Какой подход измерения информации наиболее удобен при использовании компьютера

Обновлено: 06.07.2024

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

§ 2. Подходы к измерению информации

Информатика. 10 класса. Босова Л.Л. Оглавление

Информация и её свойства

Информация и её свойства являются объектом исследования целого ряда научных дисциплин, таких как:

♦ теория информации (математическая теория систем передачи информации);

♦ кибернетика (наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе);

♦ информатика (изучение процессов сбора, преобразования, хранения, защиты, поиска и передачи всех видов информации и средств их автоматизированной обработки);

♦ семиотика (наука о знаках и знаковых системах);

♦ теория массовой коммуникации (исследование средств массовой информации и их влияния на общество) и др.

Рассмотрим более детально подходы к определению понятия информации, важные с позиций её измерения:

1) определение К. Шеннона, применяемое в математической теории информации;

2) определение А. Н. Колмогорова, применяемое в отраслях информатики, связанных с использованием компьютеров.

2.1. Содержательный подход к измерению информации


Клод Элвуд Шеннон (1916-2001) — американский инженер и математик. Является основателем теории информации, нашедшей применение в современных высокотехнологических системах связи. В 1948 году предложил использовать слово «бит» для обозначения наименьшей единицы информации.

Информация — это снятая неопределённость. Величина неопределённости некоторого события — это количество возможных результатов (исходов) данного события.

Такой подход к измерению информации называют содержательным.

Пример 1. Допустим, вы подбрасываете монету, загадывая, что выпадет: «орёл» или «решка». Перед подбрасыванием монеты неопределённость знания о результате равна двум. Действительно, есть всего два возможных результата этого события (бросания монеты). Эти результаты мы считаем равновероятными, т. к. ни один из них не имеет преимущества перед другим.

Итак, количество возможных результатов (исходов) события, состоящего в том, что книга поставлена в шкаф, равно восьми: 1, 2, 3, 4, 5, 6, 7 и 8.

Метод поиска, на каждом шаге которого отбрасывается половина вариантов, называется методом половинного деления. Этот метод широко используется в компьютерных науках.

Пример 3. О результатах футбольного матча между клубами «Спартак» и «Динамо» известно, что больше трёх мячей никто не забил. Всего возможных вариантов счёта матча — 16:


Здесь первая цифра в каждой паре соответствует количеству мячей, забитых командой «Спартак», вторая — командой «Динамо».

Будем считать все варианты равновероятными и отгадывать счёт, задавая вопросы, на которые можно ответить только «да» или «нет». Вопросы будем формулировать так, чтобы количество возможных вариантов счёта каждый раз уменьшалось вдвое. Это позволит нам:

1) обойтись минимальным количеством вопросов;

Вопрос 1. «Спартак» забил больше одного мяча? Предположим, получен ответ «Нет». Такой ответ позволяет не рассматривать варианты, расположенные в нижней части таблицы, т. е. сокращает количество возможных исходов в 2 раза:


Вопрос 2. «Спартак» забил один мяч? Предположим, получен ответ «Да». Такой ответ позволяет не рассматривать варианты, расположенные в верхней строке таблицы, т. е. сокращает количество возможных исходов ещё в 2 раза:


Вопрос 3. «Спартак» пропустил больше одного мяча? Предположим, получен ответ «Нет». Можно отбросить ещё два варианта:


Вопрос 4. «Спартак» пропустил один мяч? Предположим, получен ответ «Да». Получаем единственный вариант:


При N, равном целой степени двойки (2, 4, 8, 16, 32 и т. д.), это уравнение легко решается в уме. Решать такие уравнения при других N вы научитесь чуть позже, в курсе математики 11 класса.


2.2. Алфавитный подход к измерению информации

Однако при хранении и передаче информации с помощью технических устройств целесообразно отвлечься от её содержания и рассматривать информацию как последовательность символов (букв, цифр, кодов цвета точек изображения и т. д.) некоторого алфавита.

Информация — последовательность символов (букв, цифр, кодов цвета точек изображения и т. д.) некоторого алфавита.

Минимальная мощность алфавита (количество входящих в него символов), пригодного для кодирования информации, равна 2. Такой алфавит называется двоичным. Один символ двоичного алфавита несёт 1 бит информации.


Андрей Николаевич Колмогоров (1903-1987) — один из крупнейших математиков XX века. Им получены основополагающие результаты в математической логике, теории сложности алгоритмов, теории информации, теории множеств и ряде других областей математики и её приложений.

В отличие от определения количества информации по Колмогорову в определении информационного объёма не требуется, чтобы число двоичных символов было минимально возможным. При оптимальном кодировании понятия количества информации и информационного объёма совпадают.

Из курса информатики основной школы вы знаете, что двоичные коды бывают равномерные и неравномерные. Равномерные коды в кодовых комбинациях содержат одинаковое число символов, неравномерные — разное.

Первый равномерный двоичный код был изобретён французом Жаном Морисом Бодо в 1870 году. В коде Бодо используются сигналы двух видов, имеющие одинаковую длительность и абсолютную величину, но разную полярность. Длина кодов всех символов алфавита равна пяти (рис. 1.7).


Рис. 1.7. Фрагмент кодовой таблицы кода Бодо

Всего с помощью кода Бодо можно составить 2 5 = 32 комбинации.

Пример 5. Слово WORD, закодированное с помощью кода Бодо, будет выглядеть так:


Пример 6. Для двоичного представления текстов в компьютере чаще всего используется равномерный восьмиразрядный код. С его помощью можно закодировать алфавит из 256 символов (2 8 = 256). Фрагмент кодовой таблицы ASCII представлен на рисунке 1.8.


Рис. 1.8. Фрагмент кодовой таблицы ASCII

Слово WORD, закодированное с помощью таблицы ASCII:


Из курса информатики основной школы вам известно, что с помощью i-разрядного двоичного кода можно закодировать алфавит, мощность N которого определяется из соотношения:

2 i = N.

Иными словами, зная мощность используемого алфавита, всегда можно вычислить информационный вес символа — минимально возможное количество бит, требуемое для кодирования символов этого алфавита. При этом информационный вес символа должен быть выражен целым числом.

Соотношение для определения информационного веса символа алфавита можно получить и из следующих соображений.

1) определить мощность используемого алфавита N;

2) из соотношения 2 i = N определить i — информационный вес символа алфавита в битах (длину двоичного кода символа из используемого алфавита мощности N);

I = К * i,

где I — информационный вес символа в битах, связанный с мощностью используемого алфавита N соотношением:

2 i = N.

Пример 7. Для регистрации на некотором сайте пользователю надо придумать пароль, состоящий из 10 символов. В качестве символов можно использовать десятичные цифры и шесть первых букв латинского алфавита, причём буквы используются только заглавные. Пароли кодируются посимвольно. Все символы кодируются одинаковым и минимально возможным количеством бит. Для хранения сведений о каждом пользователе в системе отведено одинаковое и минимально возможное целое число байт.

Необходимо выяснить, какой объём памяти потребуется для хранения 100 паролей.


2.3. Единицы измерения информации

Итак, в двоичном коде один двоичный разряд несёт 1 бит информации. 8 бит образуют один байт. Помимо бита и байта, для измерения информации используются более крупные единицы:

1 Кбайт (килобайт) = 2 10 байт;

1 Мбайт (мегабайт) = 2 10 Кбайт = 2 20 байт;

1 Гбайт (гигабайт) = 2 10 Мбайт = 2 20 Кбайт = 2 30 байт;

1 Тбайт (терабайт) = 2 10 Гбайт = 2 20 Мбайт = 2 30 Кбайт = 2 40 байт;

1 Пбайт (петабайт) = 2 10 Тбайт = 2 20 Гбайт = 2 30 Мбайт = 2 40 Кбайт = 2 50 байт.

Исторически сложилось так, что приставки «кило», «мега», «гига», «тера» и др. в информатике трактуются не так, как в математике, где «кило» соответствует 10 3 , «мега» — 10 6 , «гига» — 10 9 , «тера» — 10 12 и т. д.

Это произошло потому, что 2 10 = 1024 ≈ 1000 = 10 3 . Поэтому 1024 байта и стали называть килобайтом, 2 10 килобайта стали называть мегабайтом и т. д.

Чтобы избежать путаницы с различным использованием одних и тех же приставок, в 1999 г. Международная электротехническая комиссия ввела новый стандарт наименования двоичных приставок. Согласно этому стандарту, 1 килобайт равняется 1000 байт, а величина 1024 байта получила новое название — 1 кибибайт (Кибайт).

У нас в стране в 2009 году принято «Положение о единицах величин, допускаемых к применению в Российской Федерации». В нём сказано, что наименование и обозначение единицы количества информации «байт» (1 байт = 8 бит) применяются с двоичными приставками «кило», «мега», «гига», которые соответствуют множителям «2 10 », «2 20 » и «2 30 » (1 Кбайт = 1024 байт, 1 Мбайт = 1024 Кбайт, 1 Гбайт = 1024 Мбайт). Данные приставки пишутся с большой буквы.

Пример 8. При регистрации в компьютерной системе каждому пользователю выдаётся пароль длиной в 12 символов, образованный из десятичных цифр и первых шести букв английского алфавита, причём буквы могут использоваться как строчные, так и прописные — соответствующие символы считаются разными. Пароли кодируются посимвольно. Все символы кодируются одинаковым и минимально возможным количеством бит. Для хранения сведений о каждом пользователе в системе отведено одинаковое и минимально возможное целое число байт.

Кроме собственно пароля для каждого пользователя в системе хранятся дополнительные сведения, для которых отведено 12 байт. На какое максимальное количество пользователей рассчитана система, если для хранения сведений о пользователях в ней отведено 200 Кбайт?

Прежде всего, выясним мощность алфавита, используемого для записи паролей: N — 6 (буквы прописные) + 6 (буквы строчные) + 10 (десятичные цифры) = 22 символа.

Для кодирования одного из 22 символов требуется 5 бит памяти (4 бита позволят закодировать всего 2 4 = 16 символов, 5 бит позволят закодировать уже 2 5 = 32 символа); 5 — минимально возможное количество бит для кодирования 22 разных символов алфавита, используемого для записи паролей.

Для хранения всех 12 символов пароля требуется 12 • 5 = 60 бит. Из условия следует, что пароль должен занимать целое число байт; т. к. 60 не кратно восьми, возьмём ближайшее большее значение, которое кратно восьми: 64 = 8 • 8. Таким образом, один пароль занимает 8 байт.

Информация о пользователе занимает 20 байт, т. к. содержит не только пароль (8 байт), но и дополнительные сведения (12 байт).

Максимальное количество пользователей («польз.»), информацию о которых можно сохранить в системе, равно 10 240:



САМОЕ ГЛАВНОЕ

I = K * i, где i — информационный вес символа в битах, связанный с мощностью используемого алфавита N соотношением 2 i = N. Единицы измерения информации:

1 Кбайт (килобайт) = 2 10 байт;

1 Мбайт (мегабайт) = 2 10 Кбайт = 2 20 байт;

1 Гбайт (гигабайт) = 2 10 Мбайт = 2 20 Кбайт = 2 30 байт;

1 Тбайт (терабайт) = 2 10 Гбайт = 2 20 Мбайт = 2 30 Кбайт = 2 40 байт;

1 Пбайт (петабайт) = 2 10 Тбайт = 2 20 Гбайт = 2 30 Мбайт = 2 40 Кбайт = 2 50 байт.

Исторически сложилось так, что приставки «кило», «мега», «гига», «тера» и др. в информатике трактуются не так, как в математике, где «кило» соответствует 10 3 , «мега» — 10 6 , «гига» — 10 9 , «тера» — 10 12 и т. д.

Вопросы и задания

1. Что такое неопределённость знания о результате какого-либо события? Приведите пример.

2. В чём состоит суть содержательного подхода к определению количества информации? Что такое бит с точки зрения содержательного подхода?

3. Паролем для приложения служит трёхзначное число в шестнадцатеричной системе счисления. Возможные варианты пароля:


Ответ на какой вопрос (см. ниже) содержит 1 бит информации?

1) Это число записано в двоичной системе счисления?

2) Это число записано в четверичной системе счисления?

3) Это число может быть записано в восьмеричной системе счисления?

4) Это число может быть записано в десятичной системе счисления?

5) Это число может быть записано в шестнадцатеричной системе счисления?

4. При угадывании целого числа в некотором диапазоне было получено 5 бит информации. Каковы наибольшее и наименьшее числа этого диапазона?

5. Какое максимальное количество вопросов достаточно задать вашему собеседнику, чтобы точно определить день и месяц его рождения?

6. В чём состоит суть алфавитного подхода к измерению информации? Что такое бит с точки зрения алфавитного подхода?

7. Закодируйте фразу «ALL IN GOOD TIME» кодом Бодо и восьмиразрядным компьютерным кодом. Сравните полученные информационные объёмы текста.

8. Какие единицы используются для измерения объёма информации, хранящейся на компьютере?

11. В школьной базе данных каждый ученик получил идентификатор, состоящий ровно из б символов. В качестве символов используются все заглавные буквы русского алфавита, кроме «Ё», «Ы», «Ъ» и «Ь», а также все десятичные цифры за исключением цифры 0. Каждый такой идентификатор в информационной системе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти, необходимый для хранения в этой системе 180 идентификаторов учащихся начальных классов. Ответ выразите в килобайтах.

13. При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 6 символов и содержащий только символы из шестибуквенного набора А, В, С, D, Е, F. Для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей и все символы кодируются одинаковым и минимально возможным количеством бит. Кроме собственно пароля для каждого пользователя в системе хранятся дополнительные сведения, занимающие 15 байт. Определите объём памяти в байтах, необходимый для хранения сведений о 120 пользователях.

При всем многообразии подходов к определению понятия информации, с позиций измерения информации нас интересуют два из них: определение К. Шеннона, применяемое в математической теории информации, и определение А. Н. Колмогорова, применяемое в отраслях информатики, связанных с использованием компьютеров.

По Шеннону, информация — уменьшение неопределенности наших знаний.

Неопределенность некоторого события — это количество возможных исходов данного события.

Так, например, если из колоды карт наугад выбирают карту, то неопределенность равна количеству карт в колоде. При бросании монеты неопределенность равна 2.

Содержательный подход часто называют субъективным, так как разные люди (субъекты) информацию об одном и том же предмете оценивают по-разному.

Но если число исходов не зависит от суждений людей (случай бросания кубика или монеты), то информация о наступлении одного из возможных исходов является объективной.

Если N равно целой степени двойки (2, 4, 8, 16 и т.д.), то вычисления легко произвести "в уме". В противном случае количество информации становится нецелой величиной, и для решения задачи придется воспользоваться таблицей логарифмов либо определять значение логарифма приблизительно (ближайшее целое число, большее).

Вычислить объем информации по формуле: I = К* i .

Единицы измерения информации

Решая различные задачи, человек вынужден использовать информацию об окружающем нас мире. И чем более полно и подробно человеком изучены те или иные явления, тем подчас проще найти ответ на поставленный вопрос. Так, например, знание законов физики позволяет создавать сложные приборы, а для того, чтобы перевести текст на иностранный язык, нужно знать грамматические правила и помнить много слов

Однако иногда возникает ситуация, когда людям сообщают много новых для них сведений (например, на лекции), а информации при этом они практически не получают (в этом нетрудно убедиться во время опроса или контрольной работы). Происходит это оттого, что сама тема в данный момент слушателям не представляется интересной

Если подбросить монету и проследить, какой стороной она упадет, то мы получим определенную информацию. Обе стороны монеты "равноправны", поэтому одинаково вероятно, что выпадет как одна, так и другая сторона. В таких случаях говорят, что событие несет информацию в 1 бит. Если положить в мешок два шарика разного цвета, то, вытащив вслепую один шар, мы также получим информацию о цвете шара в 1 бит. Единица измерения информации называется бит (bit) - что означает двоичная цифра.

В компьютерной технике бит соответствует физическому состоянию носителя информации: намагничено - не намагничено, есть отверстие - нет отверстия. При этом одно состояние принято обозначать цифрой 0, а другое - цифрой 1. Выбор одного из двух возможных вариантов позволяет также различать логические истину и ложь. Последовательностью битов можно закодировать текст, изображение, звук или какую-либо другую информацию. Такой метод представления информации называется двоичным кодированием

В информатике часто используется величина, называемая байтом (byte) и равная 8 битам. И если бит позволяет выбрать один вариант из двух возможных, то байт, соответственно, 1 из 256 (2 8 ). В большинстве современных ЭВМ при кодировании каждому символу соответствует своя последовательность из восьми нулей и единиц, т. е. байт.

Наряду с байтами для измерения количества информации используются более крупные единицы

1 Кбайт (один килобайт) = 2 10 байт = 1024 байта;

1 Мбайт (один мегабайт) = 2 10 Кбайт = 1024 Кбайта;

1 Гбайт (один гигабайт) = 2 10 Мбайт = 1024 Мбайта.

В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как

1 Терабайт (Тб) = 1024 Гбайта = 2 40 байта

1 Петабайт (Пб) = 1024 Тбайта = 2 50 байта.

Здесь мы рассмотрим только один, который называется алфавитным подходом

Решение задач на измерение информации

Для решения задач нам понадобится формула, связывающая между собой информационный вес каждого символа, выраженный в битах ( i ), и мощность алфавита (N): N = 2 i ; информационный объем ( I ), количество информации ( К ): I = К* i

Задача 1: Алфавит содержит 32 буквы. Какое количество информации несет одна буква?

32 = 2 i => 2 5 = 2 i => i = 5

Ответ: одна буква несет 5 бит информации.

16 = 2 i => 2 4 = 2 i => i = 4

Ответ: мощность алфавита N = 8.

Следующие задачи для самостоятельного решения.

Задача 6: В книге 100 страниц. На каждой странице 60 строк по 80 символов в строке. Вычислить информационный объем книги.

Самостоятельная работа «Измерение информации»

№4. Для записи текста использовался 256-символьный алфавит. Каждая страница содержит 30 строк по 70 символов в строке. Какой объем информации содержат 5 страниц текста?

№5. Пользователь вводит текст с клавиатуры со скоростью 90 знаков в минуту. Какое количество информации будет содержать текст, который он набирал 15 мин.

№5. Пользователь вводит текст с клавиатуры 10 минут. Какова скорость ввода информации, если информационный объем полученного текста равен 1 Кбайт?

№5. Ученик читает текст со скоростью 250 символов в минуту. При записи текста использовался алфавит, содержащий 64 символа. Какой объем информации получит ученик, если будет непрерывно читать 20 минут?

Тест. Измерение информации.

Выберите один правильный ответ.

  1. За единицу измерения информации в теории кодирования принимается:

1) 1 кг; 2) 1 фут; 3) 1 бар 4) 1 бит; 5) 1 бод.

  1. 1. Алфавит племени Мульти состоит из 64 букв. Какое количество информации несёт одна буква этого алфавита?

1) 8 бит; 2) 8 байт; 3) 6 бит 4) 6 байт; 5) 1 байт.

1) 100; 2) 256; 3) 800; 4) 8; 5) 1.

1) 8; 2) 1; 3) 1; 4) 1000; 5) 1024.

5. Чему равен 1 мегабайт в секунду (1МБ/с)?

1) 1000 килобит в секунду

2) 1000 килобайт в секунду

3) 1024 килобит в секунду

4) 1024 килобайт в секунду

Фамилия, имя___________________________ класс____ Дата__________

Контрольная работа 1 Вариант

1. Сравните (поставьте знак отношения)

1) 200 байт 0,25 Кбайт.

2) 3 байта 24 бита.

3) 1536 бит 1,5 Кбайта.

4) 1000 бит 1 Кбайт.

5) 8192 байта 1 Кбайт.

2. Считая, что каждый символ кодируется одним байтом, оцените информационный объем следующего предложения:

«Мой дядя самых честных правил».

5. Наличием новых знаний и понятностью

  1. 2 х 8 = 16
  2. 6 MULTIPLAY 8 EQUAL 48
  3. Ваня учится в школе
  4. В английском алфавите 26 букв
  5. MY FREND IS SCHOOLBOY

8. Мощность алфавита равна 64. Сколько Кбайт памяти потребуется, чтобы сохранить 128 страниц текста, содержащего в среднем 256 символов на каждой странице?

9. Мощность алфавита равна 256. Сколько Кбайт памяти потребуется, для сохранения 160 страниц текста, содержащего в среднем 192 символов на каждой странице?

Фамилия, имя___________________________ класс____ Дата__________

1. Сравните (поставьте знак отношения)

1) 512 байт 1 Кбайт;

2) 1 Кбайт 1000 байт;

3) 800 байт 1 Кбайт

4) 400 бит 50 байт.

5) 8192 байта 1 Кбайт.

3. Перевод текста с английского на китайский является процессом:

  1. Обработки информации
  2. Хранения информации
  3. Передачи информации
  4. Поиска информации
  5. Не является ни одним из перечисленных процессов

4. Считая, что каждый символ кодируется одним байтом, оцените информационный объем следующего предложения: «Я памятник себе воздвиг нерукотворный!»

6. Алфавит племени Мульти состоит из 32 букв. Какое количество информации несёт одна буква этого алфавита?

7. Мощность алфавита равна 256. Сколько Кбайт памяти потребуется, для сохранения 160 страниц текста, содержащего в среднем 192 символов на каждой странице?

9. Для записи текста использовался 256 символьный алфавит. Каждая страница содержит 30 строк по 70 символов. Какой объём содержит 5 страниц текста?

Алфавит — это набор символов, которые используются в некотором языке с целью представления информации.

В качестве символов могут быть использованы буквы, цифры, скобки, специальные знаки.

Мощность алфавита — это количество символов в алфавите, которое вычисляется по формуле:

Например, мощность алфавита, состоящего из \(26\) латинских букв и дополнительных символов (скобки, пробел, знаки препинания (\(11\) шт.), \(10\) цифр), — \(47\).

1. определим, какое количество бит необходимо для кодировки одного символа. Так как мощность используемого алфавита \(N\)\(=\) 256 , то \(i\) \(=\) 8 (использовали формулу N = 2 i ).

Поскольку \(1\) байт \(=\) \(8\) бит, \(1\) Кбайт \(=\) \(1024\) байт, получим:

65536 бит \(=\) 65536 8 байт \(=\) 8192 байт \(=\) 8192 1024 Кбайт \(=\) 8 Кбайт.

Любая компьютерная техника работает в двоичном коде, понимая только значения \(0\) — «сигнал есть» и \(1\) — «сигнала нет». Эти значения хранятся в бите — наименьшей единице измерения информации. Однако удобнее использовать более крупные единицы измерения информации, которые приведены в таблице.

\(1\) байт\(8\) бит \(=\) 2 3 бит
\(1\) Кбайт (килобайт) 2 10 байт
\(1\) Мбайт (мегабайт) 2 10 Кбайт
\(1\) Гбайт (гигабайт) 2 10 Мбайт
\(1\) Тбайт (терабайт) 2 10 Гбайт

1) определить, сколько Мбайт информации содержится в \(512\) битах. Ответ дай в виде степени числа \(2\).

2) Какое количество бит содержится в 1 256 Гбайт памяти? Ответ дай в виде степени числа \(2\).

Измерение информации 7 класс

Современная наука о свойствах данных и закономерностях информативных действий получила наименование теории информации. Содержимое определения может быть раскрыто в случае двух исторически сформировавшихся подходов к измерению объёма инфоданных от учёных Хартли и Шеннона. Основной метод, что определяется формулой, базируется на концепции множеств и комбинаторике, а второй — на теории вероятностей.

Информация может быть осмыслена и интерпретирована во всевозможных проблематичных и предметных сферах по-разному. В следствии появляются комбинации к определению измерения данных и многообразные методы введения меры количества сведений.

Измерение информации подходы

Объём информации — это числовое значение, правильно определяющее по таблице обновлённые сведения, с точки зрения многообразия, сложности, структуры (упорядоченности), определённости и подбора состояний отображаемой системы.

Если рассматривают определённую концепцию, которая может принять одно из вероятных состояний, в таком случае важной проблемой является вопрос оценки этого выбора, итога. Эта концепция может являться границей инфоданных (события).

Мера — это беспрерывная материальная неотрицательная функция, определённая во множестве происшествий, а также аддитивная. Характеристики её могут быть постоянными или динамическими, в зависимости от того, какие данные они позволяют оценить.

Основные подходы для измерения информации могут называться:

Измерение информации

  • алфавитный (большой);
  • энтропийный (вероятностный);
  • информативный;
  • алгоритмический;
  • прагматический.

Мощность алфавита — это набор букв, знаков препинания, цифр, скобок и других символов. При измерении инфоданных необходимо принимать во внимание как размер передаваемого уведомления, так и его значимость. В связи с этим используются разные комбинации для измерения данных в информатике.

Особенности данных

Минимальная единица измерения информации

Следовательно, те, кто мало знал об этом, станут полагать, что они приобрели немало данных, но другие, которые могли быть в курсе значительнее, скажут, вообще не получали никакой информации. Подобным образом, объём данных в уведомлении зависит от того, в какой мере новым является извещение для получателя.

С точки зрения информатики, более значимыми представлены следующие качества инфоданных:

Мощность алфавита это

  • безопасность;
  • целостность;
  • значимость;
  • оперативность;
  • доходчивость;
  • общедоступность;
  • краткость.

Однако порой появляется ситуация, когда людям говорят много новой для них информации (к примеру, в лекции), но они фактически не приобретают инфоданных (что легко заметить в период опроса или контрольной работы). Это потому что сама информационная проблема в данный момент аудитории не кажется интересной.

Единица информации

Подходы к измерению информации

Минимальная единица измерения информации именуется битом, что значит двоичный разряд. В компьютерной технике он отвечает физиологическому состоянию носителя данных. В каждом случае первое событие обычно отмечается числом 0, а иное величиной, что будет составлять — 1. Выбор одного из двух вероятных альтернатив также даёт возможность отличать логичную истину и узнать ложь. Пользователь может шифровать документ, рисунки, звучания либо иные данные в последовательности байтов. Измерение информации в 7 классе на уроке проходят.

Ценность текстовых инфоданных зависит от того, в какой мере они значимы для решения задачи, а также как они будут применены в предстоящей деятельности человека. Только актуальные сведения могут определить ожидаемую выгоду.

Читайте также: