков вправо после запятой. Значит наше p будет равно 7. При переводе числа семь в двоичную систему счисления получим следующее:

11111012 = 0,1111101 · 10 111 .

Мы с вами записали двоичное число в экспоненциальной форме.

Теперь перенесём всё в клеточки ячейки памяти, размером 32 разряда.

Под знак и порядок выделяется восемь клеточек, под знак и мантиссу двадцать четыре.

Первую клеточку слева выделяем под знак. Так как наше число положительное, то ставим цифру 0.

В разделе «Знак и порядок» запишем число 7 в двоичной системе счисления. Оставшиеся клеточки заполним нулями.

Теперь переходим к разделу «Знак и мантисса». В первой слева снова ставим цифру ноль, которая обозначает, что знак нашего числа положительный.

Далее запишем наше число, а оставшиеся клеточки заполним нулями.

Мы записали наше число в тридцатидвухразрядную ячейку.

Диапазон представления вещественных чисел определяется количеством разрядов, отведённых для хранения порядка чисел, а точность – количеством разрядов, отведённых для хранения мантиссы.

Давайте рассмотрим следующий пример:

В нём максимальное значение порядка числа составляет: 11111112 = 12710.

Следовательно, максимальное значение числа будет равно: 0,11111111111111111111111 · 10 111 .

Широкий диапазон представления вещественных чисел важен для решения научных и инженерных задач. Но в тоже время алгоритмы обработки таких чисел более трудоёмки по сравнению с алгоритмами обработки целых чисел.

А теперь пришла пора подвести итоги урока.

Сегодня мы узнали, как представляются целые и вещественные числа в компьютере, а также научились преобразовывать числа в ячейки памяти, учитывая разрядность ячейки.

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Информатика. 10 класса. Босова Л.Л. Оглавление

§13. Представление чисел в компьютере

Самым первым видом данных, с которыми начали работать компьютеры, были числа. ЭВМ первого поколения могли производить только математические расчёты (вычисления).

Из курса информатики основной школы вы помните, что компьютеры работают с целыми и вещественными числами. Их представление в памяти осуществляется разными способами.

13.1. Представление целых чисел

Во многих задачах, решаемых на компьютере, обрабатываются целочисленные данные. Прежде всего, это задачи экономического характера, при решении которых данными служат количества акций, сотрудников, деталей, транспортных средств и др. Целые числа используются для обозначения даты и времени, для нумерации различных объектов: элементов массивов, записей в базах данных, машинных адресов и т. д. По своей природе множество целых чисел дискретно, т. к. состоит из отдельных элементов.

И хотя любое целое число можно рассматривать как вещественное, но с нулевой дробной частью, предусмотрены специальные способы представления целых чисел. Это обеспечивает: эффективное расходование памяти, повышение быстродействия, повышение точности вычислений за счёт введения операции деления нацело с остатком.

Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (под целые числа обычно отводится 8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда.

Беззнаковое представление можно использовать только для неотрицательных целых чисел.

Для получения компьютерного представления беззнакового целого числа в n-разрядной ячейке памяти достаточно перевести его в двоичную систему счисления и, при необходимости, дополнить полученный результат слева нулями до n-разрядов.

Например, десятичные числа 130 и 39 в восьмиразрядном представлении будут иметь вид:


Понятно, что существуют ограничения на числа, которые могут быть записаны в n-разрядную ячейку памяти. Максимальное значение целого неотрицательного числа достигается в случае, когда во всех разрядах ячейки хранятся единицы. Для n-разрядного представления оно будет равно 2 n -1. Минимальное число соответствует n нулям, хранящимся в n разрядах памяти, и равно нулю. Далее приведены диапазоны значений для беззнаковых целых n-разрядных чисел:


При знаковом представлении целых чисел старший разряд ячейки отводится под знак (0 — для положительных, 1 — для отрицательных чисел), а остальные разряды — под цифры числа.

Представление числа в привычной для человека форме «знак-величина», при которой старший разряд ячейки отводится под знак, а остальные разряды — под цифры числа, называется прямым кодом.

Например, прямые коды чисел 48 и -52 для восьмиразрядной ячейки равны:



В математике множество целых чисел бесконечно.

Компьютер работает с ограниченным множеством целых чисел.

Прямой код положительного числа отличается от прямого кода равного по абсолютной величине отрицательного числа только содержимым знакового разряда.

В прямом коде числа можно хранить, но выполнение арифметических операций над числами в прямом коде затруднено — оно требует более сложной архитектуры центрального процессора, «умеющего» выполнять не только сложение, но и вычитание, а также «знающего» особый алгоритм обработки не имеющего «веса» знакового разряда. Этих трудностей позволяет избежать использование дополнительного кода.

Чтобы понять сущность дополнительного кода, рассмотрим работу реверсивного счётчика, последовательность показаний которого можно представить в виде замкнутого кольца из чисел (рис. 3.5).


Рис. 3.5. Реверсивный счётчик

При возрастании показаний счётчика до максимального, например до 999, следующими его состояниями должны быть 1000, 1001, 1002 и т. д. Но для изображения старшей единицы в счётчике не хватает разряда, происходит переполнение разрядной сетки. Поэтому мы увидим 000, 001, 002 и т. д.

При убывании показаний счётчика после состояния 000 будут идти 999, 998, 997 и т. д. Но после достижения нуля последовательное вычитание единицы должно давать -1, -2, -3 и т. д.

Будем рассматривать числа 999, 998, 997 как коды чисел -1, -2, -3 и проверим на их примере соотношение: у + (-у) = 0:

1 + 999 = 1000;
2 + 998 = 1000;
3 + 997 = 1000.

С учётом того что единица переполнения теряется, мы, сложив число и код противоположного ему числа, получаем ноль!

Вот ещё несколько примеров:

5-2 = 5 + [-2] = 5 + 998 = 1003;
7-5 = 7 + [-5] = 7 + 995 = 1002.

Для устранения неоднозначности в кольце будем считать половину состояний (0-499) кодами нуля и положительных чисел, а оставшуюся половину (500-999) — кодами отрицательных чисел.

Таким образом, дополнительный код положительного числа совпадает с этим числом, а для отрицательного числа он равен дополнению его величины до числа q n , возникающего при переполнении разрядной сетки. Здесь q — основание системы счисления, n — число разрядов в разрядной сетке.

Рассмотрим алгоритм получения дополнительного n-разрядного кода отрицательного числа:

1) модуль числа представить прямым кодом в n двоичных разрядах;
2) значения всех разрядов инвертировать (все нули заменить единицами, а единицы — нулями);
3) к полученному представлению, рассматриваемому как n-разрядное неотрицательное двоичное число, прибавить единицу.

Пример 1. Найдём 16-разрядный дополнительный код отрицательного числа -201710.


Использование дополнительного кода позволяет свести операцию вычитания чисел к операции поразрядного сложения кодов этих чисел.

Выполним эту операцию в 16-разрядных машинных кодах.

Нам потребуются прямой код числа 48 и дополнительный код числа -2017.


Рассмотрим полученный результат. Это отрицательное число (об этом говорит 1 в знаковом разряде), представленное в дополнительном коде. Перейдём к прямому коду модуля соответствующего числа, по которому сможем восстановить десятичное представление результата.

Прямой код можно получить из дополнительного кода, если применить к нему операцию инвертирования и прибавить единицу.


Получаем: -111101100012 = -1969.

13.2. Представление вещественных чисел

В математике множество вещественных чисел непрерывно, бесконечно и не ограничено.

Попробуйте обосновать это утверждение.

Вещественные числа записываются в естественной или в экспоненциальной форме.

В жизни мы чаще пользуемся естественной формой записи чисел, при которой: число представляется последовательностью десятичных цифр со знаком плюс или минус, знак плюс может опускаться, для разделения целой и дробной частей числа используется запятая.

Например: 12,34; 0,0056; -708,9.

В экспоненциальной форме вещественное число а представляется как а = ± m • q p , где m — мантисса числа, q — основание системы счисления, р — порядок числа.

Например, длину некоторого отрезка, равного 47,8 см, можно записать так:

1) 478 • 10 -1 см;
2) 47,8 • 10 0 см;
3) 4,78 • 10 1 см;
4) 0,478 • 10 2 см;
5) 0,000478 • 10 5 см.

Такое многообразие вариантов записи в экспоненциальной форме одного и того же числа не всегда удобно. Для однозначного представления вещественных чисел в компьютере используется нормализованная форма.

Нормализованная запись отличного от нуля вещественного числа 1) — это запись вида а = ± m • q p , где р — целое число (положительное, отрицательное или ноль), m — дробь, целая часть которой содержит одну значащую (ненулевую) цифру, т. е. 1 ≤ m < q.

1) Стандарт IEEE 754.

Примеры нормализации чисел:

1) 31,415926 = 3,1415926 • 10 1 ;
2) 1000 = 1,0 • 10 3 ;
3) 0,123456789 = 1,23456789 • 10 -1 ;
4) 0,00001078 = 1,078 • 108 -5 ;
5) 1000,00012 = 1,00000012 • 102 11 ;
6) AB,CDEF16 = A,BCDEF16 • 1016 1 .

Диапазон вещественных чисел в памяти компьютера очень широк, но, тем не менее, ограничен. Множество вещественных чисел, которые могут быть представлены в компьютере, конечно.


Поясним это на примере калькулятора, который производит вычисления в десятичной системе счисления. Пусть это будет калькулятор с десятью знакоместами на дисплее:

• 6 знакомест отводится под мантиссу (одно знакоместо отводится под знак мантиссы, четыре — под цифры мантиссы, одно — под точку, разделяющую целую и дробную части мантиссы);
• одно знакоместо отводится под символ «Е»;
• три знакоместа отводятся под порядок (одно — под знак порядка, два — под цифры порядка).

У калькуляторов первая значащая цифра, с которой и начинается мантисса, изображается перед точкой.

Число 12,34 в таком калькуляторе будет представлено как +1.234Е+01.

Число 12,35 будет представлено как + 1.235Е+01.

Как известно, между числами 12,34 и 12,35 находится бесконечное множество вещественных чисел, например: 12,341; 12,3412; 12,34123 и т. д.

Каждое из этих чисел в нашем калькуляторе будет представлено как + 1.234Е+01. Для последних разрядов у нас просто не хватает знакомест! Аналогичная ситуация имеет место и в компьютерном представлении вещественных чисел, независимо от того, ячейки какой разрядности там использованы.

Получается, что точно мы можем представить в компьютере лишь некоторую конечную часть множества вещественных чисел, а остальные числа — лишь приближённо.

Таким образом, множество вещественных чисел, представляемых в компьютере, дискретно, конечно и ограничено.

САМОЕ ГЛАВНОЕ

В математике множество целых чисел дискретно, бесконечно и не ограничено.

Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда. В любом случае компьютерное представление целых чисел дискретно, конечно и ограничено.

В математике множество вещественных чисел непрерывно, бесконечно и не ограничено.

Для компьютерного представления вещественных чисел используется нормализованная запись вещественного числа а = ± m • q p , где q — основание системы счисления, р — целое число (положительное, отрицательное или ноль), m — дробь, целая часть которой содержит одну значащую (ненулевую) цифру, т. е. 1 ≤ m < q.

Компьютерное представление вещественных чисел дискретно, конечно и ограничено.

Вопросы и задания

*7. Найдите десятичные эквиваленты чисел, представленных в дополнительном коде: 1) 00000100; 2) 11111001.

8. Для хранения целого числа со знаком в компьютере используется два байта. Сколько единиц содержит внутреннее представление числа -101, записанного:

1) в прямом коде;
2) в дополнительном коде?

9. Вычислите с помощью калькулятора (приложение Windows) в режиме «Программист» следующие примеры:

Как вы можете объяснить полученные результаты?

10. Запишите десятичные числа в нормализованной форме:

1) 217,934; 2) 75321; 3) 10,0101; 4) 200450.

11. Сравните следующие числа:

1) 318,4785 • 10 9 и 3,184785 • 10 11 ;
2) 218,4785 • 10 -3 и 1847,85 • 10 -4 .

12. Выполните операцию сложения:

1) 0,397621 • 10 3 + 0,2379 • 10 1 ;
2) 0,251452 • 10 -3 + 0,125111 • 10 -2 .

13. Чем ограничивается диапазон представимых в памяти компьютера вещественных чисел?

14. Почему множество вещественных чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?

*15. Попытайтесь самостоятельно сформулировать основные принципы представления данных в компьютере.

Читайте также: