Какие аппаратные средства применяются для хранения информации в компьютере

Обновлено: 05.07.2024

Каким бы образом ни передавалась информация, она не сразу поступает на обработку - сначала необходимо ее накопить, поэтому возникает потребность организации хранения данных. Потребность хранения данных вызвана также необходимостью обеспечения сохранности данных.

К хранению информации предъявляют следующие требования:

  • надежность и долговечность хранения;
  • быстрый доступ к информации;
  • возможность обновления и накопления информации;
  • минимальное время поиска нужных данных;
  • простота обслуживания;
  • компактность хранилища.

Для хранения информации используют в основном те же носители, что и для ее регистрации. В зависимости от длительности хранения информации различают средства кратковременного и долговременного хранения.

К кратковременным средствам хранения информации относятся оперативная и буферная память ЭВМ. Роль долговременных средств хранения выполняют внешние запоминающие устройства и соответствующие им носители информации, а также различные виды документов.

В зависимости от назначения и конструктивного выполнения технические средства хранения и поиска документов делятся на два вида, представленных на рис. 3.9.

Средства хранения и поиска информации

Простые средства хранения и поиска используются для хранения информации, зафиксированной на документационных носителях. К ним относятся папки, футляры, шкафы, картотеки.

Папки обычно применяются для хранения документов стандартных форматов. Они имеют различные приспособления для укрепления документов и небольшое поле на лицевой стороне для указания наименования и краткого содержания папки.

Футляры удобно использовать для хранения чертежей, схем и карт. Футляры изготовляют прозрачные и непрозрачные.

Шкафы применяют для хранения папок, конвертов, футляров и др. По конструкции различают шкафы для горизонтального хранения документов, для подвесного вертикального хранения документов, секционные, с вращающимися полками. Шкафы для подвесного вертикального хранения документов по сравнению с шкафами для горизонтального хранения обеспечивают лучший обзор папок, что значительно сокращает время поиска документов. В секционных шкафах обычно хранят сброшюрованные материалы. Шкафы с вращающимися полками удобно использовать для документов, которые неоднократно используются для получения информации.

Картотека - это массив информации, где каждый документ (карта) является единицей хранения и имеет свой постоянный адрес. Набор слов или составленная из них фраза определяет адрес документа и называется поисковым кодом документа. Для облегчения поиска в картотеках применяют разделители, таб-карты, рейтеры (индикаторы), надсечки, карты с краевой перфорацией.

По конструктивному исполнению картотеки бывают следующих видов:

Автоматизированные средства хранения и поиска информации включают различные информационно-поисковые системы (ИПС), ориентированные на поиск информации по ключевым словам или фразам.

При использовании вычислительной техники средства хранения и поиска информации могут быть организованы как автоматизированные банки данных. АБД служит для централизованного хранения и коллективного использования информации пользователями путем подключения их к АБД посредством каналов связи. В качестве автоматизированного банка данных в широкомасштабных вычислительных сетях используются специализированные информационные центры. В локальных вычислительных сетях (ЛВС) в качестве АБД используются мощные серверы (специализированные ПЭВМ).

IV. Средства обработки информации

В информационных технологиях в качестве средств для автоматической обработки информации используются электронно-вычислительные машины (ЭВМ) различных классов и типов.

Классификация основных видов ЭВМ представлена в табл. 3.2.

В настоящее время во всех классах и типах электронно-вычислительных машин используются микропроцессорные устройства. Однако класс микроЭВМ в настоящее время превалирует на рынке средств вычислительной техники и используется практически во всех отраслях человеческой деятельности. Как правило, микроЭВМ является основой технической базы построения автоматизированных информационных технологий.

В свою очередь, микроЭВМ можно разделить на две основные группы:

К многопользовательским ЭВМ относятся, прежде всего, серверы, которые используются в вычислительных сетях. Серверы в сети часто специализируются и используются для выполнения различных обслуживающих функций:

В качестве однопользовательских микроЭВМ в локальных вычислительных сетях автоматизированных информационных технологий используются персональные компьютеры различной архитектуры, которые могут выступать в качестве АРМ или рабочих станций.

TL;DR: Вводная статья с описанием разных вариантов хранения данных. Будут рассмотрены принципы, описаны преимущества и недостатки, а также предпочтительные варианты использования.


Зачем это все?

Хранение данных — одно из важнейших направлений развития компьютеров, возникшее после появления энергонезависимых запоминающих устройств. Системы хранения данных разных масштабов применяются повсеместно: в банках, магазинах, предприятиях. По мере роста требований к хранимым данным растет сложность хранилищ данных.

Надежно хранить данные в больших объемах, а также выдерживать отказы физических носителей — весьма интересная и сложная инженерная задача.

Хранение данных

Под хранением обычно понимают запись данных на некоторые накопители данных, с целью их (данных) дальнейшего использования. Опустим исторические варианты организации хранения, рассмотрим подробнее классификацию систем хранения по разным критериям. Я выбрал следующие критерии для классификации: по способу подключения, по типу используемых носителей, по форме хранения данных, по реализации.

По способу подключения есть следующие варианты:

  • Внутреннее. Сюда относятся классическое подключение дисков в компьютерах, накопители данных устанавливаются непосредственно в том же корпусе, где и будут использоваться. Типовые шины для подключения — SATA, SAS, из устаревших — IDE, SCSI.



подключение дисков в сервере

  • Внешнее. Подразумевается подключение накопителей с использованием некоторой внешней шины, например FC, SAS, IB, либо с использованием высокоскоростных сетевых карт.



дисковая полка, подключаемая по FC

По типу используемых накопителей возможно выделить:

  • Дисковые. Предельно простой и вероятно наиболее распространенный вариант до сих пор, в качестве накопителей используются жесткие диски
  • Ленточные. В качестве накопителей используются запоминающие устройства с носителем на магнитной ленте. Наиболее частое применение — организация резервного копирования.
  • Flash. В качестве накопителей применяются твердотельные диски, они же SSD. Наиболее перспективный и быстрый способ организации хранилищ, по емкости SSD уже фактически сравнялись с жесткими дисками (местами и более емкие). Однако по стоимости хранения они все еще дороже.
  • Гибридные. Совмещающие в одной системе как жесткие диски, так и SSD. Являются промежуточным вариантом, совмещающим достоинства и недостатки дисковых и flash хранилищ.

Если рассматривать форму хранения данных, то явно выделяются следующие:

  • Файлы (именованные области данных). Наиболее популярный тип хранения данных — структура подразумевает хранение данных, одинаковое для пользователя и для накопителя.
  • Блоки. Одинаковые по размеру области, при этом структура данных задается пользователем. Характерной особенностью является оптимизация скорости доступа за счет отсутствия слоя преобразования блоки-файлы, присутствующего в предыдущем способе.
  • Объекты. Данные хранятся в плоской файловой структуре в виде объектов с метаданными.


По реализации достаточно сложно провести четкие границы, однако можно отметить:

  • аппаратные, например RAID и HBA контроллеры, специализированные СХД.



RAID контроллер от компании Fujitsu

  • Программные. Например реализации RAID, включая файловые системы (например, BtrFS), специализированные сетевые файловые системы (NFS) и протоколы (iSCSI), а также SDS



пример организации LVM с шифрованием и избыточностью в виртуальной машине Linux в облаке Azure

Давайте рассмотрим более детально некоторые технологии, их достоинства и недостатки.

Direct Attached Storage — это исторически первый вариант подключения носителей, применяемый до сих пор. Накопитель, с точки зрения компьютера, в котором он установлен, используется монопольно, обращение с накопителем происходит поблочно, обеспечивая максимальную скорость обмена данными с накопителем с минимальными задержками. Также это наиболее дешевый вариант организации системы хранения данных, однако не лишенный своих недостатков. К примеру если нужно организовать хранение данных предприятия на нескольких серверах, то такой способ организации не позволяет совместное использование дисков разных серверов между собой, так что система хранения данных будет не оптимальной: некоторые сервера будут испытывать недостаток дискового пространства, другие же — не будут полностью его утилизировать:

Конфигурации систем с единственным накопителем применяются чаще всего для нетребовательных нагрузок, обычно для домашнего применения. Для профессиональных целей, а также промышленного применения чаще всего используется несколько накопителей, объединенных в RAID-массив программно, либо с помощью аппаратной карты RAID для достижения отказоустойчивости и\или более высокой скорости работы, чем единичный накопитель. Также есть возможность организации кэширования наиболее часто используемых данных на более быстром, но менее емком твердотельном накопителе для достижения и большой емкости и большой скорости работы дисковой подсистемы компьютера.

Storage area network, она же сеть хранения данных, является технологией организации системы хранения данных с использованием выделенной сети, позволяя таким образом подключать диски к серверам с использованием специализированного оборудования. Так решается вопрос с утилизацией дискового пространства серверами, а также устраняются точки отказа, неизбежно присутствующие в системах хранения данных на основе DAS. Сеть хранения данных чаще всего использует технологию Fibre Channel, однако явной привязки к технологии передачи данных — нет. Накопители используются в блочном режиме, для общения с накопителями используются протоколы SCSI и NVMe, инкапсулируемые в кадры FC, либо в стандартные пакеты TCP, например в случае использования SAN на основе iSCSI.


Давайте разберем более детально устройство SAN, для этого логически разделим ее на две важных части, сервера с HBA и дисковые полки, как оконечные устройства, а также коммутаторы (в больших системах — маршрутизаторы) и кабели, как средства построения сети. HBA — специализированный контроллер, размещаемый в сервере, подключаемом к SAN. Через этот контроллер сервер будет «видеть» диски, размещаемые в дисковых полках. Сервера и дисковые полки не обязательно должны размещаться рядом, хотя для достижения высокой производительности и малых задержек это рекомендуется. Сервера и полки подключаются к коммутатору, который организует общую среду передачи данных. Коммутаторы могут также соединяться с собой с помощью межкоммутаторных соединений, совокупность всех коммутаторов и их соединений называется фабрикой. Есть разные варианты реализации фабрики, я не буду тут останавливаться подробно. Для отказоустойчивости рекомендуется подключать минимум две фабрики к каждому HBA в сервере (иногда ставят несколько HBA) и к каждой дисковой полке, чтобы коммутаторы не стали точкой отказа SAN.

Недостатками такой системы являются большая стоимость и сложность, поскольку для обеспечения отказоустойчивости требуется обеспечить несколько путей доступа (multipath) серверов к дисковым полкам, а значит, как минимум, задублировать фабрики. Также в силу физических ограничений (скорость света в общем и емкость передачи данных в информационной матрице коммутаторов в частности) хоть и существует возможность неограниченного подключения устройств между собой, на практике чаще всего есть ограничения по числу соединений (в том числе и между коммутаторами), числу дисковых полок и тому подобное.

Network attached storage, или сетевое файловое хранилище, представляет дисковые ресурсы в виде файлов (или объектов) с использованием сетевых протоколов, например NFS, SMB и прочих. Принципиально базируется на DAS, но ключевым отличием является предоставление общего файлового доступа. Так как работа ведется по сети — сама система хранения может быть сколько угодно далеко от потребителей (в разумных пределах разумеется), но это же является и недостатком в случае организации на предприятиях или в датацентрах, поскольку для работы утилизируется полоса пропускания основной сети — что, однако, может быть нивелировано с использованием выделенных сетевых карт для доступа к NAS. Также по сравнению с SAN упрощается работа клиентов, поскольку сервер NAS берет на себя все вопросы по общему доступу и т.п.


Unified storage

Универсальные системы, позволяющие совмещать в себе как функции NAS так и SAN. Чаще всего по реализации это SAN, в которой есть возможность активировать файловый доступ к дисковому пространству. Для этого устанавливаются дополнительные сетевые карты (или используются уже существующие, если SAN построена на их основе), после чего создается файловая система на некотором блочном устройстве — и уже она раздается по сети клиентам через некоторый файловый протокол, например NFS.

Software-defined storage — программно определяемое хранилище данных, основанное на DAS, при котором дисковые подсистемы нескольких серверов логически объединяются между собой в кластер, который дает своим клиентам доступ к общему дисковому пространству.

Наиболее яркими представителями являются GlusterFS и Ceph, но также подобные вещи можно сделать и традиционными средствами (например на основе LVM2, программной реализации iSCSI и NFS).


N.B. редактора: У вас есть возможность изучить технологию сетевого хранилища Ceph, чтобы использовать в своих проектах для повышения отказоустойчивости, на нашем практическим курсе по Ceph. В начале курса вы получите системные знания по базовым понятиям и терминам, а по окончании научитесь полноценно устанавливать, настраивать и управлять Ceph. Детали и полная программа курса здесь.



Пример SDS на основе GlusterFS

Из преимуществ SDS — можно построить отказоустойчивую производительную реплицируемую систему хранения данных с использованием обычного, возможно даже устаревшего оборудования. Если убрать зависимость от основной сети, то есть добавить выделенные сетевые карты для работы SDS, то получается решение с преимуществами больших SAN\NAS, но без присущих им недостатков. Я считаю, что за подобными системами — будущее, особенно с учетом того, что быстрая сетевая инфраструктура более универсальная (ее можно использовать и для других целей), а также дешевеет гораздо быстрее, чем специализированное оборудование для построения SAN. Недостатком можно назвать увеличение сложности по сравнению с обычным NAS, а также излишней перегруженностью (нужно больше оборудования) в условиях малых систем хранения данных.

Гиперконвергентные системы

Подавляющее большинство систем хранения данных используется для организации дисков виртуальных машин, при использовании SAN неизбежно происходит удорожание инфраструктуры. Но если объединить дисковые системы серверов с помощью SDS, а процессорные ресурсы и оперативную память с помощью гипервизоров отдавать виртуальным машинам, использующим дисковые ресурсы этой SDS — получится неплохо сэкономить. Такой подход с тесной интеграцией хранилища совместно с другими ресурсами называется гиперконвергентностью. Ключевой особенностью тут является способность почти бесконечного роста при нехватке ресурсов, поскольку если не хватает ресурсов, достаточно добавить еще один сервер с дисками к общей системе, чтобы нарастить ее. На практике обычно есть ограничения, но в целом наращивать получается гораздо проще, чем чистую SAN. Недостатком является обычно достаточно высокая стоимость подобных решений, но в целом совокупная стоимость владения обычно снижается.


Облака и эфемерные хранилища

Логическим продолжением перехода на виртуализацию является запуск сервисов в облаках. В предельном случае сервисы разбиваются на функции, запускаемые по требованию (бессерверные вычисления, serverless). Важной особенностью тут является отсутствие состояния, то есть сервисы запускаются по требованию и потенциально могут быть запущены столько экземпляров приложения, сколько требуется для текущей нагрузки. Большинство поставщиков (GCP, Azure, Amazon и прочие) облачных решений предлагают также и доступ к хранилищам, включая файловые и блочные, а также объектные. Некоторые предлагают дополнительно облачные базы, так что приложение, рассчитанное на запуск в таком облаке, легко может работать с подобными системами хранения данных. Для того, чтобы все работало, достаточно оплатить вовремя эти услуги, для небольших приложений поставщики вообще предлагают бесплатное использование ресурсов в течение некоторого срока, либо вообще навсегда.


Из недостатков: могут заблокировать аккаунт, на котором все работает, что может привести к простоям в работе. Также могут быть проблемы со связностью и\или доступностью таких сервисов по сети, поскольку такие хранилища полностью зависят от корректной и правильной работы глобальной сети.

Заключение

Надеюсь, статья была полезной не только новичкам. Предлагаю обсудить в комментариях дополнительные возможности систем хранения данных, написать о своем опыте построения систем хранения данных.

Существует множество устройств для увеличения объема места для хранения. Узнайте, как они работают.


Объем места хранилища больше не зависит от характеристик вашего компьютера. Существует множество вариантов хранения файлов, которые позволяют экономить место на вашем компьютере, телефоне или планшете. Если ваши устройства работают медленно из-за нехватки места, вы можете выгрузить файлы на физическое устройство для хранения данных. А еще лучше, используйте более удобную технологию хранения данных и сохраняйте файлы в облаке.

Облачное хранилище

Облачные хранилища, которые не являются устройствами в полном смысле этого слова, представляют собой самый новый и гибкий тип хранилищ данных для компьютеров. Облако — это не место и не объект, а огромное количество серверов, расположенных в центрах хранения и обработки данных по всему миру. Когда вы сохраняете документ в облаке, вы храните его на этих серверах.

Поскольку все данные хранятся онлайн, облачное хранилище не предусматривает использования вторичных запоминающих устройств вашего компьютера, позволяя вам сэкономить место на них.

Облачное хранилище обеспечивает значительно больший объем места, чем USB-накопители и другие физические устройства. Это избавит вас от необходимости искать нужный файл по всем устройствам.

Внешние жесткие диски и твердотельные накопители, популярные благодаря своей портативности, также уступают облачному хранилищу. Существует не так уж много карманных внешних жестких дисков. Хотя они меньше по размеру и легче по весу, чем внутренние накопители, это все-таки материальные устройства. А облако может «сопровождать» вас где угодно: оно не занимает места и не имеет физических уязвимостей, как внешний диск.

Внешние запоминающие устройства также были популярны как быстрый вариант передачи файлов, но они полезны только в том случае, если вы имеете доступ к каждому физическому устройству. Сейчас облачные вычисления стремительно развиваются, так как многие компании переходят на удаленную работу. Вряд ли вы будете отправлять USB-накопитель по почте за границу, чтобы передать большой файл коллеге. Облако обеспечивает связь между удаленными сотрудниками, упрощая совместную работу на расстоянии.

Если вы забудете принести на встречу жесткий диск с важными документами, у вас не будет другого выхода, кроме как вернуться за ним. Если вы сломаете или потеряете жесткий диск, вряд ли вы сможете восстановить данные. С облачным хранилищем нет таких рисков: для ваших данных создаются резервные копии, и вы имеете к ним доступ в любое время и из любой точки, где есть подключение к Интернету.

Благодаря умной синхронизации Dropbox вы можете получить доступ к любому файлу в Dropbox со своего компьютера. Это точно так же, как если бы ваши файлы хранились локально, только при этом они не занимают места на вашем диске. Если вы храните все ваши файлы в Dropbox, они всегда находятся на расстоянии одного клика. Они доступны на любом устройстве с подключением к Интернету, и вы можете мгновенно поделиться ими.

Внешние запоминающие устройства

Помимо носителей информации, размещенных в компьютере, существуют также внешние цифровые запоминающие устройства. Они обычно используются с целью увеличения объема места для хранения данных, когда на компьютере остается мало места, а также чтобы обеспечить большую мобильность или облегчить передачу файлов с одного устройства на другое.

Внешние жесткие диски и твердотельные накопители

В качестве внешних накопителей можно использовать как жесткие диски, так и твердотельные накопители. Как правило, среди внешних запоминающих устройств они обеспечивают самый большой объем места: внешние жесткие диски — до 20 ТБ памяти, а внешние твердотельные накопители (по разумной цене) — до 8 ТБ.

Внешние жесткие диски и твердотельные накопители работают точно так же, как и их внутренние аналоги. Большинство внешних накопителей можно подключить к любому компьютеру; они не привязаны к одному устройству, поэтому могут идеально использоваться для передачи файлов между устройствами.

Устройства флеш-памяти

Мы уже упоминали флеш-память, когда обсуждали твердотельные накопители. Устройства флеш-памяти состоят из триллионов взаимосвязанных ячеек флеш-памяти, в которых хранятся данные. Эти ячейки содержат миллионы транзисторов, которые при включении и выключении представляют единицы и нули в двоичном коде, а компьютер считывает и записывает информацию.

Один из самых известных типов устройства флеш-памяти — это USB-накопитель. Эти небольшие портативные запоминающие устройства, также известные как флеш-накопители, или «флешки», долгое время широко использовались в качестве дополнительных компьютерных запоминающих устройств. До того как Интернет предоставил нам возможность легко и быстро делиться файлами, USB-накопители были незаменимы для перемещения файлов с одного устройства на другое. Однако их можно использовать только на устройствах с USB-портом. В большинстве старых компьютеров присутствует USB-порт, но для более новых может потребоваться переходник.

В наши дни USB-накопитель может вместить до 2 ТБ данных. USB-накопители обойдутся дороже, чем внешний жесткий диск, но они идеально подходят для хранения и переноса небольших файлов благодаря своей простоте и удобству.

Помимо USB-накопителей, к устройствам флеш-памяти также относятся SD-карты и карты памяти других типов, которые часто используются в качестве носителей информации в цифровых камерах.

Оптические запоминающие устройства

Компакт-диски, DVD-диски и диски Blu-Ray используются не только для воспроизведения музыки и видео, но и как запоминающие устройства. Они относятся к категории оптических запоминающих устройств, или оптических носителей.

Двоичный код хранится на этих дисках в виде микроскопических углублений на дорожке, идущей по спирали от центра диска. Работающий диск вращается с постоянной скоростью, а лазер на дисковом накопителе сканирует дорожку на диске. То, как луч лазера отражается или рассеивается на участке дорожки, определяет, записаны ли на нем 0 или 1 в двоичном коде.

DVD имеет более узкую спиральную дорожку, чем компакт-диск, что позволяет хранить больше данных при том же размере диска, а в дисководах DVD используется более тонкий красный лазер, чем в дисководах компакт-дисков. DVD также могут быть двухслойными, что увеличивает их емкость. Blu-Ray — это технология более высокого уровня, обеспечивающая хранение данных на нескольких слоях с еще более узкими дорожками, для считывания которых требуется еще более точный синий лазер.

  • Диски типа CD-ROM, DVD-ROM и BD-ROM относятся к оптическим дискам, предназначенным только для чтения. Записанные на них данные являются постоянными, их невозможно удалить или перезаписать. Поэтому эти типы дисков нельзя использовать в качестве личного хранилища. Они обычно используются для установки программного обеспечения.
  • На диски формата CD-R, DVD-R и BD-R можно записывать информацию, но они не предусматривают перезаписи. Какие бы данные вы ни сохранили на чистом диске одноразовой записи, они останутся на нем навсегда. На этих дисках можно хранить данные, но они не обеспечивают такой гибкости, как другие запоминающие устройства.
  • Диски типа CD-RW, DVD-RW и BD-RE предусматривают перезапись. Поэтому вы можете сколько угодно записывать на них новые данные и удалять ненужные. Диски CD-RW долгое время оставались самым популярным вариантом внешнего хранилища, но их место постепенно стали занимать новые технологии, такие как флеш-память. Большинство настольных компьютеров и многие ноутбуки имеют дисковод для CD- или DVD-дисков.

На компакт-диске можно хранить до 700 МБ данных, на DVD-DL — до 8,5 ГБ, а на Blu-Ray — от 25 до 128 ГБ.

Дискеты

Сейчас эти устройства считаются устаревшими, но мы не можем обсуждать запоминающие устройства, не упомянув гибкие диски, или дискеты. Дискеты были первыми широко доступными портативными съемными запоминающими устройствами. Вот почему большинство значков «Сохранить» выглядят именно так, представляя собой изображение дискеты. Они работают по тому же принципу, что и жесткие диски, но в гораздо меньшем масштабе.

Емкость дискет никогда не превышала 200 МБ, пока CD-RW и флеш-накопители не стали самыми популярными носителями информации. iMac стал первым персональным компьютером, выпущенным без дисковода гибких дисков в 1998 году. С этого момента закончилось более чем 30-летнее господство гибких дисков.

Хранение данных в компьютерных системах

Запоминающее устройство — это элемент аппаратного обеспечения, которое в основном используется для хранения данных. В каждом настольном компьютере, ноутбуке, планшете и смартфоне есть тот или иной вид запоминающего устройства. Также существуют автономные внешние накопители, которые используются с разными устройствами.

Запоминающие устройства нужны не только для хранения файлов, но и для запуска задач и приложений. Любой файл, который вы создаете или сохраняете на своем компьютере, хранится на запоминающем устройстве компьютера. На нем же хранятся ваши приложения, а также операционная система вашего компьютера.

По мере развития технологий запоминающие устройства претерпели значительные изменения. На сегодняшний день существуют запоминающие устройства разных форм и размеров, а также появились типы запоминающих устройств, которые могут использоваться с разными устройствами и выполнять разные функции.

Запоминающие устройства также называют носителями данных. Размер цифровых запоминающих устройств измеряется в мегабайтах (МБ), гигабайтах (ГБ), а на сегодня — уже и в терабайтах (ТБ).

Некоторые запоминающие устройства для компьютеров обеспечивают постоянное хранение информации, а другие предназначены только для временного хранения данных. Каждый компьютер имеет первичное и вторичное запоминающее устройство. Первичное работает как кратковременное запоминающее устройство, а вторичное — как долговременное.

Первичное запоминающее устройство: оперативная память (ОЗУ)

Оперативная память, или ОЗУ, — это первичное запоминающее устройство компьютера.

Когда вы работаете с файлом на своем компьютере, он временно сохраняет данные в оперативной памяти. ОЗУ обеспечивает выполнение повседневных задач, таких как открытие приложений, загрузка веб-страниц, редактирование документов или функционирование игр. Оперативная память позволяет быстро переключаться между задачами без потери той части работы, которая уже была выполнена. По сути, чем больше объем оперативной памяти вашего компьютера, тем более слаженно и быстро вы сможете работать над несколькими задачами одновременно.

ОЗУ — энергозависимая память, то есть она не обеспечивает хранение информации после выключения системы. Например, если вы скопируете фрагмент текста, перезагрузите компьютер, а затем попытаетесь вставить этот блок текста в документ, вы обнаружите, что ваш компьютер не запомнил скопированный вами текст. Это произошло по той причине, что ОЗУ обеспечивает только временное хранение.

ОЗУ позволяет компьютеру получать доступ к данным в произвольном порядке, обеспечивая их более быстрое считывание и запись, в отличие от вторичного запоминающего устройства.

Вторичные запоминающие устройства: жесткие диски (HDD) и твердотельные накопители (SSD)

Кроме ОЗУ на каждом компьютере также есть другой накопитель информации, который используется для долгосрочного хранения данных. Это вторичное запоминающее устройство. Любой файл, который вы создаете или скачиваете на свой компьютер, сохраняется на его вторичное запоминающее устройство. В компьютерах используются два типа вторичных запоминающих устройств: жесткие диски и твердотельные накопители. Жесткие диски — более традиционный вариант, но твердотельные накопители быстро обгоняют их в популярности.

Вторичные запоминающие устройства часто являются съемными, поэтому их можно заменять или модернизировать, а также перемещать на другие компьютеры. Однако есть и исключения, например MacBook, который не имеет съемного запоминающего устройства.

Жесткие диски (HDD)

HDD — это оригинальные жесткие диски. Они представляют собой магнитные запоминающие устройства, которые существуют с 1950-х годов, хотя со временем они существенно эволюционировали.

Жесткий диск состоит из набора вращающихся металлических дисков, называемых пластинами. Каждая вращающаяся пластина содержит триллионы крошечных фрагментов, которые можно намагничивать, чтобы записывать на них биты информации (бинарный код, состоящий из нулей и единиц). Рычаг-коромысло с головкой для записи и чтения позволяет сканировать вращающиеся магнитные пластины для записи информации на жесткий диск или определения магнитного заряда для считывания информации с него.

Жесткие диски используются для телевизионных и спутниковых записывающих устройств или серверов, а также для хранения данных на ноутбуках и ПК.

Твердотельные накопители (SSD)

Твердотельные накопители появились гораздо позже, в 90-х годах. В них нет никаких магнитов и дисков, вместо этого используется флеш-память типа NAND. В твердотельных накопителях используются полупроводники, которые хранят информацию, изменяя электрический ток цепей, содержащихся в накопителе. Это означает, что, в отличие от жестких дисков, твердотельные накопители не имеют движущихся частей.

Поэтому твердотельные накопители не только работают быстрее и плавнее, чем жесткие диски (жестким дискам требуется больше времени для сбора информации из-за механической природы их пластин и головок), но и, как правило, служат дольше (из-за большого количества сложных движущихся частей жесткие диски больше подвержены повреждениям и износу).

Твердотельные накопители используются не только в новых ПК и ноутбуках высокого класса, но и в смартфонах, планшетах, а иногда и в видеокамерах.

Лучший способ хранения больших объемов данных

Если вам не хватает места на ваших устройствах, пришло время поискать альтернативные устройства для хранения данных. Даже внешние запоминающие устройства, такие как флеш-накопители, могут сломаться, потеряться, или на них может закончиться место. Вот почему лучше всего хранить все свои файлы в облаке. Это безопаснее, быстрее и удобнее.

Памятью ЭВМ называется совокупность устройств, служащих для запоминания, хранения и выдачи информации.

Отдельные устройства, входящие в эту совокупность, называются запоминающими устройствами ( ЗУ ) того или иного типа [7].

Термин " запоминающее устройство " обычно используется, когда речь идет о принципе построения некоторого устройства памяти (например, полупроводниковое ЗУ , ЗУ на жестком магнитном диске и т.п.), а термин " память " - когда хотят подчеркнуть выполняемую устройством памяти логическую функцию или место расположения в составе оборудования ЭВМ (например, оперативная память - ОП, внешняя память и т.п.). В тех вопросах, где эти отличия не имеют принципиального значения, термины " память " и " запоминающее устройство " мы будем использовать как синонимы.

Запоминающие устройства играют важную роль в общей структуре ЭВМ. По некоторым оценкам производительность компьютера на разных классах задач на 40-50% определяется характеристиками ЗУ различных типов, входящих в его состав.

К основным параметрам, характеризующим запоминающие устройства , относятся емкость и быстродействие .

Емкость памяти - это максимальное количество данных, которое в ней может храниться.

Емкость запоминающего устройства измеряется количеством адресуемых элементов (ячеек) ЗУ и длиной ячейки в битах. В настоящее время практически все запоминающие устройства в качестве минимально адресуемого элемента используют 1 байт (1 байт = 8 двоичных разрядов ( бит )). Поэтому емкость памяти обычно определяется в байтах, килобайтах (1Кбайт=2 10 байт ), мегабайтах (1Мбайт = 2 20 байт ), гигабайтах (1Гбайт = 2 30 байт ) и т.д.

За одно обращение к запоминающему устройству производится считывание или запись некоторой единицы данных, называемой словом, различной для устройств разного типа. Это определяет разную организацию памяти. Например, память объемом 1 мегабайт может быть организована как 1М слов по 1 байту, или 512К слов по 2 байта каждое, или 256К слов по 4 байта и т.д.

В то же время, в каждой ЭВМ используется свое понятие машинного слова, которое применяется при определении архитектуры компьютера, в частности при его программировании, и не зависит от размерности слова памяти, используемой для построения данной ЭВМ. Например, компьютеры с архитектурой IBM PC имеют машинное слово длиной 2 байта.

Быстродействие памяти определяется продолжительностью операции обращения, то есть временем, затрачиваемым на поиск нужной информации в памяти и на ее считывание, или временем на поиск места в памяти, предназначаемого для хранения данной информации, и на ее запись :

где tобр сч - быстродействие ЗУ при считывании информации; tобр зп - быстродействие ЗУ при записи.

Классификация запоминающих устройств

Запоминающие устройства можно классифицировать по целому ряду параметров и признаков. На рис.5.1 представлена классификация по типу обращения и организации доступа к ячейкам ЗУ .

По типу обращения ЗУ делятся на устройства, допускающие как чтение, так и запись информации, и постоянные запоминающие устройства (ПЗУ), предназначенные только для чтения записанных в них данных ( ROM - read only memory ). ЗУ первого типа используются в процессе работы процессора для хранения выполняемых программ, исходных данных, промежуточных и окончательных результатов. В ПЗУ , как правило, хранятся системные программы , необходимые для запуска компьютера в работу, а также константы . В некоторых ЭВМ, предназначенных, например, для работы в системах управления по одним и тем же неизменяемым алгоритмам, все программное обеспечение может храниться в ПЗУ .

В ЗУ с произвольным доступом ( RAM - random access memory ) время доступа не зависит от места расположения участка памяти (например, ОЗУ ).

В ЗУ с прямым (циклическим) доступом благодаря непрерывному вращению носителя информации (например, магнитный диск - МД) возможность обращения к некоторому участку носителя циклически повторяется. Время доступа здесь зависит от взаимного расположения этого участка и головок чтения/записи и во многом определяется скоростью вращения носителя.

В ЗУ с последовательным доступом производится последовательный просмотр участков носителя информации, пока нужный участок не займет некоторое нужное положение напротив головок чтения/записи (например, магнитные ленты - МЛ).

Как отмечалось выше, основные характеристики запоминающих устройств - это емкость и быстродействие . Идеальное запоминающее устройство должно обладать бесконечно большой емкостью и иметь бесконечно малое время обращения. На практике эти параметры находятся в противоречии друг другу: в рамках одного типа ЗУ улучшение одного из них ведет к ухудшению значения другого. К тому же следует иметь в виду и экономическую целесообразность построения запоминающего устройства с теми или иными характеристиками при данном уровне развития технологии. Поэтому в настоящее время запоминающие устройства компьютера, как это и предполагал Нейман, строятся по иерархическому принципу (рис. 5.2).


Рис. 5.2. Иерархическая организация памяти в современных ЭВМ

Иерархическая структура памяти позволяет экономически эффективно сочетать хранение больших объемов информации с быстрым доступом к информации в процессе ее обработки.

На нижнем уровне иерархии находится регистровая память - набор регистров, входящих непосредственно в состав микропроцессора (центрального процессора - CPU ). Регистры CPU программно доступны и хранят информацию, наиболее часто используемую при выполнении программы: промежуточные результаты, составные части адресов, счетчики циклов и т.д. Регистровая память имеет относительно небольшой объем (до нескольких десятков машинных слов). РП работает на частоте процессора, поэтому время доступа к ней минимально. Например, при частоте работы процессора 2 ГГц время обращения к его регистрам составит всего 0,5 нс.

Оперативная память - устройство, которое служит для хранения информации (программ, исходных данных, промежуточных и конечных результатов обработки), непосредственно используемой в ходе выполнения программы в процессоре. В настоящее время объем ОП персональных компьютеров составляет несколько сотен мегабайт . Оперативная память работает на частоте системной шины и требует 6-8 циклов синхронизации шины для обращения к ней. Так, при частоте работы системной шины 100 МГц (при этом период равен 10 нс) время обращения к оперативной памяти составит несколько десятков наносекунд.

Для заполнения пробела между РП и ОП по объему и времени обращения в настоящее время используется кэш-память , которая организована как более быстродействующая (и, следовательно, более дорогая) статическая оперативная память со специальным механизмом записи и считывания информации и предназначена для хранения информации, наиболее часто используемой при работе программы. Как правило, часть кэш-памяти располагается непосредственно на кристалле микропроцессора (внутренний кэш ), а часть - вне его (внешняя кэш-память ). Кэш-память программно недоступна. Для обращения к ней используются аппаратные средства процессора и компьютера.

Внешняя память организуется, как правило, на магнитных и оптических дисках, магнитных лентах. Емкость дисковой памяти достигает десятков гигабайт при времени обращения менее 1 мкс. Магнитные ленты вследствие своего малого быстродействия и большой емкости используются в настоящее время в основном только как устройства резервного копирования данных, обращение к которым происходит редко, а может быть и никогда. Время обращения для них может достигать нескольких десятков секунд.

Следует отметить, что электронная вычислительная техника развивается чрезвычайно быстрыми темпами. Так, согласно эмпирическому "закону Мура", производительность компьютера удваивается приблизительно каждые 18 месяцев. Поэтому все приводимые в данном пособии количественные характеристики служат по большей части только для отражения основных соотношений и тенденций в развитии тех или иных компонентов и устройств компьютеров.

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Лисиенкова Любовь Николаевна, Комарова Людмила Юрьевна

Представлен анализ основных видов памяти на текущий момент. Проанализированы существующие запоминающие устройства , а также системы облачного хранения. Определены перспективы развития устройств хранения данных путем исследования текущих разработок в данной области.

Похожие темы научных работ по компьютерным и информационным наукам , автор научной работы — Лисиенкова Любовь Николаевна, Комарова Людмила Юрьевна

Перспективные технологии производства памяти. Современное состояние Микросхемы энергонезависимой памяти: накануне революции Сравнение новых технологий энергонезависимой памяти Исследование закономерностей развития энергонезависимой памяти i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

REVIEW OF MODERN STORAGE MEDIA

This work gives the analvsis of basic tvpes of memorv at current time. There is an analysis of existing types of storage media and systems of cloud storage. The article determines the perspectives of storage media development based on the research of ongoing developments in this area.

Текст научной работы на тему «ОБЗОР СОВРЕМЕННЫХ УСТРОЙСТВ ХРАНЕНИЯ ДАННЫХ»

STAGES OF IMPLEMENTA TION OF THE LABOR PROTECTION MANAGEMENT

The main stages of implementation of labor protection management systems are considered. The main tasks of the management system in the industry and the characteristic properties of management systems are described.

Key word: occupational safety, systems and criteria of occupational health and safety management.

ОБЗОР СОВРЕМЕННЫХ УСТРОЙСТВ ХРАНЕНИЯ ДАННЫХ

Л.Н. Лисиенкова, Л.Ю. Комарова

Представлен анализ основных видов памяти на текущий момент. Проанализированы существующие запоминающие устройства, а также системы облачного хранения. Определены перспективы развития устройств хранения данных путем исследования текущих разработок в данной области.

Ключевые слова: запоминающие устройства, информация, память, накопители, диск.

Введение. Современные компьютерные системы состоят из обширного множества компонентов. Одним из них является компьютерная память. Это важнейший элемент компьютера, который не просто хранит информацию пользователя, но также принимает участие в работе процессора и других комплектующих. На память возлагается большая роль, поэтому к её выбору нужно подходить разумно. Данная статья поможет определиться с тем, что такое память, какой она бывает, какие запоминающие устройства существуют на данный момент и, каковы перспективы их развития.

Виды памяти. Компьютерная память - это определенная среда для хранения информации, которая может использоваться при вычислениях. Без него невозможно представить нормальную работу компьютера.

Память можно разделить на 2 типа: внутреннюю и внешнюю.

Различие между этими двумя типами памяти заключается в том, что внутренняя память является неразрывным элементом компьютера, обеспечивающим его работоспособность. Внешняя память нужна как раз для хранения информации и данных.

Различают следующие виды внутренней памяти [1].

1. Оперативная - необходима для хранения временных данных, с которыми напрямую работает процессор.

2. Постоянная - содержит в себе инструменты для контроля за состоянием персонального компьютера (ПК); программы, отвечающие за запуск системы, исполнение основных действий и её настройки BIOS (BasicInput/OutputSystem - базовая система ввода-вывода).

3. Полупостоянная - содержит в себе данные о параметрах настройки конкретного ПК.

4. Кэш-память - это своеобразный буфер между оперативной памятью и процессором, который ускоряет их скорость взаимодействия.

5. Видеопамять - нужна для хранения видеофрагментов, которые должны выводиться на экран. Является частью видеоконтроллера.

Виды запоминающих устройств [2]. Запоминающее устройство -устройство, принимающее данные и сохраняющее их для последующего считывания. Одной из проблем, возникающих при хранении больших объёмов информации, является оптимальный выбор носителей. Каждый из них имеет свои особенности. Рассмотрим некоторые из них.

Накопители на магнитной ленте. Они основаны на принципе магнитной записи на ленточных носителях, осуществляющих последовательный доступ к данным (рис. 1).

Рис. 1. Стример (накопитель на магнитной ленте) [3]

Достоинства: низкое энергопотребление, низкая стоимость данных, высокая надежность, возможность хранить большие объёмы данных; не требует особого ухода.

Недостатки: высокая стоимость накопителей; низкая скорость доступа к произвольным данным.

компакт-диск (Compact Disc, CD) - носитель информации в виде пластикового диска с отверстием в центре (см. рис. 2). Процесс записи и считывания осуществляется при помощи лазера. Имеет малый объемов хранения;

DVD (Digital Versatile Disc - цифровой многоцелевой диск) - по виду похож на компакт-диск, но имеет более плотную структуру рабочей поверхности, позволяющую хранить больший объём информации;

Blu-ray Disc (BD) - новый формат оптических носителей, используемый для записи данных с повышенной плотностью. Их особенность -возможность многослойного хранения.

Рис. 2. Стопка CD-дисков [4]

1. Накопитель на жёстких магнитных дисках (Hard Disk Drive, HDD) - устройство хранения информации, основанное на принципе магнитной записи (см. рис. 3). Является основным устройством хранения информации в ПК.

Достоинства: небольшая стоимость, большая емкость.

Недостатки: избыточное энергопотребление, ухудшение производительности со временем, чувствительность к механическим повреждениям.

2. Твердотельный накопитель (SSD, solid-state drive) - запоминающее устройство, имеющее те же функции, что и жёсткий диск, но не содержащее движущихся элементов внутри корпуса (см. рис. 3). В таких накопителях используется энергонезависимая флэш-память.

Достоинства: высокая скорость работы, низкое энергопотребление, устойчивость к механическим повреждениям, бесшумная работа.

Недостатки: высокая стоимость, небольшая емкость.

Рис. 3. HDD- накопители (слева) и SSD-накопители (справа) [5]

Системы облачного хранения данных. На сегодняшний день облачные вычисления состоят из тысячи серверов, которые располагаются в ЦОД (Центр обработки данных) и предоставляют пользователям компьютерные ресурсы и мощности в виде интернет сервиса. Множество приложений используют системы облачного хранения [6]. Некоторые виды облачных вычислений [7]:

сервис хранения представляет собой дисковое пространство используемое пользователями как внешнее хранилище, «облако». Примеры: Google Drive, Яндекс Диск;

платформа как сервис. Является расширением сервиса хранения. Обладает большим набором инструментов для решения прикладных задач. В нем пользователь может задать свои собственные настройки сервера. Пример облачной платформы - 1C: предприятие;

сервис - компьютер. Позволяет использовать компьютер удаленно с большого расстояния, используя компьютерную сеть.

С развитием технологий появилась возможность на одном компьютере или сервере с помощью специальных программных эмуляторов создавать виртуальные версии компьютера, имеющие почти те же возможности, что и реальный. Подобный виртуальный компьютер в облаке имеет ряд преимуществ: надежность, высокая гибкость в настройке, пониженная стоимость владения и обслуживания, удаленный доступ с любого устройства с интернетом. Сравнительный анализ универсальных облачных сервисов дан в табл.1.

Сравнительный анализ универсальных облачных сервисов [8]

Ivideon CamDrive SpaceCam ForPost YouLook GoodCam

Сотрудничество с брендами Phillis, Hik-vision, Samsung, D-Link BEWARD RVI Hikvision, Zavio Hikvision, AXIS GoodCam

Приложения для ПК Windows, Linux, MaxOS - - - - Windows

Мобильные приложения IOS, Android, Windows - IOS, Android IOS, Android -

Средняя цена бизнес-тарифа, руб. в месяц 450 400 400 450 1490 450

Перспективы развития запоминающих устройств. Поиски новых типов памяти ведутся уже достаточно давно. Со временем все сильнее появляется нужда в новых видах энергонезависимых запоминающих устройств (ЗУ), по быстродействию сопоставимых с ОЗУ и одновременно выдерживающих практически неограниченное число циклов перезаписи данных.

Рассмотрим некоторые из текущих разработок [9]

FRAM (Ferroelectric Random Access Memory).

Одной из перспективных технологий RAM является сегнетоэлек-трическая память произвольного доступа. Его особенность заключается в использовании в ячейках памяти сегнетоэлектрика. Данный материал способен к самопроизвольной электрической поляризации при определенной температуре.

Достоинства: благодаря использованию сегнетоэлектриков, устройство не подвержено влиянию магнитных полей, что повышает защиту хранящейся информации.

Недостатки: большой размер ячеек, из-за чего нет возможности создавать микросхемы памяти большого объема с малыми габаритами; в силу особенностей своего строения, случайное отключение питания во время операции чтения может привести к потере данных; повышенное энергопотребление.

MRAM (Magnetoresistive Random Access Memory). Ещё одна перспективная технология, которая уже в ближайшем будущем может стать довольно конкурентоспособной на рынке. Чипы MRAM могут заменить флеш-память во многих гаджетах. Основной особенностью магниторези-стивной памяти, отличающей её от многих других RAM, является использование магнитных элементов памяти [10]. Сравнение характеристик разных видов RAM приведено в табл. 2.

Достоинства: информацию можно сохранять без питающего напряжения 10 лет и более, поскольку данные сохраняются в ячейках за счет намагниченности, а не за счет заряда; почти неограниченное число циклов перезаписи. Отсутствует эффект постепенной деградации внутренней структуры битовой ячейки. Благодаря этому число циклов перезаписи практически бесконечно (> 1016); данные не будут утеряны вследствие аварийного отключения питающего напряжения.

Недостатки: высокая стоимость.

PCM (Phase change Random Access Memory)

Память на основе фазового перехода является новым типом энергонезависимой памяти, принцип действия которой основывается на свойстве халькогенидов быстро переходить из кристаллического состояния в аморфное и наоборот. По прогнозам, PCM может заменить память на мобильных устройствах.

Достоинства: большое количество циклов перезаписи (> 1013); малый размер ячеек памяти и соответственно высокая компактность; низкое энергопотребление.

Недостатки: из-за особенностей структуры памяти, приходится использовать более горячий и склонный к произвольному фазовому переходу материал. От этого растет стоимость.

Сравнение характеристик разных видов RAM [10]_

Вид RAM FRAM MRAM PCM

Технологический процесс F, нм 90 32 20

Площадь ячейки 15F2 6F2 4F2

Время чтения, нс 20 10 10

Время записи, нм 10 1 50

Срок хранения информации 10 лет 20 лет 20 лет

Напряжение при чтении/записи, В 1,5/1,5 1/1 1/1

В заключение можно сказать, что наиболее удачными решениями являются MRAM и PCM. Технология FRAM, к сожалению, пока что не способна с ними конкурировать в силу некоторых сложностей и особенностей при её реализации.

1. Яковлев В. Д. Память компьютера, работа с памятью // Молодежь и наука. Екатеринбург: Изд-во Уральский государственный аграрный университет. 2016. Вып.12. С. 73.

6. Ягьяева Л.Т., Молчанов Е.А., Мубаракшин Л.Ф. Сети передачи данных // Вестник Казанского технологического университета. Казань: КНИТУ, 2014. Т. 17. № 19. С. 369-371.

7. Клочек М.С., Парфенова А.С. Облачные технологии: виды и типы // Инновационное развитие. Пермь: Изд-во ИП Сигитов Т.М. 2018. Вып. 1 (18). С. 16-17.

9. Романова И. Новые виды памяти - разработки и перспективы применения // Электроника: Наука, Технология, Бизнес. М.: Изд-во Рекламно-издательский центр «Техносфера». 2010. Вып. 2. С. 26-33.

10. Коротин А.М. Перспективные виды памяти с произвольным доступом и новые уязвимости СВТ на их основе // Безопасность информационных технологий. Москва: Изд-во Классное снаряжение. 2014. Том 21. № 3. С.71-78.

REVIEW OF MODERN STORAGE MEDIA L.H. Lisienkova, L.Yu. Komarova

This work gives the analysis of basic types of memory at current time. There is an analysis of existing types of storage media and systems of cloud storage. The article determines the perspectives of storage media development based on the research of ongoing developments in this area.

Key words: storage media, information, memory, disk.

i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Komarova Lyudmila Yurievna, candidate of technical sciences, docent, luknew @yandex. ru, Russia, Moscow, Moscow Polytechnic University

ВЕРБАЛЬНАЯ МОДЕЛЬ ПРОЦЕССА ВЗАИМОДЕЙСТВИЯ ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ ОБЪЕКТА С СИСТЕМОЙ ЗЛОУМЫШЛЕННИКА

Н.В. Евглевская, А. А. Привалов, Э.А. Бударин, А.С. Лаута

Применяемые в настоящее время системы информационной безопасности телекоммуникационных сетей объектов являются недостаточно эффективными, так как в большинстве случаев анализу подлежат частные угрозы, методы их предотвращения (нейтрализации) реализуются только на уровне прикладного процесса. Представленная модель поможет должностным лицам объектов принимать адекватные решения по управлению сетями связи с целью восстановления их работоспособности, обеспечения безопасности информации и адаптации к изменившимся условиям функционирования.

Ключевые слова: угроза, уязвимость, компьютерная атака, телекоммуникационная сеть, злоумышленник.

Бесперебойная работа телекоммуникационной сети (ТКС) любого объекта обеспечивает выполнение главного производственного процесса, осуществляемого на этом объекте.

Читайте также: