Какие алгоритмы имеют обратное преобразование хеширование

Обновлено: 08.07.2024

Одним из ключевых слов, которые новички слышат, когда узнают о блокчейне, являются понятия хэша и алгоритма хэширования, которые кажутся распространёнными для безопасности. Запуск децентрализованной сети и консенсуса, такой как биткойн или сеть эфириум с десятками тысяч узлов, соединенных через p2p, требует, как “надежности”, так и эффективности проверки. То есть, эти системы нуждаются в способах кодирования информации в компактном формате, позволяющем обеспечить безопасную и быструю проверку ее участниками

Даже изменение одного символа во входных данных приведет к совершенно другому хэшу.

Криптографические хэши используются везде, от хранения паролей до систем проверки файлов. Основная идея состоит в том, чтобы использовать детерминированный алгоритм (алгоритмический процесс, который выдает уникальный и предопределенный результат для задачи входных данных), который принимает один вход и создает строку фиксированной длины каждый раз. То есть, использование одного и того же ввода всегда приводит к одному и тому же результату. Детерминизм важен не только для хэшей, но и для одного бита, который изменяется во входных данных, создавая совершенно другой хэш. Проблема с алгоритмами хэширования - неизбежность коллизий. То есть, тот факт, что хэши являются строкой фиксированной длины, означает, что для каждого ввода, который мы можем себе представить, есть другие возможные входы, которые приведут к тому же хэшу. Коллизия - это плохо. Это означает, что, если злоумышленник может создавать коллизии, он может передавать вредоносные файлы или данные, как имеющие правильный и неправильный хэш и скрываться под правильным хешем. Цель хорошей хэш-функции состоит в том, чтобы сделать чрезвычайно сложным для злоумышленников найти способы генерации входных данных, которые хешируются с одинаковым значением. Вычисление хэша не должно быть слишком простым, так как это облегчает злоумышленникам искусственное вычисление коллизий. Алгоритмы хэширования должны быть устойчивы к «атакам нахождения прообраза». То есть, получая хеш, было бы чрезвычайно сложно вычислить обратные детерминированные шаги, предпринятые для воспроизведения значения, которое создало хэш (т.е нахождение прообраза).

Учитывая S = hash (x), найти X должно быть почти невозможно.

Напомним, что «хорошие» алгоритмы хэширования имеют следующие свойства:

  • Изменение одного бита во входных данных должно создать эффект изменения всего хеша;
  • Вычисления хеша не должно быть слишком простым, высокая сложность нахождения прообраза;
  • Должен иметь очень низкую вероятность коллизии;

Вы когда-нибудь слышали о том, что если вы поместите 23 человека в комнату, есть 50% шанс, что у двух из них будет один и тот же день рождения? Доведение числа до 70 человек в комнате дает вам 99,9% шанс. Если голуби рассажены в коробки, причем число голубей больше числа коробок, то хотя бы в одной из клеток находится более одного голубя. То есть фиксированные ограничения на выход означают, что существует фиксированная степень перестановок, на которых можно найти коллизию.

По крайне мере, один отсек будет иметь внутри 2-ух голубей.

На самом деле MD5 настолько слаб к сопротивлению к коллизиям, что простой бытовой Процессор Pentium 2,4 ГГц может вычислить искусственные хэш-коллизии в течение нескольких секунд. Кроме того, его широкое использование в более ранние дни текущей сети создало тонны утечек MD5 предварительных прообразов в интернете, которые можно найти с помощью простого поиска Google их хэша.

Различия и развитие алгоритмов хеширования Начало: SHA1 и SHA2

NSA (Агентство национальной безопасности) уже давно является пионером стандартов алгоритмов хэширования, с их первоначальным предложением алгоритма Secure Hashing Algorithm или SHA1, создающий 160-битные выходы фиксированной длины. К сожалению, SHA1 просто улучшил MD5, увеличив длину вывода, количество однонаправленных операций и сложность этих односторонних операций, но не дает каких-либо фундаментальных улучшений против более мощных машин, пытающихся использовать различные атаки. Так как мы можем сделать что-то лучше?

В 2006 году Национальный институт стандартов и технологий (NIST) запустил конкурс, чтобы найти альтернативу SHA2, которая будет принципиально отличаться в своей архитектуре, чтобы стать стандартом. Таким образом, SHA3 появился как часть большой схемы алгоритмов хэширования, известной как KECCAK (произносится Кетч-Ак). Несмотря на название, SHA3 сильно отличается своим внутренним механизмом, известным как «конструкция губки», которая использует случайные перестановки для «Впитывания» и «Выжимания» данных, работая в качестве источника случайности для будущих входов, которые входят в алгоритм хэширования.

Когда дело дошло до интеграции алгоритма хеширования в блокчейн протоколы, биткоин использовал SHA256, в то время как Ethereum использовал модифицированный SHA3 (KECCAK256) для своего PoW. Однако важным качеством выбора хэш-функции для блокчейна с использованием доказательства работы является эффективность вычислений указанного хэша. Алгоритм хеширования биткойна SHA256 может быть вычислен достаточно просто с помощью специализированного оборудования, известного как специализированные интегральные схемы (или ASIC). Много было написано об использовании ASIC в майнинг пуле и о том, как они делают протокол направленным на централизацию вычислений. То есть доказательство работы стимулирует группы вычислительно эффективных машин объединяться в пулы и увеличивать то, что мы обозначаем “хэш-мощностью”, или мерой количества хэшей, которые машина может вычислить за интервал времени. Ethereum, выбрал модифицированный SHA3 известный как KECCAK 256. Кроме того, алгоритм PoW в Ethereum - Dagger-Hashimoto, должен был быть трудно вычисляемым для аппаратного обеспечения.

Почему биткоин использует двойное шифрование SHA256?

SHA3 не был единственным прорывом, который вышел из конкурса хеширования NIST в 2006 году. Несмотря на то, что SHA3 выиграл, алгоритм, известный как BLAKE, занял второе место. Для реализации шардинга Ethereum 2.0 использует более эффективное. Алгоритм хэширования BLAKE2b, который является высокоразвитой версией BLAKE от конкурентов, интенсивно изучается за его фантастическую эффективность по сравнению с KECCAK256 при сохранении высокой степени безопасности. Вычисление BLAKE2b фактически в 3 раза быстрее, чем KECCAK на современном процессоре.

Кажется, что независимо от того, что мы делаем, мы просто либо (1) увеличиваем сложность внутренних хеш-операций, либо (2) увеличиваем длину хеш-выхода, надеясь, что компьютеры атакующих не будут достаточно быстрыми, чтобы эффективно вычислять ее коллизию. Мы полагаемся на двусмысленность предварительных прообразов односторонних операций для обеспечения безопасности наших сетей. То есть цель безопасности алгоритма хеширования состоит в том, чтобы сделать как можно более сложным для любого, кто пытается найти два значения, которые хешируются на один и тот же вывод, несмотря на то, что существует бесконечное количество возможных столкновений. «Как насчет будущего квантовых компьютеров? Будут ли алгоритмы хэширования безопасными?» Короткий ответ и текущее понимание заключаются в том, что да, алгоритмы хэширования выдержат испытание временем против квантовых вычислений. То, что квантовые вычисления смогут сломать, - это те проблемы, которые имеют строгую математическую структуру, основанную на аккуратных трюках и теории, такой как шифрование RSA. С другой стороны, алгоритмы хэширования имеют менее формальную структуру во внутренних конструкциях. Квантовые компьютеры действительно дают повышенную скорость в вычислении неструктурированных проблем, таких как хэширование, но в конце концов, они все равно будут грубо атаковать так же, как компьютер сегодня попытается это сделать. Независимо от того, какие алгоритмы мы выбираем для наших протоколов, ясно, что мы движемся к вычислительно-эффективному будущему, и мы должны использовать наше лучшее суждение, чтобы выбрать правильные инструменты для работы и те, которые, мы надеемся, выдержат испытание временем.

Дмитриев Марк - Технический аналитик и управляющий криптоактивами инвестиционного фонда GT Blockchain Investments

В Интернете опубликовано много полезных материалов, объясняющих различие методов преобразования информации, но интерес читателей к подобным темам не снижается. Рассмотрим термины шифрование, хеширование и кодирование данных на понятном пользовательском уровне.

Шифрование данных

Шифрование - обратимое преобразование информации в целях сокрытия сведений от несанкционированного круга лиц.

Шифрование происходит на основе алгоритмов, известных передающей и принимающей сторонам. Процесс преобразования открытой информации в закрытый вид называется шифрование . Обратный процесс преобразования закрытой (зашифрованной) информации в открытый вид называется дешифрование .

Взламывание шифра с получением алгоритма шифрования и ключа шифрования (при наличии) называется криптоанализ .

Алгоритм шифрования может использовать ключ шифрования или обходиться без него. Ключи шифрования бывают открытыми и закрытыми .

Шифрование применяется для реализации средств криптографической защиты информации ( СКЗИ ) - средства защиты хранимой информации и средства защиты передаваемой информации.

Узнать подробнее о криптографии можно в ответах Яндекс.Знатоки по вопросу " Что такое криптография? "

Хеширование данных

Криптографическая хеш-функция ( хеш ) - это математический алгоритм, преобразовывающий произвольный массив данных в состоящую из букв и цифр строку фиксированной длины.

Это определение означает, что с помощью алгоритма хеширования можно получить фиксированную строку цифр и букв, преобразовав текст произвольной длины. Полученный хеш можно хранить в качестве контрольного значения для проверки целостности преобразованных данных: если данные изменятся, то при повторном преобразовании их в хеш одинаковым алгоритмом получится другое значение.

Известными алгоритмами хеширования являются MD5, SHA-1 и SHA-2.

Основные принципы хеширования :

  • при хешировании одинаковых данных получается одинаковое значение хеша (хеш-кода);
  • разные данные преобразуются в разные хеш-коды (хеш-суммы);
  • криптостойкость хеш-функции заключается в стойкости к восстановлению хешируемых данных и стойкости к коллизиям преобразования.

Одним из самых простых применений хеширования является хранение паролей (считается более защищённым способом, чем хранение паролей в явном виде).

С помощью хеширования в можно контролировать в различных сервисах распространение медиафайлов, сравнивая их хеш-коды, можно отслеживать целостность хранимых и передаваемых данных или детектировать защитным ПО вредоносные программы.

Кодирование данных

Код - это система условных обозначений или сигналов.

Кодирование данных - это представление информации системой условных обозначений отличной от той, в которой информация исходно представлена.

Самым простым примером кодирования данных является текст. Кодирование может производиться рукописным или машинописным способом на определённом языке речи. Далее можно произвести перекодирование текста документа способом перевода его на другой язык.

Кодированием является написание программы для ЭВМ или перевод программы на другой язык программирования.

Элементами кодируемой информации могут быть:

  • буквы, слова и фразы естественного языка;
  • различные символы (знаки препинания, арифметические и логические операции и др.);
  • числа;
  • аудиовизуальные образы;
  • ситуации и явления;
  • генетическая информация;
  • и другие элементы.

Кодовые обозначения могут представлять собой буквы, числа, графические обозначения, электромагнитные импульсы, световые и звуковые сигналы, набор и сочетание химических молекул, и другое.

Кроме языка речи и программирования известными кодовыми системами являются: азбука Морзе , код Бодо , компьютерная кодировка символов ASCII и Unicodе , шрифты, системы штрих-кодов и др.

Системой кодов можно назвать распространённые устойчивые традиции, обряды, танцевальные системы, принятые в разных народностях.

Здесь v — некоторая константа, часто ее называют инициализирующим вектором. Она выбирается
из различных соображений и может представлять собой секретную константу или набор случайных данных (выборку даты и времени, например).
При таком подходе свойства хэш-функции полностью определяются свойствами одношаговой сжимающей функции.

О статистических свойствах и требованиях

Как я уже говорил основным требованием к хэш-функциям является равномерность распределения их значений при случайном выборе значений аргумента. Для криптографических хеш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось. Это называется лавинным эффектом.

К ключевым функциям хэширования предъявляются следующие требования:
— невозможность фабрикации,
— невозможность модификации.

К бесключевым функциям предъявляют требования:
— однонаправленность,
— устойчивость к коллизиям,
— устойчивость к нахождению второго прообраза.

Это была теоретическая часть, которая пригодится нам в дальнейшем…

О популярных хэш-алгоритмах

Алгоритмы CRC16/32 — контрольная сумма (не криптографическое преобразование).

Алгоритмы MD2/4/5/6. Являются творением Рона Райвеста, одного из авторов алгоритма RSA.
Алгоритм MD5 имел некогда большую популярность, но первые предпосылки взлома появились еще в конце девяностых, и сейчас его популярность стремительно падает.
Алгоритм MD6 — очень интересный с конструктивной точки зрения алгоритм. Он выдвигался на конкурс SHA-3, но, к сожалению, авторы не успели довести его до кондиции, и в списке кандидатов, прошедших во второй раунд этот алгоритм отсутствует.

Алгоритмы линейки SHA Широко распространенные сейчас алгоритмы. Идет активный переход от SHA-1 к стандартам версии SHA-2. SHA-2 — собирательное название алгоритмов SHA224, SHA256, SHA384 и SHA512. SHA224 и SHA384 являются по сути аналогами SHA256 и SHA512 соответственно, только после расчета свертки часть информации в ней отбрасывается. Использовать их стоит лишь для обеспечения совместимости с оборудованием старых моделей.


Сегодня я хотел бы рассказать о том, что из себя представляет хеш-функция, коснуться её основных свойств, привести примеры использования и в общих чертах разобрать современный алгоритм хеширования SHA-3, который был опубликован в качестве Федерального Стандарта Обработки Информации США в 2015 году.

Общие сведения

Криптографическая хеш-функция - это математический алгоритм, который отображает данные произвольного размера в битовый массив фиксированного размера.

Для идеальной хеш-функции выполняются следующие условия:

Давайте сразу рассмотрим пример воздействия хеш-функции SHA3-256.

Число 256 в названии алгоритма означает, что на выходе мы получим строку фиксированной длины 256 бит независимо от того, какие данные поступят на вход.

На рисунке ниже видно, что на выходе функции мы имеем 64 цифры шестнадцатеричной системы счисления. Переводя это в двоичную систему, получаем желанные 256 бит.


Любой заинтересованный читатель задаст себе вопрос: "А что будет, если на вход подать данные, бинарный код которых во много раз превосходит 256 бит?"

Ответ таков: на выходе получим все те же 256 бит!
Дело в том, что 256 бит - это соответствий, то есть различных входов имеют свой уникальный хеш.
Чтобы прикинуть, насколько велико это значение, запишем его следующим образом:

Надеюсь, теперь нет сомнений в том, что это очень внушительное число!

Поэтому ничего не мешает нам сопоставлять длинному входному массиву данных массив фиксированной длины.

Свойства

Криптографическая хеш-функция должна уметь противостоять всем известным типам криптоаналитических атак.
В теоретической криптографии уровень безопасности хеш-функции определяется с использованием следующих свойств:

Pre-image resistance

Second pre-image resistance

Имея заданное входное значение , должно быть сложно найти другое входное значение такое, что

Collision resistance

Давайте чуть более подробно поговорим о каждом из перечисленных свойств.

Несмотря на то, что хеш-функций без коллизий не существует, некоторые из них достаточно надежны и считаются устойчивыми к коллизиям.

Second pre-image resistance. Это свойство называют сопротивлением второму прообразу. Для упрощения можно сказать, что это свойство находится где-то посередине между двумя предыдущими. Атака по нахождению второго прообраза происходит, когда злоумышленник находит определенный вход, который генерирует тот же хеш, что и другой вход, который ему уже известен. Другими словами, злоумышленник, зная, что пытается найти такое, что

Отсюда становится ясно, что атака по нахождению второго прообраза включает в себя поиск коллизии. Поэтому любая хеш-функция, устойчивая к коллизиям, также устойчива к атакам по поиску второго прообраза.

Неформально все эти свойства означают, что злоумышленник не сможет заменить или изменить входные данные, не меняя их хеша.

В частности, хеш-функция должна вести себя как можно более похоже на случайную функцию, оставаясь при этом детерминированной и эффективно вычислимой.


Применение хеш-функций

Рассмотрим несколько достаточно простых примеров применения хеш-функций:

• Верификация пароля
Проверка пароля обычно использует криптографические хеши. Хранение всех паролей пользователей в виде открытого текста может привести к массовому нарушению безопасности, если файл паролей будет скомпрометирован. Одним из способов уменьшения этой опасности является хранение в базе данных не самих паролей, а их хешей. При выполнении хеширования исходные пароли не могут быть восстановлены из сохраненных хеш-значений, поэтому если вы забыли свой пароль вам предложат сбросить его и придумать новый.

• Цифровая подпись
Подписываемые документы имеют различный объем, поэтому зачастую в схемах ЭП подпись ставится не на сам документ, а на его хеш. Вычисление хеша позволяет выявить малейшие изменения в документе при проверке подписи. Хеширование не входит в состав алгоритма ЭП, поэтому в схеме может быть применена любая надежная хеш-функция.

Предлагаю также рассмотреть следующий бытовой пример:

Алиса ставит перед Бобом сложную математическую задачу и утверждает, что она ее решила. Боб хотел бы попробовать решить задачу сам, но все же хотел бы быть уверенным, что Алиса не блефует. Поэтому Алиса записывает свое решение, вычисляет его хеш и сообщает Бобу (сохраняя решение в секрете). Затем, когда Боб сам придумает решение, Алиса может доказать, что она получила решение раньше Боба. Для этого ей нужно попросить Боба хешировать его решение и проверить, соответствует ли оно хеш-значению, которое она предоставила ему раньше.

Теперь давайте поговорим о SHA-3.


Национальный институт стандартов и технологий (NIST) в течение 2007—2012 провёл конкурс на новую криптографическую хеш-функцию, предназначенную для замены SHA-1 и SHA-2.

Организаторами были опубликованы некоторые критерии, на которых основывался выбор финалистов:

Способность противостоять атакам злоумышленников

• Производительность и стоимость

Вычислительная эффективность алгоритма и требования к оперативной памяти для программных реализаций, а также количество элементов для аппаратных реализаций

• Гибкость и простота дизайна

Гибкость в эффективной работе на самых разных платформах, гибкость в использовании параллелизма или расширений ISA для достижения более высокой производительности

В финальный тур попали всего 5 алгоритмов:

Победителем и новым SHA-3 стал алгоритм Keccak.

Давайте рассмотрим Keccak более подробно.

Keccak

Хеш-функции семейства Keccak построены на основе конструкции криптографической губки, в которой данные сначала «впитываются» в губку, а затем результат Z «отжимается» из губки.

Любая губчатая функция Keccak использует одну из семи перестановок которая обозначается , где

перестановки представляют собой итерационные конструкции, состоящие из последовательности почти одинаковых раундов. Число раундов зависит от ширины перестановки и задаётся как где

В качестве стандарта SHA-3 была выбрана перестановка Keccak-f[1600], для неё количество раундов

Далее будем рассматривать

Давайте сразу введем понятие строки состояния, которая играет важную роль в алгоритме.

Строка состояния представляет собой строку длины 1600 бит, которая делится на и части, которые называются скоростью и ёмкостью состояния соотвественно.

Соотношение деления зависит от конкретного алгоритма семейства, например, для SHA3-256

В SHA-3 строка состояния S представлена в виде массива слов длины бит, всего бит. В Keccak также могут использоваться слова длины , равные меньшим степеням 2.

Алгоритм получения хеш-функции можно разделить на несколько этапов:

• Строка P делится на n блоков длины

• «Впитывание»: каждый блок дополняется нулями до строки длиной бит (b = r+c) и суммируется по модулю 2 со строкой состояния , далее результат суммирования подаётся в функцию перестановки и получается новая строка состояния , которая опять суммируется по модулю 2 с блоком и дальше опять подаётся в функцию перестановки . Перед началом работы криптографической губки все элементыравны 0.

• «Отжимание»: пока длина результата меньше чем , где - количество бит в выходном массиве хеш-функции, первых бит строки состояния добавляется к результату . После каждой такой операции к строке состояния применяется функция перестановок и данные продолжают «отжиматься» дальше, пока не будет достигнуто значение длины выходных данных .

Все сразу станет понятно, когда вы посмотрите на картинку ниже:


Функция дополнения




Функция перестановок

Базовая функция перестановки состоит из раундов по пять шагов:

Тета, Ро, Пи, Хи, Йота

Далее будем использовать следующие обозначения:

Так как состояние имеет форму массива , то мы можем обозначить каждый бит состояния как

Обозначим результат преобразования состояния функцией перестановки

Также обозначим функцию, которая выполняет следующее соответствие:


- обычная функция трансляции, которая сопоставляет биту бит ,

где - длина слова (64 бит в нашем случае)

Я хочу вкратце описать каждый шаг функции перестановок, не вдаваясь в математические свойства каждого.

Шаг

Эффект отображения можно описать следующим образом: оно добавляет к каждому биту побитовую сумму двух столбцов и

Схематическое представление функции:



Шаг

Отображение направлено на трансляции внутри слов (вдоль оси z).

Проще всего его описать псевдокодом и схематическим рисунком:



Шаг

Шаг представляется псевдокодом и схематическим рисунком:



Шаг

Шаг является единственный нелинейным преобразованием в

Псевдокод и схематическое представление:



Шаг

Отображение состоит из сложения с раундовыми константами и направлено на нарушение симметрии. Без него все раунды были бы эквивалентными, что делало бы его подверженным атакам, использующим симметрию. По мере увеличения раундовые константы добавляют все больше и больше асимметрии.

Ниже приведена таблица раундовых констант для бит


Все шаги можно объединить вместе и тогда мы получим следующее:



Где константы являются циклическими сдвигами и задаются таблицей:


Итоги

В данной статье я постарался объяснить, что такое хеш-функция и зачем она нужна
Также в общих чертах мной был разобран принцип работы алгоритма SHA-3 Keccak, который является последним стандартизированным алгоритмом семейства Secure Hash Algorithm

Читайте также: