Какие системы объединили возможности современных компьютеров знания и опыт специалистов экспертов

Обновлено: 04.07.2024

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Черненко В.В., Пискорская С.Ю.

Экспертные системы (ЭС) появились в результате развития систем с искусственным интеллектом. Решение задач с помощью логического вывода возможен только если база знаний ЭС содержит высококачественные знания о предметной области, тогда механизм логического вывода будет содержать информацию о том, как эти знания эффективно использовать.

Похожие темы научных работ по компьютерным и информационным наукам , автор научной работы — Черненко В.В., Пискорская С.Ю.

Содержание обучения дисциплине «Интеллектуальные информационные системы» студентов специальности «Прикладная информатика (в экономике)» Семантическая технология разработки интеллектуальных систем, ориентированная на экспертов предметной области Представление знаний в обучающих системах на основе теории нечетких множеств Использование аппарата нечеткой математики при моделировании систем поддержки принятия решений i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Текст научной работы на тему «Экспертные системы»

Актуальные проблемы авиации и космонавтики. Социально-экономические и гуманитарные науки

только измерение количества информации, выступающее как некоторая формальная процедура. Более расширенное представление об информации было разработано в философии, где информация предстает как один из главных, определяющих сосуществование разнонаправленных тенденций и процессов, источников развития в природе и обществе, условие стабильности, и одновременно раскрывает проблему воздействия знания на само знание.

Проблема воздействия знания на само знание вводит нас в мир информации, информатизации общества и его результата - в мир информационного общества.

Информатизация - политика и процессы, направленные на построение и развитие телекоммуникационной инфраструктуры, объединяющей территориально распределенные информационные ресурсы. Процесс информатизации является следствием развития информационных технологий и трансформации технологического, продукт-ориентированного способа производства в постиндустриальный. В основе информатизации лежат кибернетические методы и средства управления, а также инструментарий информационных и коммуникационных технологий. «Под информатизацией, - пишет В. С. Толстой, - понимается развитие и широкомасштабное применение методов и средств получения, преобразования, хранения и распространения информации, обеспечивающих систематизацию и формирование новых знаний и их использование обществом в целях его дальнейшего совершенствования и развития» [1].

Одним из основных этапов информатизации науки выступает широкое использование в науке современных информационных технологий, создание информационной среды, формирование специализированной инфраструктуры, содействие развитию науки и технологий в стране. Изменяя материальную и технологическую базу общества, ключевое значение принимают различного рода управляющие и аналитические информационные системы, созданные на базе компьютерной техники и компьютерных сетей, информационной технологии, телекоммуникационной связи. Как видим, отечественными исследователями особо подчеркивается взаимосвязь между техническими и мировоззренческими новациями.

Таким образом, информация и информатизация являются важнейшими атрибутами развития науки, которые ассоциируются с развитием интеллектуализации, внедрением высоких технологий и ростом инновационной и информационной среды.

1. Толстой В. С. Социальные условия информатизации // Социальные проблемы информатизации общества : сб. тр. / ВНИИСИ. М, 1988. С. 11.

2. Шеннон К. Математическая теория связи // Работы по теории информации и кибернетике. М. : Иностр. лит., 1963. С. 243-332.

3. Эшби У. Р. Введение в кибернетику. М. : Иностр. лит., 1959. С. 177-199.

© Тетерина Е. В., Черненко В. В., 2012

В. В. Черненко Научный руководитель - С. Ю. Пискорская Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева, Красноярск

Экспертные системы (ЭС) появились в результате развития систем с искусственным интеллектом. Решение задач с помощью логического вывода возможен только если база знаний ЭС содержит высококачественные знания о предметной области, тогда механизм логического вывода будет содержать информацию о том, как эти знания эффективно использовать.

В настоящее время проявлен большой интерес к экспертным системам во всех областях современной науки и человеческой деятельности. Экспертные системы используются для решения различных типов задач в самых разнообразных проблемных областях, таких, как нефтяная и газовая промышленность, финансы, энергетика, транспорт, фармацевтическое производство, космос, химия, образование, телекоммуникации и связь и др. С другой стороны это вся деятельность ограничена недостаточной разработанностью данных систем.

В информатике экспертные системы рассматриваются совместно с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний - как совокупность фак-

тов и правил логического вывода в выбранной предметной области деятельности [1].

Под экспертными системами понимаются это сложные программные комплексы, аккумулирующие знания специалистов в конкретных предметных областях и тиражирующие этот эмпирический опыт для консультаций менее квалифицированных пользователей [2].

Области применения систем, основанных на знаниях, весьма разнообразны: бизнес, производство, военные приложения, медицина, социология, геология, космос, сельское хозяйство, управление, юриспруденция и др.

Системы, основанные на знаниях (СОЗ) являются системы программного обеспечения, основными структурными элементами которых являются база

Секция «Фундаментальные и прикладные проблемы гуманитарных наук»

знаний и механизм логических выводов. Среди СОЗ можно выделить:

- интеллектуальные информационно-поисковые системы;

- экспертные системы (ЭС).

Базовая структура экспертной системы приведена на рисунке.

Структура экспертной системы

Структурные элементы, составляющие экспертную систему, выполняют следующие функции:

- база знаний (БЗ), содержит факты и правила, по которым в зависимости от входной информации принимается то или иное решение. Знания в базе знаний представлены в конкретной форме, и организация базы знаний позволяет их легко определять, модифицировать и пополнять. База знаний реализует функции представления знаний в конкретной предметной области и управление ими;

- механизм логических выводов выполняет логические выводы на основании знаний, имеющихся в базе знаний. Механизмом логического вывода называются общие знания о процессе нахождения решения. Он выполняет две основные функции:

1) дополнение, изменение БЗ на основе анализа БЗ и исходной информации;

2) управление порядком обработки правил в БЗ.

Существует две основные стратегии логического

1. Прямая цепочка рассуждений.

2. Обратная цепочка рассуждений [3].

- модуль приобретения знаний необходим для получения знаний от эксперта, поддержки базы знаний и дополнения ее при необходимости;

Перечисленные структурные элементы являются наиболее характерными, хотя в реальных экспертных системах их функции могут быть соответствующим образом усилены или расширены.

В общем случае, все системы, основанные на знаниях, можно подразделить на системы, решающие задачи анализа и системы, решающие задачи синтеза. Основное отличие задач анализа от задач синтеза заключается в том, что если в задачах анализа множество решений может быть перечислено и включено в систему, то в задачах синтеза множество решений потенциально не ограничено и строится из компонент или подпроблем. Задачами анализа являются интерпретация данных, диагностика, поддержка принятия решения; к задачам синтеза относится проектирование, планирование, управление. Комбинированные задачи направлены на обучение, мониторинг, прогнозирование [4].

В заключение стоит отметить, что на сегодняшний день создано уже большое количество экспертных систем, которые имеют одно большое отличие от других систем искусственного интеллекта: они не предназначены для решения каких-либо универсальных задач. Они предназначены для качественного решения задач в определенной разработчиками области, в редких случаях - областях. И несмотря на все ограничения и недостатки, экспертные системы уже доказали всю свою ценность и значимость во многих важных приложениях.

3. Коробова И. Л. Методы представления знаний : метод. указ. / сост. И. Л. Коробова. Тамбов : Изд-во Тамб. гос. техн. ун-та, 2003. 24 с.

В начале 80-х годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название "экспертные системы" (ЭС). Основным назначением ЭС является разработка программных средств, которые при решении задач, трудных для человека, получают результаты, не уступающие по качеству и эффективности решения, решениям, получаемым человеком-экспертом. ЭС используются для решения так называемых неформализованных задач, общим для которых является то, что:

задачи не могут быть заданы в числовой форме;

цели нельзя выразить в терминах точно определенной целевой функции;

не существует алгоритмического решения задачи;

если алгоритмическое решение есть, то его нельзя использовать из-за ограниченности ресурсов (время, память).

Кроме того, неформализованные задачи обладают ошибочностью, неполнотой, неоднозначностью и противоречивостью как исходных данных, так и знаний о решаемой задаче.

Экспертная система - это программное средство, использующее экспертные знания для обеспечения высокоэффективного решения неформализованных задач в узкой предметной области.

Основу ЭС составляет база знаний (БЗ) о предметной области, которая накапливается в процессе построения и эксплуатации ЭС Накопление и организация знаний - важнейшее свойство всех ЭС.

Знания являются явными и доступными, что отличает ЭС от традиционных программ, и определяет их основные свойства, такие, как:

1) Применение для решения проблем высококачественного опыта. Который представляет уровень мышления наиболее квалифицированных экспертов в данной области, что ведет к решениям творческим, точным и эффективным.

2) Наличие прогностических возможностей, при которых ЭС выдает ответы не только для конкретной ситуации, но и показывает, как изменяются эти ответы в новых ситуациях, с возможностью подробного объяснения каким образом новая ситуация привела к изменениям.

3) Обеспечение такого нового качества, как институциональная память, за счет входящей в состав ЭС базы знаний, которая разработана в ходе взаимодействий со специалистами организации, и представляет собой текущую политику этой группы людей. Этот набор знаний становится сводом квалифицированных мнений и постоянно обновляемым справочником наилучших стратегий и методов, используемых персоналом. Ведущие специалисты уходят, но их опыт остается.

4) Возможность использования ЭС для обучения и тренировки руководящих работников, обеспечивая новых служащих обширным багажом опыта и стратегий, по которым можно изучать рекомендуемую политику и методы.

2. Состав и взаимодействие участников построения и эксплуатации экспертных систем

Познакомившись с тем, что такое экспертные системы и каковы их основные характеристики, попробуем теперь ответить на вопрос: "Кто участвует в построении и эксплуатации ЭС? ".

К числу основных участников следует отнести саму экспертную систему, экспертов, инженеров знаний, средства построения ЭС и пользователей. Их основные роли и взаимоотношение приведены на рис.2.

Экспертная система - это программное средство, использующее знания экспертов, для высокоэффективного решения задач в интересующей пользователя предметной области. Она называется системой, а не просто программой, так как содержит базу знаний, решатель проблемы и компоненту поддержки. Последняя из них помогает пользователю взаимодействовать с основной программой.

Эксперт - это человек, способный ясно выражать свои мысли и пользующийся репутацией специалиста, умеющего находить правильные решения проблем в конкретной предметной области.

Эксперт использует свои приемы и ухищрения, чтобы сделать поиск решения более эффективным, и ЭС моделирует все его стратегии.

Инженер знаний - человек, как правило, имеющий познания в информатике и искусственном интеллекте и знающий, как надо строить ЭС.

Инженер знаний опрашивает экспертов, организует знания, решает, каким образом они должны быть представлены в ЭС, и может помочь программисту в написании программ.

Средство построения ЭС - это программное средство, используемое инженером знаний или программистом для построения ЭС.

Этот инструмент отличается от обычных языков программирования тем, что обеспечивает удобные способы представления сложных высокоуровневых понятий.

Пользователь - это человек, который использует уже построенную ЭС. Так, например, пользователем может быть юрист, использующий ее для квалификации конкретного случая; студент, которому ЭС помогает изучать информатику и т. д. Термин пользователь несколько неоднозначен. Обычно он обозначает конечного пользователя. Однако из рис.2 следует, что пользователем может быть:

создатель инструмента, отлаживающий средство построения ЭС;

инженер знаний, уточняющий существующие в ЭС знания,

эксперт, добавляющий в систему новые знания,

клерк, заносящий в систему текущую информацию.

Важно различать инструмент, который используется для построения ЭС, и саму ЭС. Инструмент построения ЭС включает как язык, используемый для доступа к знаниям, содержащимся в системе, и их представления, так и поддерживающие средства - программы, которые помогают пользователям взаимодействовать с компонентой экспертной системы, решающей проблему.

3. Преимущества использования экспертных систем

Возникает вопрос: "Зачем разрабатывать экспертные системы? И не лучше ли обратиться к человеческому опыту, как это было в прошлом?". Отметим лишь основные преимущества, которые дает использование ЭС.

Преимуществами и положительными качествами искусственной компетенции являются:

1. Ее постоянство. Человеческая компетенция ослабевает со временем. Перерыв в деятельности человека-эксперта может серьезно отразиться на его профессиональных качествах.

2. Легкость передачи или воспроизведения. Передача знаний от одного человека другому - долгий и дорогой процесс. Передача искусственной информации - это простой процесс копирования программы или файла данных.

3. Устойчивость и воспроизводимость результатов. Эксперт-человек может принимать в тождественных ситуациях разные решения из-за эмоциональных факторов. Результаты ЭС - стабильны.

4. Стоимость. Эксперты, особенно высококвалифицированные обходятся очень дорого. ЭС, наоборот, сравнительно недороги. Их разработка дорога, но они дешевы в эксплуатации.

Вместе с тем разработка ЭС не позволяет полностью отказаться от эксперта-человека. Хотя ЭС хорошо справляется со своей работой, тем не менее в определенных областях человеческая компетенция явно превосходит искусственную. Однако и в этих случаях ЭС может позволить отказаться от услуг высококвалифицированного эксперта, оставив эксперта средней квалификации, используя при этом ЭС для усиления и расширения его профессиональных возможностей.

4. Особенности построения и организации экспертных систем

Основой любой ЭС является совокупность знаний, структурированная в целях упрощения процесса принятия решения. Для специалистов в области искусственного интеллекта термин знания означает информацию, которая необходима программе, чтобы она вела себя "интеллектуально". Эта информация принимает форму фактов и правил. Факты и правила в ЭС не всегда либо истинны, либо ложные. Иногда существует некоторая степень неуверенности в достоверности факта или точности правила. Если это сомнение выражено явно, то оно называется "коэффициентом доверия".

Коэффициент доверия - это число, которое означает вероятность или степень уверенности, с которой можно считать данный факт или правило достоверным или справедливым.

Многие правила ЭС являются эвристиками, то есть эмпирическими правилами или упрощениями, которые эффективно ограничивают поиск решения. ЭС используют эвристики, так как задачи, которые она решает, трудны, не до конца понятны, не поддаются строгому математическому анализу или алгоритмическому решению. Алгоритмический метод гарантирует корректное или оптимальное решение задачи, тогда как эвристический метод дает приемлемое решение в большинстве случаев.

Знания в ЭС организованы так, чтобы знания о предметной области отделить от других типов знаний системы, таких как общие или оптимальное решение задачи, тогда как эвристический метод дает приемлемое решение в большинстве случаев.

Выделенные знания о предметной области называются базой знаний, тогда как общие знания о нахождении решений задач называются механизмом вывода.

Программные средства, которые работают со знаниями, организованными таким образом, называются системами, основанными на знаниях

БЗ содержит факты (данные) и правила (или другие представления знаний), использующие эти факты как основу для принятия решений.

Механизм вывода содержит:

интерпретатор, определяющий как применять правила для вывода новых знаний на основе информации, хранящейся в БЗ.

Экспертная система (далее по тексту — ЭС) — это информационная система, назначение которой частично или полностью заменить эксперта в той или иной предметной области. Подобные интеллектуальные системы эффективно применяются в таких областях, как логистика, управление воздушными полетами, управление театром военных действий. Основною направленной деятельностью предсказание, прогнозирование в рамках определенного аспекта в предметной области.

Экскурс в историю экспертных систем

История экспертных систем берет свое начало в 1965 году. Брюс Бучанан и Эдвард Фейгенбаум начали работу над созданием информационной системы для определения структуры химических соединений.

Результатом работы была система под названием Dendral. В основе системы формировалась последовательность правил подобных к «IF – THEN». Информационная система не перестала развиваться и получила множество наследников, таких как ONCOIN – информационная система для диагностики раковых заболеваний, MYCIN – информационная система для диагностики легочных инфекционных заболеваний.

Следующим этапом стали 70-е годы. Период не выделялся особыми разработками. Было создано множество разных прототипов системы Dendral. Примером служит система PROSPECTOR, областью деятельности которой являлась геологические ископаемые и их разведка.
В 80-ых годах появляются профессия – инженер по знаниям. Экспертные системы набирают популярность и выходят на новый этап эволюции интеллектуальных систем. Появились новые медицинские системы INTERNIS, CASNE.

С 90-ых годов развитие интеллектуальных систем приобретает новые и новые методы и особенности. Нововведением становится парадигма проектирования эффективных и перспективных систем. Гибкость, четкость решения поставленных задач дало новое название – мультиагентных систем. Агент – фоновый процесс который действует в целях пользователя. Каждый агент имеет свою цель, «разум» и отвечает за свою область деятельности. Все агенты в совокупности образуют некий интеллект. Агенты вступают в конкуренцию, настраивают отношения, кооперируются, все как у людей.

В 21 век, интеллектуальной системой уже не удивишь никого. Множество фирм внедряет экспертные системы в области своей деятельности.

Быстродействующая система OMEGAMON разрабатывается c 2004 года с IBM, цель которой отслеживание состояния корпоративной информационной сети. Служит для моментального принятия решений в критических или неблагоприятных ситуациях.

G2 – экспертная система от фирмы Gensym, направленная на работу с динамическими объектами. Особенность этой системы состоит в том, что в нее внедрили распараллеливание процессов мышления, что делает ее быстрее и эффективней.

Структура экспертной системы

image

1. База знаний
Знания — это правила, законы, закономерности получены в результате профессиональной деятельности в пределах предметной области.
База знаний — база данных содержащая правила вывода и информацию о человеческом опыте и знаниях в некоторой предметной области. Другими словами, это набор таких закономерностей, которые устанавливают связи между вводимой и выводимой информацией.

2. Данные
Данные — это совокупность фактов и идей представленных в формализованном виде.
Собственно на данных основываются закономерности для предсказания, прогнозирования. Продвинутые интеллектуальные системы способные учиться на основе этих данных, добавляя новые знания в базу знаний.

3. Модель представления данных
Самая интересная часть экспертной системы.
Модель представления знаний (далее по тексту — МПЗ) — это способ задания знаний для хранения, удобного доступа и взаимодействия с ними, который подходит под задачу интеллектуальной системы.

4. Механизм логического вывода данных(Подсистема вывода)
Механизм логического вывода(далее по тексту — МЛВ) данных выполняет анализ и проделывает работу по получению новых знаний исходя из сопоставления исходных данных из базы данных и правил из базы знаний. Механизм логического вывода в структуре интеллектуальной системы занимает наиболее важное место.
Механизм логического вывода данных концептуально можно представить в виде <A,B,C,D> :
А — функция выбора из базы знаний и из базы данных закономерностей и фактов соответственно
B — функция проверки правил, результатом которой определяется множество фактов из базы данных к которым применимы правила
С — функция, которая определяет порядок применения правил, если в результате правила указаны одинаковые факты
D — функция, которая применяет действие.

Какие существуют модели представления знаний?

Распространены четыре основных МПЗ:

  • Продукционная МПЗ
  • Семантическая сеть МПЗ
  • Фреймовая МПЗ
  • Формально логическая МПЗ

Продукционная МПЗ

В основе продукционной модели представления знаний находится конструктивная часть, продукция(правило):
IF <условие>, THEN <действие>
Продукция состоит из двух частей: условие — антецендент, действие — консеквент. Условия можно сочетать с помощью логических функций AND, OR .
Антецеденты и консеквенты составленных правил формируются из атрибутов и значений. Пример: IF температура реактора подымается THEN добавить стержни в реактор
В базе данных продукционной системы хранятся правила, истинность которых установлена к за ранее при решении определенной задачи. Правило срабатывает, если при сопоставлении фактов, содержащихся в базе данных с антецедентом правила, которое подвергается проверке, имеет место совпадение. Результат работы правила заносится в базу данных.

Пример


Диагноз Температура Давление Кашель
Грипп 39 100-120 Есть
Бронхит 40 110-130 Есть
Аллергия 38 120-130 Нет

Пример продукции:
IF Температура = 39 AND Кашель = Есть AND Давление = 110-130 THEN Бронхит

Продукционная модель представления знаний нашла широкое применение в АСУТП

Среды разработки продукционных систем(CLIPS)

CLIPS (C Language Integrated Production System) — среда разработки продукционной модели разработана NASA в 1984 году. Среда реализована на языке С, именно потому является быстрой и эффективной.
Пример:

Подобное правило будет активировано только тогда, когда в базе данных появится факт симптома с подобными параметрами.

Семантическая сеть МПЗ

В основе продукционной модели лежит ориентированный граф. Вершины графа — понятия, дуги — отношения между понятиями.
Особенностью является наличие трех типов отношений:

  • класс — подкласс
  • свойство — значение
  • пример элемента класса

По количеству типов отношений выделяют однородные и неоднородные семантические сети. Однородные имею один тип отношения между всеми понятиями, следовательно, не однородные имею множество типов отношений.

Все типы отношений:

  • часть — целое
  • класс — подкласс
  • элемент — количество
  • атрибутивный
  • логический
  • лингвистический

Пример

image


Недостатком МПЗ является сложность в извлечении знаний, особенно при большой сети, нужно обходить граф.

Фреймовая МПЗ

Предложил Марвин Мински в 1970 году. В основе фреймовой модели МПЗ лежит фрейм. Фрейм — это образ, рамка, шаблон, которая описывает объект предметной области, с помощью слотов. Слот — это атрибут объекта. Слот имеет имя, значение, тип хранимых данных, демон. Демон — процедура автоматически выполняющаяся при определенных условиях. Имя фрейма должно быть уникальным в пределах одной фреймовой модели. Имя слота должно быть уникальным в пределах одного фрейма.

Слот может хранить другой фрейм, тогда фреймовая модель вырождается в сеть фреймов.

Пример

image

Пример вырождающейся в сеть фреймов

image


На своей практике, мне доводилось встречать системы на основе фреймовой МПЗ. В университете в Финляндии была установлена система для управления электроэнергией во всем здании.

Языки разработки фреймовых моделей (Frame Representation Language)

FRL (Frame Representation Language) — технология создана для проектирования интеллектуальных систем на основе фреймовой модели представления знаний. В основном применяется для проектирования вырождающихся в сеть фреймовой модели.

Запись фрейма на языке FRL будет иметь вид:

Существуют и другие среды: KRL (Knowledge Representation Language), фреймовая оболочка Kappa, PILOT/2.

Формально логическая МПЗ

В основе формально логической МПЗ лежит предикат первого порядка. Подразумевается, что существует конечное, не пустое множество объектов предметной области. На этом множестве с помощью функций интерпретаторов установлены связи между объектами. В свою очередь на основе этих связей строятся все закономерности и правила предметной области. Важное замечание: если представление предметной области не правильное, то есть связи между объектами настроены не верно или не в полной мере, то правильная работоспособность системы будет под угрозой.

Пример

A1 = <идет дождь> A2 = <небо в тучах> A3 = <солнечно>; IF A1 AND A2 THEN <взять зонтик>
Банальней примера и не придумаешь.
Важно: Стоит заметить, что формально логическая МПЗ схожа с продукционной. Частично это так, но они имеют огромную разницу. Разница состоит в том, что в продукционной МПЗ не определены никакие связи между хранимыми объектами предметной области.

Важно

Любая экспертная система должна иметь вывод данных и последовательность "мышления" системы. Это нужно для того чтобы увидеть дефекты в проектировании системы. Хорошая интеллектуальная система должна иметь право ввода данных, которое реализуется через интеллектуальный редактор, право редактора на перекрестное "мышление" представлений при проектировании системы и полноту баз знаний(реализуется при проектировки закономерностей предметной области между инженером по знаниям и экспертом).

Заключение

Экспертные системы действительно имеют широкое применение в нашей жизни. Они позволяют экономить время реальных экспертов в определенной предметной области. Модели представления знаний это неотъемлемая часть интеллектуальных систем любого уровня. Поэтому, я считаю, что каждый уважающий себя IT-специалист, должен иметь даже поверхностные знания в этих областях.

Экспертная система (ЭС, Expert system) — предиктивная система, включающая в себя знания об определенной слабо структурированной и трудно формализуемой узкой предметной области и способная предлагать и объяснять пользователю разумные решения. Экспертная система состоит из базы знаний, механизма логического вывода и подсистемы объяснений. Экспертная система включает в себя большое число структурных составляющих меньшего размера.

Содержание



Экспертные системы представляют собой прямой пример того, как наука может быть полезна для бизнеса.

Развитие ЭС

В начале восьмидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название «экспертные системы» (ЭС). Целью исследований в этом новом направлении была разработка программ, которые при решении задач, сложных для эксперта-человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом. Для обозначения этой дисциплины также часто используют термин «инженерия знаний», введенный Е.Фейгенбаумом как «привнесение принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов». На протяжении 1960—1985 гг. успехи в деле освоения искусственного интеллекта (ИИ) касались в основном исследовательских разработок, которые демонстрировали пригодность ИИ для практического использования. В 1988—1990 гг. экспертные системы стали активно применяться в коммерческих приложениях. На заре появления используемые для их создания языки программирования, технологии разработки приложений и используемого делали интеграцию ЭС с традиционными программными системами довольно сложной, а порой даже невыполнимой задачей. Однако в настоящее время средства разработки ЭС используются в полном соответствии с современными технологическими тенденциями традиционного программирования, что решает проблемы, возникающие при создании составных приложений.

Место в ИТ-инфрастрктуре

Назначение


Само название «Экспертные системы» подразумевает возможность замены эксперта-человека программным решением. Это позволяет предприятиям сокращать затраты на оплату труда специалистов, а самим специалистам обращаться при решении любых вопросов в рамках своей деятельности непосредственно к программе. Такие возможности сокращают время решения проблемы и позволяют молодым специалистам обучаться прямо на своем рабочем месте. Примером простейшей экспертной системы могут служить виртуальные «помощники» в пакетах ПО операционных систем компьютеров. Такие алгоритмы решения типовых вопросов избавляют разработчиков от излишней, непомерной и неоправданной нагрузки по общению с конечным пользователем.

Экспертные системы и системы искусственного интеллекта имеют основное отличие от систем обработки данных тем, что в них в основном используются символьный способ представления, символьный вывод и эвристический поиск решения. Экспертные системы предназначены для решения только сложных практических задач. По качеству и эффективности решения экспертные системы не должны уступать решениям эксперта-человека. Решения экспертных систем. могут быть объяснены пользователю на качественном уровне, то есть обладают прозрачностью. Прозрачность экспертных систем обеспечивается их способностью рассуждать о результатах своей работы и базах знаний. Важным свойством экспертных систем является и то, что они способны обучаться. ЭС решают задачи:

  • интерпретации
  • предсказаний
  • диагностики
  • планирования
  • конструирования
  • контроля
  • отладки
  • инструктажа
  • управления

Такие задачи возникают в самых разных областях научных, деловых и промышленных областях. Программные средства, основанные на технологии экспертных систем, получили значительное распространение в мире. Важность экспертных систем состоит в следующем:

  • существенно расширяют круг практически значимых задач, решение которых приносит значительный экономический эффект
  • являются важнейшим средством сокращения длительности и, следовательно, высокой стоимости разработки сложных приложений
  • объединение технологии ЭС с технологией традиционного программирования добавляет новые качества к программным продуктам за счет обеспечения динамичной модификации приложений пользователем, а не программистом, большей «прозрачности» приложения, лучшей графики, интерфейса и взаимодействия.

Неформализованные задачи

Особое внимание следует уделить неформализованным задачам, потому что именно для их решения и создавались экспертные системы. Неформализованные задачи обычно обладают следующими свойствами:

  • ошибочность, неоднозначность, неполнота и противоречивость исходных данных
  • ошибочность, неоднозначность, неполнота и противоречивость знаний о проблемной области и решаемой задаче
  • большая размерность пространства решения, то есть перебор при поиске решения может быть очень большим
  • динамически изменяющиеся данные и знания

Неформализованные задачи представляют большой и очень важный класс задач. Задачи такого плана являются наиболее массовым классом задач, решаемых ЭВМ.

Архитектура клиент-сервер

Существуют инструментальные средства искусственного интеллекта, поддерживающие распределенные вычисления по архитектуре клиент-сервер. Это предоставляет следующие преимущества:

  • снижение стоимости оборудования, используемого в приложениях
  • возможность децентрализовать приложения
  • повышение надежности и общей производительности
  • сокращение количества информации, пересылаемой между оборудованием

Преимущества

Существует ряд преимуществ экспертных систем как перед человеком-оператором, так и перед обычными алгоритмическими базами данных:

  • интегрируемость. Существуют инструментальные средства, легко входящие в состав других информационных технологий и средств
  • открытость и переносимость: у них нет предубеждений и они устойчивы к различным помехам;
  • отсутствие поспешных выводов;
  • выдача оптимального решения
  • неограниченные размеры базы знаний.
  • постоянное хранение данных: эксперт может что-то забыть, машина — никогда.

Перспективы развития

По мнению ведущих специалистов в области программирования, в недалекой перспективе ЭС будут играть важную роль в таких сферах, как:

Читайте также: