Какой файл содержит звуковую информацию

Обновлено: 06.07.2024

Какие виды информации Вы знаете? Какие действия можно совершать с информацией? Какие виды информации мы с вами уже изучили? Как вы думаете, о каком виде информации речь пойдет на этом уроке?

Что такое информация? Процессы, связанные с хранением, передачей и обработкой информации называются … Наименьшая единица информации. Чему равно количество информации, уменьшающее неопределенность знаний в 4 раза? Сколько вопросов надо задать, чтобы угадать число, загаданное в интервале от 12 до 44? Что значит закодировать информацию? Какие системы счисления вы знаете?

Назовите основания известных вам систем счисления. Какое количество информации содержится в одном разряде восьмеричного числа? Что называют мощностью алфавита? Что такое мультимедиа? Назовите области применения Что надо сделать, чтобы закодировать графическую информацию?

Тема урока: Представление звука в памяти компьютера. Дискретизация звука

Цель урока: Изучить способ кодирования звуковой информации с помощью компьютера Научиться записывать звуковой файл на компьютере

Наша жизнь полна звуков

Раздел физики занимающийся изучением звуковых явлений называется акустикой. Явления связанные с возникновением и распространением звуковых волн, называются акустическими явлениями.

Звук – это звуковая волна с непрерывно меняющийся амплитудой и частотой Чем больше амплитуда, тем громче звук Чем больше частота сигнала, тем выше тон звука

Упругие волны в воздухе с частотой от 16 до 20000 Гц вызывают у человека звуковые ощущения. Волны с частотой меньше 16 Гц называют инфразвуковыми, а с частотой больше 20000 Гц - ультразвуковыми. Скорость распространения звука зависит от упругих свойств среды, ее плотности и температуры. В нормальных условиях скорость звука равна 331 м/с. Скорость звука не зависит от частоты. По принятой классификации звук подразделяют на музыкальные звуки(тоны) и шумы.

Сила воздействия звуковой волны на барабанную перепонку человеческого уха зависит от звуковогодавления. Нижняя граница ощущения звука человеческим ухом соответствует звуковому давлению 0,00001 Па. верхняя граница 100 Па. Громкость звука определяется амплитудой изменения звукового давления. Высота звука определяется частотой колебаний. Звуковые колебания, не подчиняющиесягармоническому закону, воспринимаются человеком как сложный звук, обладающий тембром.

Звук в природе имеет непрерывную (аналоговую) форму. При аналоговом представлении физическая величина принимает бесконечное множество значений, причём её значения изменяются непрерывно.

Звуковая карта обеспечивают 16-битную глубину кодирование звука. Количество различных уровней сигнала или состояний при данном кодировании можно рассчитать по формуле Звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код.

Дискретное представление звука При дискретном представлении физическая величина принимает конечное множество значений, причём её значения изменяются скачкообразно.

При движении тела по наклонной плоскости его координаты могут принимать бесконечное множество непрерывно изменяющихся значений из определённого диапазона Аналоговый сигнал можно сравнить с телом, движущимся по наклонной плоскости

Дискретный сигнал можно сравнить с телом, движущимся по лестнице при движении тела по лестнице – его координаты могут принимать только определённый набор значений, меняющихся скачкообразно

Цифровой сигнал — это всегда некоторое приближенное и упрощенное представление аналогового. Звук разбивается на составляющие, каждой из которых присваивается числовой код - происходит оцифровка звука. Дискретизация – это преобразование непрерывных изображений и звука в набор дискретных значений в форме кода.

Глубина кодирования – количество бит, отводимых для кодирования уровня громкости (амплитуды) звукового сигнала. Частота дискретизации – количество изменений уровня сигнала в единицу времени

Дискретизацией звукового сигнала занимаются звуковые карты наших компьютеров. Точнее, их аналого-цифровые преобразователи (АЦП). Звуковая карта (чаще ее называют Sound Blaster) представляет собой небольшую плату с набором микросхем с специальными разъемами для подключения микрофона, динамиков, клавиатуры и других подобных устройств. Карты Sound Blaster бывают различных типов и предоставляют широчайший спектр возможностей работы со звуком, начиная от записи с микрофона и кончая сложнейшим конструированием современных мелодий для большого оркестра. АЦП через определенные интервалы времени измеряет уровень сигнала на входе и записывает полученное число на диск. Последовательность этих чисел и составляет звуковой файл

Понятно, что чем чаще измеряется уровень на входе (то есть чем чаще идут вертикальные линии на рисунке), тем точнее цифровой сигнал воспроизводит форму аналогового. Этот параметр и есть частота дискретизации или частота семплирования частота дискретизации

Такая же ситуация и с уровнями сигналов — чем чаще идут горизонтальные линии, тем точнее узелки попадают на кривую. Компьютер может записать напряжение на входе звуковой карты только с определенной точностью, зависящей от размеров числа, которым может быть представлена громкость. 4 байта (64 бита)-18446744073709551616 горизонтальных линий 2 байта (16 бит)-65 536 линий, 1 байт (8 бит)-256 линий, Этот параметр называется глубиной или разрядностью звука (bit rate). Глубина (разрядность) звука

На аудиодисках частота дискретизации всегда 44,1 кГц (вдвое выше того, что может слышать человеческое ухо), а глубина звука 16 бит (на DVD может быть другое качество). Профессиональные и даже полупрофессиональные карты нового стандарта могут писать и с частотой 96 кГц, глубину звука иметь 4-байтную и даже выше, что обеспечивает супервысокое качество сигнала. Но, наверное, один человек из тысячи способен на слух определить, где «44 х 16», а где «96х32». Все остальные замечают только большую разницу в размерах файлов

Можно оценить информационный объем стереоаудиофайла длительностью 1 секунда при высоком качестве звука 16 бит, 48 кГц. Для этого количество бит на одну выборку необходимо умножить на количество выборок в 1 с и умножить на 2. 16 бит*48000 Гц*2=1536000 бит = =192000 байт=187,5 кбайт.

Размер файла при изменении качества звука растёт очень быстро Дискретиза-ция Раз-ряд-ность Число каналов Размер записи в 1 секунду 11 кГц 8 бит 1 канал - моно 11 КБ 44,1 кГц 16 бит 2 канала - стерео 172 КБ 96 кГц 24 бита 2 канала - стерео 4,5МБальбом (50мин) 1,4 ГБ

Наиболее часто используемые форматы звуковых файлов 1. WAVE (.wav) - наиболее широко распространенный формат. Используется в ОС Windows для хранения звуковых файлов. Файлы в этом формате имеют большой размер, который зависит от: дискретизации (частоты семплирования ); разрядности звука; моно - или стереозвука; длительности. 2. MPEG-3 (.mp3) - наиболее популярный на сегодняшний день формат звуковых файлов. При кодировании применяется психоаккустическая компрессия: из мелодии удаляются звуки, не воспринимаемые человеческим ухом (воспринимаемый диапазон 20-20000 Гц). 3. MIDI (.mid) - содержат не сам звук, а только команды для воспроизведения звука. Звук синтезируется с помощью FM- или WT-синтеза. Если звуковая карта не содержит синтезатора, то такой звук воспроизводится не будет. 4. Real Audio (.ra, .ram) - разработан для воспроизведения звука в Internet в режиме реального времени. Полученное качество в лучшем случае соответствует плохонькой аудиокассете, для качественной записи музыкальных произведений применение формата MPEG-3 более предпочтительно. Низкий размер достигается применением методов сжатия. 5. MOD (.mod) - музыкальный формат, в нем хранятся образцы оцифрованного звука, которые можно затем использовать как шаблоны для индивидуальных нот. Файлы в этом формате начинаются с набора образцов звука, за которыми следуют ноты и информация о длительности. Каждая нота воспроизводится с помощью одного из приведенных в начале звуковых шаблонов. Такой файл, в отличие от MIDI-файла, полностью задает звук, что позволяет воспроизводить его на любой компьютерной платформе.

Писать музыку непосредственно в компьютере: в музыкальных программах (секвенсорах) удобно создавать музыку, переправляя в компьютер ноты с синтезатора или MIDI-клавиатуры; можно мышкой нарисовать все нужные ноты (занятие это очень трудоемкое); Записывать живой звук с микрофона или линейного входа звуковой карты, используя компьютер как компактную студию звукозаписи; После оцифровки используют программы редактирования звуковых файлов для монтажа музыки, разного рода коррекций и спецэффектов. Создавать музыку с помощью компьютера можно двумя основными способами:

На самом деле все три способа можно применять совместно: часть инструментов писать живьем (уж вокал-то точно!), часть играть по MIDI, отдельные партии формировать из фрагментов чужих композиций (например, использовать качественно записанные барабанные петли). Для того, чтобы музыка выглядела (точнее, звучала), как живая, нужно очень постараться, много знать и уметь! Но есть и третий способ, при котором вы вообще можете ничего не вводить в компьютер. Например, нарезать кусочки из чужих произведений, зациклить их (получаются так называемые петли- loop) и из этих петель монтировать свое произведение. Этот метод часто используется в современной танцевальной музыке.

Ответьте на вопросы: Волны какой частоты вызывают у человека звуковые ощущения? От чего зависит громкость звука? От чего зависит высота тона? Что значит закодировать звуковую информацию? От чего зависит качество кодирования звуковой информации?

Тренировочные задания 1. Оцените информационный объем моноаудиофайла длительностью звучания 20 с, если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно 8 бит и 8 кГц; 2. Рассчитайте время звучания моноаудиофайла, если при 16-битном кодировании и частоте дискретизации 32 кГц его объем равен 700 Кбайт; 3. Определите качество звука (качество радиотрансляции, среднее качество, качество аудио-CD) если известно, что объем стериоаудиофайла длительностью звучания в 10 сек. Равен 940 Кбайт;

Самостоятельная работа : 1. Оцените информационный объем стериоаудиофайла длительностью звучания 30 с, если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно 8 бит и 8 кГц; 2. Аналоговый звуковой сигнал был дискретизирован сначала с использованием 256 уровней интенсивности сигнала (качество звучания радиотрансляции), а затем с использованием 65536 уровней интенсивности сигнала (качество звучания аудио-CD). Во сколько раз различаются информационные объемы оцифрованного звука? 3. Оцените информационный объем моноаудиофайла длительностью звучания 1 мин. если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно: 16 бит и 48 кГц.

Практическая работа 1. Запишите звуковой файл длительностью 30с с "глубиной" кодирования 8 бит и частотой дискретизации 8 кГц. 2. Запишите звуковой моноаудиофайл длительностью 1 минута с "глубиной" кодирования 16 бит и частотой дискретизации 48 кГц. 3. Запишите звуковой моноаудиофайл длительностью 20 с, с "глубиной" кодирования 8 бит и частотой дискретизации 8 кГц.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности



2. Раздавайте видеоуроки в личные кабинеты ученикам.


3. Смотрите статистику просмотра видеоуроков учениками.

Конспект урока "Звуковые файлы"

В начале урока мы с вами вспомним, что такое файл.

Файл – это информация, которая хранится как единое целое и имеет своё название – имя файла. В каждом файле хранится однотипная информация: графическая, звуковая и прочие.

Сегодня мы с вами узнаем о том, что такое звук, какие существуют расширения звуковых файлов, познакомимся с историей звукозаписи.

Звук – это колебания воздуха или любой другой среды, в которой он распространяется.

Звук попадает в компьютер при помощи микрофона. А чтобы компьютер смог работать со звуком, его нужно преобразовать в последовательность нулей и единиц, ведь компьютер умеет работать только с такой информацией. Этим занимается звуковая карта. Для прослушивания звука используются наушники или колонки.

Витя: «Но если звук в компьютере находится в виде нулей и единиц, то как же его можно прослушать?»

Здесь нам снова поможет звуковая карта. Когда мы даём команду компьютеру на воспроизведение, звуковая карта преобразует нули и единицы обратно в звук, который выводится через колонки или наушники.

Вся музыка и звуки в компьютере, телефоне и на прочих устройствах хранения информации являются звуковыми файлами.

Как мы с вами знаем, у каждого файла есть своё расширение. Звуковые файлы не являются исключением.

Витя: «Давайте узнаем, какие существуют расширения звуковых файлов».

Рассмотрим наиболее популярные из них.

«MIDI». Формат файлов «MIDI»был разработан для того, чтобы позволить музыкантам и композиторам копировать данные «MIDI»из одного приложения в другое. В таких файлах содержится информация о расположении нот, скорости игры и прочих параметрах звука.

«MP3». В наше время это одно из стандартных расширений звуковых файлов. Большинство музыкальных плееров, смартфонов, компьютеров и прочих устройств воспроизводят музыку именно из файлов «MP3». При сохранении звукового файла с таким расширением происходит его сжатие. А при сжатии, в свою очередь, – потеря качества. В этом есть и свои плюсы. При хранении файлов с расширением «MP3» наблюдается значительная экономия места на диске.

Расширение «WMA». Популярность этого формата была достигнута за счёт его использования при воспроизведении видеофайлов на DVD-плеерах, а также на портативных устройствах и мобильных телефонах.

Ну и в заключение рассмотрим формат «WAV». Файлы «WAV» были созданы компаниями IBM и Microsoft. Они содержат различные аудиоданные: звуки, звуковые эффекты, музыку, а также записи голоса. По размерам файлы с расширением «WAV» значительно больше файлов с расширением «MP3», и именно поэтому они не пользуются популярностью.

Витя: «Какие существуют программы для прослушивания звука?»

Программ для прослушивания звуковых файлов огромное количество. Стандартным же проигрывателем в операционной системе Windows является Windows Media. Этот проигрыватель позволяет воспроизводить все популярные форматы аудио- и видеофайлов. Можно записать диск из понравившихся композиций, или наоборот, скопировать его к себе на жёсткий диск.

Следующий проигрыватель, который мы с вами рассмотрим, AIMP. Он является бесплатным, поддерживает огромное количество форматов. В данном проигрывателе можно создавать несколько плейлистов. Эту программу устанавливают не только на компьютер или ноутбук, но и на телефоны с операционной системой Андроид.

Идём дальше. Рассмотрим проигрыватель Winamp. С его помощью можно не только слушать музыку, но и смотреть видеозаписи. Также в Winamp можно искать нужные аудиозаписи, создавать свои списки звуковых файлов. Ну и, конечно же, с помощью этого проигрывателя можно прослушивать звуковые файлы с различными расширениями.

Tomahawk. Отличительной особенностью этого проигрывателя является то, что его можно устанавливать в операционных системах Windows, Linux и Mac OS. После того, как приложение было установлено, оно собирает всю музыку, которая находится на компьютере, в одну библиотеку. Это позволяет сразу же после установки начать её прослушивание.

Витя: «Может, немного поговорим об истории звукозаписи?»

К первым устройствам для записи звука относятся механические устройства. В то же время они не могли записывать и воспроизводить голос. На такие устройства записывалась только мелодия. Мелодии записывались на бумагу, дерево, металлические валики, перфорированные диски и другие приспособления. Эти инструменты могли приводиться в движение не только при помощи человеческих рук, но и при помощи воды, песка, электричества и прочих средств.

К примерам таких устройств относятся шарманки, музыкальные часы, шкатулки, ящики.


Все они воспроизводили различные сохранённые мелодии, но в то же время на них нельзя было записать живые выступления, звуки. Количество же мелодий было ограничено.

В 1857 г. де Мартенвиль изобрёл фоноавтограф.


Минус этого устройства был в том, что оно не могло воспроизводить сделанную запись.

А вот в 1877 г. Томас Эдисон изобрёл фонограф, который уже мог воспроизводить свою запись.


В 1887 г. Эмиль Берлинер изобрёл граммофон.


Звуки записывались на пластинки.


Но аудиодорожки могли вмещать в себя только до 5 минут аудиозаписи.

В 1907 г. Гильон Кеммлер предложил усовершенствовать граммофон. Так, на замену ему пришёл патефон.


Главное отличие патефона заключалось в том, что он был скомпонован в виде чемоданчика и его можно было переносить в застёгнутом виде за специальную ручку.

В 1925 г. появляется запись через микрофон. Таким образом был изобретён электрофон. Он отличается от граммофона и патефона принципом действия, который основан на электрических колебаниях. Более подробно об этом вы узнаете в старших классах. В быту такое устройство очень часто называли проигрывателем. Электрофоны до сих пор используются в домашних условиях. Но продажа граммофонных пластинок практически прекратилась, так как на смену пришли цифровые средства воспроизведения звука.

Далее в 1931 г. Шорин Александр Фёдорович создал шоринофон. Запись в таком устройстве производилась с помощью иглы на киноленту.

В тысяча девятьсот тридцать втором году компания AEG начала производство «Магнетофон-К1». А в 1941 г. эта же фирма выпускает магнитофон нового образца.

В дальнейшем в 1963 г. появляются первые компакт-кассеты. Они производились фирмой Philips.

В 1971 г. компания Advent Corporation выпускает кассету с магнитной лентой на основе оксида хрома.


Витя: «А что такое оксид хрома?»

Об этом вы узнаете в старших классах на уроках химии.

Качество звука на таких носителях информации было намного выше. На такие кассеты можно записывать в фабричных условиях фонограммы. Также кассеты начали использоваться для самостоятельной записи музыки.

С появлением оптических дисков появляется лазерная (оптическая) запись. При помощи лазерного луча на вращающийся оптический диск записываются сигналы. В результате записи на диске образуется спиральная дорожка. При воспроизведении лазерный луч перемещается по поверхности оптического диска и считывает записанные на него данные.

В 1980 г. компании Philips и Sony создают международный стандарт хранения оцифрованного звука на компакт-дисках. А в апреле 1982 г. Philips представила свой первый проигрыватель компакт-дисков.

Витя: «Перед записью звук же как-то редактируется?»

Верно. Прежде, чем получить нужную аудиозапись, необходимо записать несколько различных вариантов, например, песни. После чего песня обрабатывается, редактируется и записывается на носитель информации.

Для работы со звуковыми дорожками существуют специальные программы. К примерам относятся Audacity, WavePad Sound Editor, Wavosaur, Traverso, FREE Wave MP3 Editor. Все эти программы являются бесплатными.

В самой операционной системе Windows также есть стандартная программа для записи звука. Она называется «Запись голоса». Рассмотрим её интерфейс.


При открытии появляется окно с микрофоном. Для начала записи нужно на него нажать.


Как только началась запись звука, её можно поставить на паузу, сделать метку в нужном месте и остановить запись.


После того, как запись остановлена, её можно прослушать, добавить или удалить метку на дорожке, удалить запись, поделиться, переименовать, а также обрезать. Для обрезки файла нужно нажать на соответствующую кнопку и при помощи маркеров указать начало и конец дорожки. После чего нажать на «OK». При этом изменения можно сохранить в исходном файле или же копию в новом. Если вы не хотите применять изменения к звуковой дорожке, то нужно нажать на кнопку «Отмена». Файл сохранится автоматически в папку, которую система выделила для этой программы. Чтобы посмотреть, где находятся файлы, нужно из меню выбрать пункт «Открыть папку с файлом». При удалении файла он автоматически удаляется из папки.

Витя: «Какая простая программа!»

А сейчас давайте рассмотрим интерфейс программы «Аудиомастер».


При запуске программы появляется окно, с помощью которого можно открыть файл для редактирования, извлечь звук из видео, записать звук с микрофона и прочие действия. Выберем пункт «Записать звук с микрофона».


Появится окно, в котором нужно нажать на кнопку «Начать новую запись». После остановки записи необходимо нажать на кнопку «Сохранить». Откроется окно для редактирования.


Сверху находится строка меню, с помощью которой можно задать эффекты для звуковой дорожки, отредактировать её и выполнить с ней прочие действия.

Чуть ниже находится панель быстрого доступа. С её помощью можно вырезать, скопировать или вставить фрагмент. Прежде, чем вырезать или скопировать фрагмент, его нужно выделить.

В области слева находятся эффекты, которые можно применить к аудиозаписи. Снизу же находится строка, с помощью которой можно воспроизвести, остановить файл, перейти в конец или в начало дорожки, а также записать звук с микрофона. Самую большую часть окна занимает область непосредственно с самой звуковой дорожкой.

Мы с вами вкратце рассмотрели интерфейс программы «АудиоМастер».

А сейчас пришла пора подвести итоги урока.

Сегодня мы с вами познакомились с различными расширениями звуковых файлов.

Узнали, какие существуют программы для прослушивания аудиозаписей.

Познакомились с историей звукозаписи.

В конце урока рассмотрели интерфейс стандартной программы Windows для записи звука, а также программы «АудиоМастер».


Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: свиданка — это что-то нейтральное, положительное или отрицательное?

Синонимы к слову «аудиофайл»

Предложения со словом «аудиофайл»

  • Камера в смартфоне при съёмке воспроизводит аудиофайл, где записан звук затвора фотоаппарата, хотя в цифровых камерах нет механического затвора.

Понятия, связанные со словом «аудиофайл»

Ко́дек (англ. codec, от coder/decoder — шифратор/дешифратор — кодировщик/декодировщик или compressor/decompressor) — устройство или программа, способная выполнять преобразование данных или сигнала. Бу́фер обме́на (англ. clipboard) — промежуточное хранилище данных, предоставляемое программным обеспечением и предназначенное для переноса или копирования между приложениями или частями одного приложения через операции вырезать, копировать, вставить. Образ диска (image) — файл, содержащий в себе полную копию содержания и структуры файловой системы и данных, находящихся на диске, таком как компакт-диск, дискета, раздел жёсткого диска или весь жёсткий диск целиком. Термин описывает любой такой файл, причём неважно, был ли образ получен с реального физического диска или нет. Таким образом, образ диска содержит всю информацию, необходимую для дублирования структуры, расположения и содержания данных какого-либо устройства хранения информации. Обычно.

Цифровой аудиоформат — формат представления звуковых данных, используемый при цифровой звукозаписи, а также для дальнейшего хранения записанного материала на компьютере и других электронных носителях информации, так называемых звуковых носителях.

Дополнительно

Предложения со словом «аудиофайл»

Камера в смартфоне при съёмке воспроизводит аудиофайл, где записан звук затвора фотоаппарата, хотя в цифровых камерах нет механического затвора.

Это означало, что обучение с помощью аудиофайлов также невозможно.

Для изменения скорости воспроизведения видео– или аудиофайлов переместите ползунок влево или вправо.

Одной из основных задач информатики является представление данных в виде удобном для хранения и передачи. Эти данные могут быть разного типа – звуковые, текстовые, графические и т.д. В этой статье мы расскажем про кодирование звуковой информации. Из этой статьи Вы узнаете основные принципы и определения. Также после прочтения сможете посчитать объем аудио файла. Читайте!

Основные определения

Для того чтобы разобраться в теме надо знать, что представляет собой звуковая информация (звук).

Звук – это непрерывная аналоговая волна, которая распространяется в окружающей среде. В роли среды может выступать воздух, жидкость, твердое тело, электричество и т.д.

Звук, как непрерывную волну, характеризуют две характеристики – частота и амплитуда.

От амплитуды зависит громкость аудио сигнала . Чем выше амплитуда, тем громкость больше.

Частота же характеризует тональность аудиоинформации . Чем больше частота, тем тональность выше. Человеческий слух улавливает волны от 20 Гц до 20 кГц. 1 Гц равен 1 колебанию аудио сигнала в секунду.

Это интересно Программное обеспечение (ПО) 💾 что это такое простыми словами

Представление и кодирование звуковой информации в компьютере

Для представления и кодирования звука используются специальное оборудование и программы. Рассмотрим весь процесс более подробно.

  1. Аудиоинформация, поступая из окружающей среды (например, по воздуху), преобразуется в электрический сигнал. Для этого используется такое устройство, как микрофон.
  2. После этого звук поступает на АЦП (аналого-цифровой преобразователь), где подвергается оцифровке.
  3. На последнем этапе информация (уже в двоичном виде) кодируется при помощи специальной программы – аудиокодека. На выходе получается файл в специальном формате (например, mp3), который можно хранить, воспроизводить и передавать.

Кодирование звуковой информации

Наибольший интерес представляет процесс оцифровки, также называемым аналого-цифровым преобразованием. В результате него аналоговый сигнал заменяется на цифровой.

Основной принцип аналогово-цифрового преобразования заключается в том, что через равные промежутки времени измеряется амплитуда волны. Также этот процесс называется дискретизация.

Дискретизация – это процесс в результате, которого непрерывная функция представляется в виде дискретной последовательности её значений. Схематично дискретизацию можно представить так:

Кодирование звуковой информации

Дискретизация характеризуется двумя такими величинами, как:

  • Частота шага по времени;
  • Шаг квантования.

Первая величина отображает, как часто берутся дискреты и измеряется в Герцах (количество измерений за одну секунду). Частота шага по времени находится по теореме Котельникова.

Шаг квантования характеризуется количеством уровней , до которых округляются величины амплитуды волны.

Количество уровней (ступенек) до которых округляются значения сигнала, зависит от аналого-цифрового преобразователя. На данный момент используются 16, 32 и 64 битные устройства.

Количество бит, затрачиваемое для номеров уровней, называется глубиной кодирования звуковой информации.

Глубина кодирования связано с количеством уровней по формуле:

Где i разрядность АЦП в битах.

Чем чаще берутся дискреты за единицу времени и больше глубина кодирования, тем выше качество звуковых данных на выходе и дороже АЦП.

Расчет объема аудио файла

​ \[V = 60*1*8000*8=3840000 \ бит \] ​

Форматы аудио

Форматов для хранения аудио много, однако, все они делятся на две большие группы в зависимости от того, какой из методов сжатия используется – LOSELESS или LOSSY.

  1. LOSELESS – метод сжатия без потерь. Качество звуковой информации остается без изменений, однако за него приходится платить большим объемом компьютерной памяти. Используется для хранения музыки и других данных, где важно качество. Форматы, которые основаны на данном методе сжатия: FLAC, APE, TAC, ALAC и другие. На данный момент зарабатывают все большую популярность в связи с увеличением дискового пространства.
  2. LOSSY – сжатие с потерями. При таком методе файл сохраняются с искажениями относительно оригинала. В основном эти искажения не воспринимаются человеческим слухом, а также не замечаются при плохом аудио оборудовании. LOSSY позволяет существенно сэкономить дисковое пространство. На данный момент этот метод сжатия является доминирующим.

Форматы кодирования использующие алгоритмы LOSSY:

  • MP3 (MPEG-1,2,2.5) – самый популярный аудио формат. Проигрывается на всех аудио и видео системах, по умолчанию поддерживается всеми операционными системами. Искажения заметны на высокоточной дорогостоящей аппаратуре.
  • AAC – формат, который разрабатывался и позиционировался, как приемник mp3. Не получил широкого распространения. Преимущества перед mp3: большая гибкость кодирования, возможность использовать до 48 звуковых каналов.
  • HE-AAC (High-Efficiency Advanced Audio Coding) – используется в цифровом радио и телевиденье.

Заключение

Читайте также: