Какой сигнал pdh зарезервирован в sdh для технологии lan isdn atm

Обновлено: 04.07.2024

1. Цифровая первичная сеть - принципы построения и тенденции развития

Первичной сетью называется совокупность типовых физических цепей, типовых каналов передачи и сетевых трактов системы электросвязи, образованная на базе сетевых узлов, сетевых станций, оконечных устройств первичной сети и соединяющих их линий передачи системы электросвязи. В основе современной системы электросвязи лежит использование цифровой первичной сети, основанной на использовании цифровых систем передачи. Как следует из определения, в состав первичной сети входит среда передачи сигналов и аппаратура систем передачи. Современная первичная сеть строится на основе технологии цифровой передачи и использует в качестве сред передачи электрический и оптический кабели и радиоэфир.

Рассмотрим ту часть первичной, которая связана с передачей информации в цифровом виде. Как видно из рис. 1.1, современная цифровая первичная сеть может строиться на основе трех технологий: PDH, SDH и ATM.

Рис. 1.1. Место цифровой первичной сети в системе электросвязи

Первичная цифровая сеть на основе PDH/SDH состоит из узлов мультиплексирования (мультиплексоров), выполняющих роль преобразователей между каналами различных уровней иерархии стандартной пропускной способности (ниже), регенераторов, восстанавливающих цифровой поток на протяженных трактах, и цифровых кроссов, которые осуществляют коммутацию на уровне каналов и трактов первичной сети. Схематично структура первичной сети представлена на рис. 1.2. Как видно из рисунка, первичная сеть строится на основе типовых каналов, образованных системами передачи. Современные системы передачи используют в качестве среды передачи сигналов электрический и оптический кабель, а также радиочастотные средства (радиорелейные и спутниковые системы передачи). Цифровой сигнал типового канала имеет определенную логическую структуру, включающую цикловую структуру сигнала и тип линейного кода. Цикловая структура сигнала используется для синхронизации, процессов мультиплексирования и демультиплексирования между различными уровнями иерархии каналов первичной сети, а также для контроля блоковых ошибок. Линейный код обеспечивает помехоустойчивость передачи цифрового сигнала. Аппаратура передачи осуществляет преобразование цифрового сигнала с цикловой структурой в модулированный электрический сигнал, передаваемый затем по среде передачи. Тип модуляции зависит от используемой аппаратуры и среды передачи.

Таким образом, внутри цифровых систем передачи осуществляется передача электрических сигналов различной структуры, на выходе цифровых систем передачи образуются каналы цифровой первичной сети, соответствующие стандартам по скорости передачи, цикловой структуре и типу линейного кода.

Обычно каналы первичной сети приходят на узлы связи и оканчиваются в линейно-аппаратном цехе (ЛАЦе), откуда кроссируются для использования во вторичных сетях. Можно сказать, что первичная сеть представляет собой банк каналов, которые затем используются вторичными сетями (сетью телефонной связи, сетями передачи данных, сетями специального назначения и т.д.). Существенно, что для всех вторичных сетей этот банк каналов един, откуда и вытекает обязательное требование, чтобы каналы первичной сети соответствовали стандартам.

Cовременная цифровая первичная сеть строится на основе трех основных технологий: плезиохронной иерархии (PDH), синхронной иерархии (SDH) и асинхронного режима переноса (передачи) (ATM). Из перечисленных технологий только первые две в настоящее время могут рассматриваться как основа построения цифровой первичной сети.

Рис. 1.2. Структура первичной сети.

Технология ATM как технология построения первичной сети является пока молодой и до конца не опробованной. Эта технология отличается от технологий PDH и SDH тем, что охватывает не только уровень первичной сети, но и технологию вторичных сетей (рис. 1.1), в частности, сетей передачи данных и широкополосной ISDN (B-ISDN). В результате при рассмотрении технологии ATM трудно отделить ее часть, относящуюся к технологии первичной сети, от части, тесно связанной со вторичными сетями.

Рассмотрим более подробно историю построения и отличия плезиохронной и синхронной цифровых иерархий. Схемы ПЦС были разработаны в начале 80х. Всего их было три:
1) принята в США и Канаде, в качестве скорости сигнала первичного цифрового канала ПЦК (DS1) была выбрана скорость 1544 кбит/с и давала последовательность DS1 - DS2 - DS3 - DS4 или последовательность вида: 1544 - 6312 - 44736 - 274176 кбит/с. Это позволяло передавать соответственно 24, 96, 672 и 4032 канала DS0 (ОЦК 64 кбит/с);
2) принята в Японии, использовалась та же скорость для DS1; давала последовательность DS1 - DS2 - DSJ3 - DSJ4 или последовательность 1544 - 6312 - 32064 - 97728 кбит/с, что пзволяло передавать 24, 96, 480 или 1440 каналов DS0;
3) принята в Европе и Южной Америке, в качестве превичной была выбрана скорость 2048 кбит/с и давала последовательность E1 - E2 - E3 - E4 - E5 или 2048 - 8448 - 34368 - 139264 - 564992 кбит/с. Указанная иерархия позволяла передавать 30, 120, 480, 1920 или 7680 каналов DS0.

Комитетом по стандартизации ITU - T был разработан стандарт, согласно которому:
-- во-первых , были стандартизированы три первых уровня первой иерархии, четыре уровня второй и четыре уровня третьей иерархии в качестве основных, а также схемы кросс-мультиплексирования иерархий;
-- во-вторых ,последние уровни первой и третьей иерархий не были рекомендованы в качестве стандартных.

Указанные иерархии, известные под общим названием плезиохронная цифровая иерархия PDH, или ПЦИ, сведены в таблицу 1.1.

Но PDH обладала рядом недостатков, а именно:
-- затруднённый ввод/вывод цифровых потоков в промежуточных пунктах;
-- отсутствие средств сетевого автоматического контроля и управления;
-- многоступенчатое востановление синхронизма требует достаточно большого времени;
Также можно считать недостатком наличие трёх различных иерархий.

Указанные недостатки PDH, а также ряд других факторов привели к разработке в США ещё одной иерархии - иерархии синхронной оптической сети SONET, а в Европе аналогичной синхронной цифровой иерархии SDH, предложенными для использования на волоконно-оптических линиях связи(ВОЛС).Но из-за неудачно выбранной скорости предачи для STS-1 , было принято решение -- отказаться от создания SONET, а создать на её основе SONET/SDH со скоростью передачи 51.84 Мбит/с первого уровня ОС1 этой СЦИ. Врезультате OC3 SONET/SDH соответствовал STM-1 иерархии SDH.Скорости передач иерархии SDH представлены в таблице 1.2.

Иерархии PDH и SDH взаимодействуют через процедуры мультиплексирования и демультиплексирования потоков PDH в системы SDH.

Основным отличием системы SDH от системы PDH является переход на новый принцип мультиплексирования. Система PDH использует принцип плезиохронного (или почти синхронного) мультиплексирования, согласно которому для мультиплексирования, например, четырех потоков Е1 (2048 кбит/с) в один поток Е2 (8448 кбит/с) производится процедура выравнивания тактовых частот приходящих сигналов методом стаффинга. В результате при демультиплексировании необходимо производить пошаговый процесс восстановления исходных каналов. Например, во вторичных сетях цифровой телефонии наиболее распространено использование потока Е1. При передаче этого потока по сети PDH в тракте ЕЗ необходимо сначала провести пошаговое мультиплексирование Е1-Е2-ЕЗ, а затем - пошаговое демультиплексирование ЕЗ-Е2-Е1 в каждом пункте выделения канала Е1.

В системе SDH производится синхронное мультиплексирование/демультиплексирование, которое позволяет организовывать непосредственный доступ к каналам PDH, которые передаются в сети SDH. Это довольно важное и простое нововведение в технологии привело к тому, что в целом технология мультиплексирования в сети SDH намного сложнее, чем технология в сети PDH, усилились требования по синхронизации и параметрам качества среды передачи и системы передачи, а также увеличилось количество параметров, существенных для работы сети. Как следствие, методы эксплуатации и технология измерений SDH намного сложнее аналогичных для PDH.

Международным союзом электросвязи ITU-T предусмотрен ряд рекомендаций, стандартизирующих скорости передачи и интерфейсы систем PDH, SDH и ATM, процедуры мультиплексирования и демультиплексирования, структуру цифровых линий связи и нормы на параметры джиттера и вандера (рис- 1.3).

Рис. 1.3. Стандарты первичной цифровой сети, построенной на основе технологий PDH, SDH и ATM.

Рассмотрим основные тенденции в развитии цифровой первичной сети.В настоящий момент очевидной тенденцией в развитии технологии мультиплексирования на первичной сети связи является переход от PDH к SDH. Если в области средств связи этот переход не столь явный (в случае малого трафика по-прежнему используются системы PDH), то в области эксплуатации тенденция к ориентации на технологию SDH более явная. Операторы, создающие большие сети, уже сейчас ориентированы на использование технологии SDH.Следует также отметить, что SDH дает возможность прямого доступа к каналу 2048 кбит/с за счет процедуры ввода/вывода потока Е1 из трактов всех уровней иерархии SDH. Канал Е1 (2048 кбит/с) является основным каналом, используемым в сетях цифровой телефонии, ISDN и других вторичных сетях.

Внедрение цифровой аппаратуры PDH позволило повысить скорость передачи и снизить уровень помех при передаче голоса.

Существуют два несколько технологий цифровых первичных сетей:

  • 1) Технология PDH — Plesiochronic Digital Hierarchy, плезиохронная цифровая иерархия ("плезио"означает "почти").
  • 2) Технология SDH — Synchronous Digital Hierarchy, синхронная цифровая иерархия. В Америке технологии SDH соответствует стандарт SONET.
  • 3) ISDN (Integrated Services Data Network (в переводе с англ. - Цифровая сеть с Интегрированными услугами))

Технология PDH Первым уровнем скоростей технологии является аппаратура T1, которая позволяет передавать голос и данные со скоростью 1,544 Мбит/с. Первоначально, аппаратура T1 разрабатывалась для передачи по одному каналу голоса 24 абонентов в цифровой форме. Так как абоненты по-прежнему пользуются обычными аналоговыми телефонными аппаратами, то мультиплексор Т1 на телефонной станции сам осуществляет оцифровывание голоса. В результате каждый абонентский канал образовывает цифровой поток данных 64 Кбит/с. Данные 24-х абонентов собираются в кадр достаточно простого формата: в каждом кадре последовательно передается по одному байту каждого абонента, а после 24-х байт вставляется один бит синхронизации. Таким образом, мультиплексор Т1 обеспечивает передачу голосовых данных со скоростью 1,544 Мбит/с (24 абонента * 64 Кбит/с + биты синхронизации). Однако при помощи оборудования T1 можно передавать не только голос, но и данные. Для этого компьютер или маршрутизатор должны быть подключены к цифровой выделенной линии при помощи специального устройства DSU/CSU, которое может быть выполнено в отдельном корпусе, или встроено в маршрутизатор. Устройство формирует кадры канала Т1, усиливает сигнал и осуществляет выравнивание загрузки канала. Пользователь может арендовать не весь канал T1 (1,544 Мбит/с), а только его часть - несколько каналов 64 Кбит/с. Такой канал называется "дробным" (fractional) каналом Т1. Так, например, если пользователь арендовал 3 канала 64 Кбит/с (т.е. канал 192 Кбит/с), то в каждом кадре T1 пользователю будет отведено только 3 байта. Если пользователю необходимо получить скорость выше 1,544 Мбит/с, то для этого необходимо арендовать канал T2 или T3. Четыре канала типа Т1 объединяются в канал Т2, а семь каналов Т2 объединяются в канал ТЗ. Такая иерархия скоростей применяется в США. В Европе используются международные стандарты иерархии скоростей, отличающиеся от стандартов США, и соответствующая аппаратура называется E1, E2, E3. Ниже приведена таблица, иллюстрирующая различия американского и европейского вариантов. Скорости, соответствующие оборудованию T4/E4, определены в стандартах, но на практике не используются. Физический уровень технологии PDH поддерживает различные виды кабелей: витую пару, коаксиальный кабель и волоконно-оптический кабель. Основным вариантом абонентского доступа к каналам Т1/Е1 является кабель из двух витых пар с разъемами RJ-48. Две пары требуются для организации дуплексного режима передачи данных. Коаксиальный кабель благодаря своей широкой полосе пропускания поддерживает канал Т2/Е2 или 4 канала Т1/Е1. Для работы каналов ТЗ/ЕЗ обычно используется либо коаксиальный кабель, либо волоконно- оптический кабель, либо каналы СВЧ. Цифровое абонентское окончание технологии PDH, получило название HDSL (High speed DSL). Как американский, так и международный варианты технологии PDH обладают несколькими недостатками. Чересчур простой формат кадра PDH, где положение данных канала жестко фиксировано (первый байт – первый канал, второй байт – второй канал и т.д.) приводит к нерациональному использованию кадра. Так если из 24 каналов данные передаются только по одному каналу, то мултиплексор T1 все равно не может передать больше, чем 1 байт данных канала в каждом кадре. Остальные 23 байта кадра просто заполняются нулями. Более того, для того, чтобы выделить из кадра данные только одного канала, придется полностью "разобрать" (демультиплексировать) весь кадр. Другим существенным недостатком технологии PDH является отсутствие развитых встроенных процедур контроля и управления сетью. Третий недостаток состоит в слишком низких, по современным понятиям, скоростях иерархии PDH. Волоконно-оптические кабели позволяют передавать данные со скоростями в несколько гигабит в секунду по одному волокну, но это свойство технология PDH не реализует — ее иерархия скоростей заканчивается уровнем 139 Мбит/с.

Все эти недостатки устранены в новой технологии первичных цифровых етей, получившей название синхронной цифровой иерархии — Synchronous Distal Hierarchy, SDH.

Технология SONET/SDH Технология SONET/SDH продолжает иерархию скоростей технологии PDH и позволяет организовать передачу данных со скоростями от 155,520 Мбит/с до 2,488 Гбит/с по оптоволоконному кабелю. Технология синхронной цифровой иерархии первоначально была разработана компанией Bellcore под названием "Синхронные оптические сети" — Synchronous Optical NETs, SONET в 1984 году. Затем эта технология была стандартизована комитетом T1 ANSI и получила название Synchronous Digital Hierarchy, SDH. В терминологии и начальной скорости технологии SDH и SONET остались расхождения, но это не мешает совместимости аппаратуре разных производителей, а технология SONET/ SDH фактически стала считаться единой технологией. В стандарте SDH все уровни скоростей имеют общее название: STM-n — Synchronous TransportModule level n. В технологии SONET существуют два обозначения для уровней скоростей: STS-n — Synchronous Transport Signal level n, употребляемое при передаче данных электрическим сигналом, и ОС-n — Optical Carrier level n, употребляемое при передаче данных световым лучом по волоконно-оптическому кабелю.

Уровень STM-1 технологии SDH (155,520 Мбит/с) может переносить кадры уровня E4 технологии PDH (139,264 Мбит/с). Таким образом достигается преемственность технологий PDH и SDH. Помимо более высокой скорости передачи данных, технология SDH имеет и другие преимущества. Кадр SDH имеет заголовок достаточно сложного формата, благодаря которому данные каждого канала пользователя жестко не привязаны к своему положению в кадре. Данные канала пользователя укладываются в так называемый "виртуальный контейнер" – своего рода подкадр, изолирующий данные одного канала пользователя от другого. Виртуальный контейнер может быть смещен относительно начала поля данных кадра SDH на произвольную величину или даже находится в различных смежных кадрах SDH. Технология SDH сама подбирает виртуальные контейнеры подходящего формата для различных каналов пользователя, следит за тем, чтобы наиболее рационально уложить в кадр "мозаику" из виртуальных контейнеров, а также позволяет объединять виртуальные контейнеры в контейнеры более высокого уровня. Техника виртуальных контейнеров позволяет извлекать (добавлять) отдельные пользовательские каналы из кадра SDH, не производя его полное демультиплексирование ("разборку").

К другим преимуществам технологии SDH относится высокая отказоустойчивость, которая в сети SONET/SDH встроена в ее основные протоколы. Этот механизм называется автоматическим защитным переключением — Automatic Protection Switching, APS. Существуют два способа его работы. В первом способе защита осуществляется по схеме 1:1. Для каждого рабочего волокна (и обслуживающего его порта) назначается резервное волокно. Во втором способе, называемом 1:n, для защиты n волокон назначается только одно защитное волокно.

Управление, конфигурирование и администрирование сети SONET/SDH также встроено в протоколы. Служебная информация протокола позволяет централизованно и дистанционно конфигурировать пути между конечными пользователями сети, изменять режим коммутации потоков, а также собирать подробную статистику о работе сети. Существуют мощные системы управления сетями SDH, позволяющие прокладывать новые каналы простым перемещением мыши по графической схеме сети. Технологии PDH и SDH широко используются для построения корпоративных сетей. На основе выделенных линий SDH можно строить сети с коммутацией пакетов, например Frame Relay или ATM, или же сети с коммутацией каналов, например ISDN. Технология ATM облегчила эту задачу, приняв стандарты SDH в качестве основных стандартов физического уровня.

Общие сведения об ISDN. ISDN (Integrated Services Data Network (в переводе с англ. - Цифровая сеть с Интегрированными услугами)) - это сеть, обеспечивающая полностью цифровые соединения между оконечными устройствами для поддержания широкого спектра речевых и информационных услуг. По своей сути ISDN - это цифровой вариант аналоговых телефонных линий с коммутацией цифровых потоков, или, иначе, сеть из цифровых телефонных станций, соединенных друг с другом цифровыми каналами. Т.е., выражаясьболее простым языком, привлекательность ISDN заключается в возможностиодновременного обмена речью, текстом, данными и подвижным изображением постандартным аналоговым телефонным линиям с более высокими скоростямипередачи, чем у обычным модемов, и по цене значительно меньшей, чем уарендуемых линий. При этом гарантируется высокое качество и высокаянадежность передачи, а также широкий набор сервисных функций.

Области применения Любому человеку, будь то специалист, работающий дома, или сетевой администратор крупной корпорации, необходима возможность передавать речевые, цифровые и видеоданные по телефонным линиям быстро и недорого.

Перечисленные выше возможности ISDN позволяют широко использовать данную технологию в самых различных областях современной жизни. Именно поэтому ISDN заслуживает самого серьезного внимания и наверняка будет широко распространяться в будущем. Помимо применения ISDN в качестве привычного средства телефонной связи, цифровая технология передачи сигналов является идеальной системой для многих предприятий и фирм в плане работы с удаленными пользователями, а также для организации эффективного доступа в Internet, организации видеоконференций и т.д.

При использовании ISDN вы не будете иметь никаких проблем с взаимодействием с обычной телефонией. Если вы звоните на ISDN номер, то соединение произойдет на уровне обычной станции. Если вы звоните на ISDN номер другого города, то соединение произойдет между ISDN модулями разных городов через ISDN магистраль. Ну и если вы звоните на обычный номер другого города, то соединение происходит между станциями разных городов.

ISDN и видеоконференции. Еще один аргумент в пользу ISDN - наиболее прямой и естественный 3 ISDN и видеоконференции.

Еще один аргумент в пользу ISDN - наиболее прямой и естественный путь к организации реальных видеоконференций. Правда, число участников не должно превышать четырех, однако рабочие совещания двух-трех человек можно проводить в режиме реального времени.

В определенной степени на рост интереса к ISDN оказывает влияние развитие систем мультимедиа. Так, многие коммерческие радиостанции на Западе используют ISDN для передачи стереозвука с высоким качеством. Кроме того, сейчас на рынке появились охранные системы и системы видеонаблюдения, работа которых основана на использовании принципов ISDN.

Преимущества ISDN Общие достоинства ISDN состоят в следующем.

ADSL Передача данных с помощью технологии ADSL Перспективность использования той или иной среды передачи данных во многом зависит от технико-экономических показателей имеющегося технологического оборудования для организации цифрового канала. технология ADSL, благодаря которой наиболее старая из существующих сред - "телефонные медные провода" преобразилась как в техническом, так и экономическом плане. ADSL (Asymmetric digital subscriber lines) - это телекоммуникационная технология, позволяющая передавать данные со скоростью до 8 Мбит/с по обычным телефонным линиям. По своему качеству (10Е-8 - 10Е-10) она является альтернативой построению волоконно-оптических сетей (в целом весьма не дешевых) и позволяет оптимально использовать существующие кабельные сети традиционных телефонных операторов. ADSL обеспечивает передачу данных на скоростях, достаточных для эффективной работы с различными данными, в том числе цифровым видео или мультимедиа, то есть перекрывает потребности практически всех существующих на сегодняшний день контентных приложений.

По сравнению с технологиями традиционных кабельных модемов и волоконно-оптических линий главное преимущество ADSL состоит в том, что для нее используется уже существующий телефонный кабель. На окончаниях действующей телефонной линии устанавливаются специальные устройства (сплиттеры) - один на АТС и один в офисе (квартире) абонента. К абонентскому сплиттеру подключаются обычный аналоговый телефон и ADSL модем, который в зависимости от исполнения может выполнять функции маршрутизатора (router) или моста (bridge) между локальной сетью абонента и пограничным маршрутизатором провайдера. При этом работа модема абсолютно не мешает использованию обычной телефонной связи. В нормальных условиях эксплуатации с помощью технологии ADSL можно вести передачу данных на скорости до 8 Мбит/с в прямом направлении и 1,5Мбит/с в обратном. Аппаратура ADSL передает данные приблизительно в 200 раз быстрее, чем обычные аналоговые модемы, у которых средняя устойчивая скорость передачи около 30 кбит/с, причем в той же физической среде распространения.

Universal ADSL Технология ADSL обладает рядом мелких недостатков, препятствующих широкому


служебного канала 8 к бит / с он приобретал ск орость 1544 кбит / с ).

Этот поток , благодаря последующей стандартизаци и , и стал известен как канал DS1 или

T1 , принят ый затем в С ША за первый ( или первич ный ) уровен ь мульт ипле ксиров ания д ля с ист ем

цифровой телефонии . Это было уже время появления ЭВМ третьего поколения ( IBM System 360,

1963 год ), принесших с собой концепцию канала ввода / вывод а с развитой системой мультиплек -

соров ввод / выв ода , испол ьзуе мых для организа ции комм ерче ских компь юте рных сметем цифро -

вой пер едачи данных , а такж е локал ьных в ычис лительн ых сет ей (LA N, или ЛВ С ) для об ъедин ения

Однако только стремител ьное развитие микропроцессорной техники и техн ологии , заро -

див ше йс я в 197 1 году с поя в лен ие м п ерв о го микр опр оц есс ор а комп ани и In tel, сд ел ало в оз мо жн ым

реаль ное вне дрени е циф рово й техни ки в систе мы связ и ( теле ком муни каци онн ые систе мы ) и при -

вело к широ кому распро стр анени ю и развити ю компью терн ых с етей , д авши х вт орич ный мощный

импульс развити ю сетей передачи голоса и д анных на основе ИК М .

Сетевые компьюте рные технологии , разработанные первоначально на основ е ЭВМ о бще -

го н аз н ач ен ия , или мэйн ф р ейм о в , во т уже око л о 20 лет при м ен я ютс я для об ъе ди н ен ия в сет ь пер со -

нальных компьютеров , или ПК . Широков использование се тевых технологи й для создания LAN

стало досту пно тольк о тог да , когда произв одит ель ност ь и функцион аль ные возмо жност и микро -

п р о ц е сс ор ов в ыр ос ли на ст о л ьк о , ч т о с мо гл и у до вл е т в ор ит ь в ыс ок им т р еб ов ан и ям п о у пр ав л ен и ю се -

Се тев ые цифр овые техн ологи и разв ивал ис ь до по след нег о вр емен и пар алле льно для гло -

ба льны х и ло кал ьн ых сет ей . Те хно лог ии гл об альн ых се тей б ыли нап рав ле ны в ос н ов ном на разв и тие

цифровых телефонных се тей , используемых для передачи голоса . Технологии локальных сетей -

напротив , использовали сь , в основном , для п ереда чи данных .

Р а з в и т и е ц и ф р о в ы х т е л е ф о н н ых с е т е й ш л о п о л и н и и у п л о т н е н и я к а н а л ов к ак з а сч е т мульт ипл ек -

сиров ания низкос к орос тных первич ных каналов T1, так и за счет использов ания б олее раци ональ -

ных м ет одо в моду ляции , н ап рим ер , испо льз овани я ди ффе рен циал ьн ой ИКМ и ее мо дификаций ,

позволивших применять для передачи голосового сигнала более низ кие чем 64 кбит / с ( основной

цифровой канал - ОЦК ) скорости : 40,32, 24, 16 , 8 и 5,6 кбит / с .

Раз вити е сх ем мульт иплек си ров ания пр иве ло к во зникн овен ию трех цифров ых иер архи й с

раз ными ( для ра зных гру пп ст ран ) уров нями ст андарт изов анны х ско рос тей п ере дач и ил и канал ов :

DS2 или T2/E2, DS3 или Т 3/ Е 3, DS4 или Т 4/ Е 4. Эти иерархии , названны е плезиохронными ( т . е .


почти синхронными ) цифровыми иерархиями PDH ( ПЦИ ), широко использовались и продолжают

использоваться как в ци фровой телефонии , так и для перед ачи данных .

Развитие технологий с коростных телекомму никаций на основе PDH привел о к появлению

в последнее время двух наиболее значительных но вых цифровых технол огий : синхронной оп ти -

ческой сети SONET ( СОС ), и синхронной цифровой иерархии SDH ( СЦИ ), иногда рассматривае -

мых как е диная технологи я SONET/SDH, расшир ившая диапазон используемых скоро с тей пере -

дачи до 40 Гбит /c. Эти технологии были ориентированы на использован ие волоконно -

оптических кабелей ( ВО К ) в качестве среды передачи .

Технологии локальных сетей , ориентированных на передачу данных , а не голоса , развива -

лись не по линии уплотнения каналов , а по линии увеличения полосы пропу ск ания ка налов пере -

дачи д анных , необходимой для передачи не только текстовых , но и графических данных , а сейчас

и данных мультимедиа . В резу льтате использ уемые на начальном этапе разв ития сетевые техно -

логии ARCnet, Etherne t и T oken Ring, реализующие скорости передачи 2-16 Мбит / с в полудуп -

лексном режиме и 4-32 Мбит / с в дуплексном режиме , усту пили место новым ск оростным техно -

логиям : FDDI, Fast Ethernet и 100VG-Any LAN, использующим скорость передачи данных 100

Мбит / с и ориентиров анных в большей части с воей также на применение ВОК . Апофеозом этого

развития стала новая техн ол огия Gigabit Ether net, использу ющая скорость пе редачи 1 Гбит / с

Создание компьютерных сетей масштаба пред пр иятия , а также корпоративных , регио -

нальных и глобальных сетей передачи данных , связывающих множество ЛВС , в свою очередь

привело к создани ю таких транспортных технолог ий пере дачи данн ых , как : Х .25, ISDN ( цифро -

вая сеть интегрирован ного обслуживания ЦСИО , или цифровая сеть с интеграцией служб

ЦСИС ) и Frame Relay ( технология ретрансляци и кадров ), решавших эти задачи первоначально

на скоростях 64 кбит / с , 144 кбит / с ( узкопол осная ISD N) и 1,5/2 Мбит / с соот ветственно .

Дальнейшее развитие этих технологий также ш ло по линии увеличения скорос тей переда -

- постепенному о тмиранию ( в плане б есперспект ивности развития ) существу ющ ей еще

- увеличению скорости передачи данных , реализуемых технологией Frame Relay до ско -

- появлению в недрах технологии ISDN ( а именно широкополосной B-I SDN) новой техно -

логии ATM ( режима асинхронной передачи ), которая принципиально может применяться на

различных скоростях передачи ( от 1.5 Мбит /c до 40 Гбит / с ), причем она самостоятельно может

использоваться как технология маг истральной передачи трафика ( не требуя промежуточной тех -

нологии переносчика ) или мож ет передавать свои трафик с использованием промежуточ ной тех -

нологии переносчика ( например , PDH, SONET/SD H или WDM) благодаря использованию техни -

ки инкапсуляции ячеек в ф реймы , вирту альные трибы или вирту альные контейнеры .

Из описанных технологий в литературе наибольшее вним ание до недав него времени уде -

лялось только технологии ATM, хотя она и не была широко распространен а в России ( по сведени -

ям автора и до сих пор существуют только изоли рованно функциониру ющие коммерчески е сети

ATM или эксперименталь ные к орпоративные сети , на которых эта технология отрабатывается ). В

отличие A T M в России развернуты и полномасштабно функционируют практичес ки в каждом

регионе , н ачиная с 1993 года , д есятки крупных сет ей SDH. Технология SDH активно осваивается

регионами . На её осн ове происходит крупномасштабное переобору дование старой аналоговой

сети свези и относительно н овой сети связи PDH России в цифровую Взаимоу вязанную сеть связи

( ВСС ) [137], использу ю щие самые передовые т е хнологии .

Использование SDH позволило резко повысить скорость пере дачи на сети РФ в целом ,

доведя ее сегодня ив отдельных участках до 2,5 Гбит / с , а также потенциал ьно подготовив сеть к

внедрению технологии WDM. Учитывая факт внедрения систем SDH уровня ST M-64 (10 Гбит / с )

отдельными западными к омпаниями , а также то , что W DM позволит многократн о ( от 2 д о 160

раз ) увеличить общу ю скорость передачи по одно му волокну , не говоря о том , что далее она мо -

жет быть также многократн о ( от 2 до 144 раз ) увеличена за счет использования многоволоконного

оптического кабеля , мы подучим впечатляющие перспективы максимально возможного в буду -

щем более чем 92000- кратного увеличения пропуск ной способности наших кабелей , которое , в

принципе доступно п рямо сейчас . Весь вопро с в том , реализу ю тся ли эти п ерспективы в России ?

Понятие плезиохронность. PDH иерархии. Недостатки. Структура потока E1. SDH иерархия. Преимущества перед PDH. Схема загрузки/выгрузки цифровых потоков. Структура цифрового потока STM1

Одной из первых систем, предназначенных для передачи информации в цифровом виде на большие расстояния, является PDH (Plesiochronous Digital Hierarchy - плезиохронная цифровая иерархия). Первый релиз данного стандарта был разработан организацией по стандартизации ITU-T и выпущен в 1972 году под индексом G.703. Под "плезиохронной" (от греч. plesios - "близкий") понимается то, что PDH - почти синхронная система, суть этого будет разъяснена немного позже. Основой построения иерархии PDH является основной цифровой канал (ОЦК), скорость которого составляет 64 кбит/сек. Такая скорость выбрана не случайно. 64 кбит/сек как раз достаточно для передачи одного телефонного разговора, продискритизированного с частотой 4 кГц и проквантованного по 256 уровням. Общепризнано, что этого вполне достаточно для однозначного восприятия произнесенных слов и идентификации говорящего.

Скорости более высоких уровней иерархии PDH получаются путем перемножения скорости ОЦК, т.е. 64 кбит/сек на множитель. Скорость первичного цифрового канала (ПЦК) составляет 2Мбит/сек = 32хОЦК, т.е. ПЦК представляет собой 32 мультиплексированных ОЦК. Однако в исходном стандарте PDH не все 32 канала использовались для передачи в 0 слоте должен передаваться синхросигнал, а в 16 – сигнализация для всех остальных 30 разговорных таймслотов. В последствие каналы PDH получили широкое распространение при передаче не только голосовой информации, но и пакетных данных. Необходимость в использовании 0-го и 16-го таймслотов отпала и они во многих системах также стали задействоваться для передачи пользовательских данных.

Вторичный цифровой канал получается путем мультиплексирования 4-х ПЦК. В итоге получается скорость 8448 кбит/сек. Не четкая пропорциональность говорит о необходимости добавления служебной информации. Более высокие уровни иерархии получаются путем дальнейшего поэтапного мультиплексирования. Потоки, которые включаются в цифровой поток более высокого порядка называются трибутарными. Все возможные уровни представлены в таблице ниже.

Название цифрового канала и обозначение

В таблице представлены цифровые потоки и скорости принятые в Европе, в т.ч. и в России. В Северной Америке и Японии есть отличия. Обозначения для североамериканских цифровых потоков начинаются с буквы "Т", а японских "J". Также есть отличия и в числе потоков низшего уровня при образовании потока более высокого порядка. Кроме того в североамериканском варианте PDH отсутствует пятеричный цифровой канал, т.е. Т5.

Таблица не случайно ограничивается пятеричным цифровым каналом и скоростью 564992 кбит/сек. Это связано с существенным недостатком PDH – его плезиохронностью, т.е "почти" синхронностью. Дело в том, что потоки образуют уровни более высокого порядка последовательным мультиплексированием, соответственно, для извлечения нужно проделать обратную процедуру – демультиплексирования. Таким образом для выделения на промежуточном пункте потока Е1 из Е4, например, необходимо будет выполнить 3 процедуры демультиплексирования, а затем 3 процедуры мультиплексрования для дальнейшей передачи. Подобная процедура потребует значительных производительных затрат, а также вызовет временную задержку для всех передаваемых данных. Кроме того, на каждом пункте, где потребуется извлечение хотя бы одного потока низшего уровня потребуется установка дорогостоящего оборудования. Поэтому применение цифровых потоков высоких уровней иерархии оказывается нецелесообразным. Полностью решить данную проблему удалось с появлением технологии SDH (Synchronous Digital Hierarchy) .

Пример сети PDH с промежуточным извлечением потока Е1 из основного потока Е3

В сотовой связи PDH активно использовался при развертывании систем всех поколений. Особенно востребованным оказался поток ПЦК или Е1, который в настоящее время является практически эталоном измерения пропускной способности любого канала связи. Особенно часто Е1 используется на низкоскоростных соединениях, например, BTS – BSC , NodeB – RNC и т.п.

Одним из основных недостатков является сложность операций мультиплексирования и демультиплексирования пользовательских данных.Сам термин «плезиохронный», используемый для этой технологии, говорит о причине такого явления - отсутствии полной синхронности потоков данных при объединении низкоскоростных каналов в более высокоскоростные. Изначально асинхронный подход к передаче кадров породил вставку бита или нескольких бит синхронизации между кадрами. В результате для извлечения пользовательских данных из объединенного канала необходимо полностью демультиплексировать кадры этого объединенного канала. Например, если требуется получить данные одного абонентского канала 64 Кбит/с из кадров канала ТЗ, необходимо произвести демультиплексирование этих кадров до уровня кадров Т2, затем - до уровня кадров Т1, а затем демультиплексировать и сами кадры Т1.

Другим существенным недостатком технологии PDH является отсутствие развитых встроенных процедур контроля и управления сетью. Служебные биты дают мало информации о состоянии канала, не позволяют его конфигурировать и т. п. Нет в технологии и процедур поддержки отказоустойчивости, которые очень полезны для первичных сетей, на основе которых строятся ответственные междугородные и международные сети. В современных сетях управлению уделяется большое внимание, причем считается, что управляющие процедуры желательно встраивать в основной протокол передачи данных сети.

Третий недостаток состоит в слишком низких по современным понятиям скоростях иерархии PDH. Волоконно-оптические кабели позволяют передавать данные со скоростями в несколько гигабит в секунду по одному волокну, что обеспечивает консолидацию в одном кабеле десятков тысяч пользовательских каналов, но это свойство технология PDH не реализует - ее иерархия скоростей заканчивается уровнем 139 Мбит/с.

Все эти недостатки устранены в новой технологии первичных цифровых сетей, получившей название синхронной цифровой иерархии - Synchronous DigitalHierarchy, SDH .

Уровни SDH определяют структуру цикла и скорость передачи группового сигнала на интерфейсе сетевого узла (Network Node Interface; NNI). На данный момент SDH имеет шесть уровней со скоростями передачи, соответствующими синхронным транспортным модулям STM-N. Уровни иерархии и соответствующие им скорости приведены в таблице 1.2


PDH (Plesiochronous Digital Hierarchy)

Идея Bell всем понравилась и инженеры стали трудиться над созданием стандартов. Америка взяла за основу опыт своих соотечественников из Bell, Европа решила немного доработать концепцию. В итоге появились технологии называемые в общем (PDH, Plesiochronous Digital Hierarchy ). Речь идет именно о иерархии. Раз уж мы начали с Bell, то с ними и продолжим.
  • 24 канала (Digital Signal 0, DS0) мультиплексируются в первичный уровень иерархии, мы получаем DS1 (24 x 44 + служебка = 1544 Кбит/с).
  • 4 DS1 канала мы мультиплексируем в канал высшей иерархии (вторичный) DS2, получаем (1544 х 4 + служебка = 6312 Кбит/с)
  • 7 DS2 объединяем в DS3 (44,7 Мбит/с)
  • 6 DS3 объединяем в DS4 (274,1 Мбит/с)
Каждый DS носит название T в американской системе (T1,T2,T3,T4)
  • 32 канала DS0 пакуется в E1(2 с гаком Мбит/с)
  • 4 E1 в E2 (8 с гаком Мбит/с)
  • 4 E2 в E3 (34 с гаком Мбит/с)
  • 4 E3 в E4 (139 с гаком Мбит/с)


Мультиплексирование происходит в PDH "каскадно". Представим большой телефонный узел за которым сидит много абонентов. Ну скажем, 400 для ровного счета. На этом узле стоят PDH мультиплексоры, на вход которых подаются аналоговые голосовые потоки. По 32 штуки на каждый мультиплексор. Эти "первичные" мультиплексоры преобразовывают голос в цифровой сигнал, жмут его и засовывают все 32 потока в канал E1. Далее все эти каналы E1 заводятся по 4 штуки на ещё один ряд мультиплексоров, которые на выходе дают каналы E2. Затем из E2 аналогичным образом получается E3. В нашем случае, это будет один мультиплексор и на выходе будет только один поток E3, который может вместить 480 голосовых потоков. Как мы видим, наши 400 голосовых канала легко поместятся в E3 и ещё останется место, которое мультиплексор добьет мусором до ровного счета и отправит в линию. Делает он этого потому что он должен передать определенный поток данных в единицу времени, если данных у него на этот момент недостаточно, он добивает нулей и единиц к ним, чтобы заполнить "фрейм". На другом телефонном узле стоит такой же мультиплексор, который сначала делает из E3 четыре потока E2, следующие мультиплексоры из E2 делают E1, ну и последний ряд достает уже голосовые потоки и передает их в сторону абонентов.


По началу PDH использовался телефонистами и объединял крупные узлы телефонной сети. Для своих нужд он был довольно функционален. Однако, рано или поздно, возникла необходимость передавать данные, к чему PDH изначально был не очень приспособлен. К тому же, в мире существовало 3 стандарта PDH, и европейцы, японцы и американцы не могли передавать трафик между друг-другом. Хотя наверное как-то могли все же. Однако, в общем и целом, технологии не были совместимы.

Основной проблемой PDH обычно обозначается тот факт, что из потока данных нельзя вычленить данные более мелких уровней не демультиплексируя поток до него. Что я имею в виду?



Факт выше наряду с другими недостатками PDH (низкая скорость передачи, поддержка только топологии точка-точка) привели к ещё одному витку развития транспортных сетей.

SHD (Synchronous Digital Hierarchy)

Новая технология сразу создавалась для передачи любых данных. Она была призвана избавить инженеров от всех проблем, который принес в их жизнь PDH. Стоит сказать, что технология SDH действительно удалась. Мне она очень нравится, даже не смотря на её сложность.

Принцип работы SDH схож с PDH. Все тоже мультиплексирование TDM, однако для того чтобы расширить функционал, сама схема мультиплексирования немножко усложнилась. Сразу обратимся к одной из них. Технология много раз дорабатывалась, в итоге редакций этих схем штуки три точно. Да, забыл упомянуть, что создать одну единственную схему работы опять не получилось, в итоге есть SONET (американцы) и просто SDH (разрабатывался европейским институтом ETSI). Различий не так много, на схеме ниже встретимся с первым из них. Рисовать самому схему мультиплексирования было бы слишком, поэтому я нашел картинку в интернете.

  • запихнуть в STM-1
  • смултиплексировать (х4) в AUG-4 и положить в STM-4
  • смултиплексировать (х4) в AUG-4 и затем смультиплексировать (х4) в AUG-16 и положить в STM-16
  • и так далее.

Protection

В заголовке POH, который добавляется на уровне VC присутствует так же информация, которая позволяет организовать запасные пути для каналов.

Они могут быть:
На уровне Client Trail. В нашем примере это уровень VC-12, когда появился первый заголовок POH. Это уровень наиболее близкий к абоненту, по сути это и есть абонентский канал.

На уровне Server Trail. Здесь так же можно организовать protection. В нашем случае это уровень, в котором добавляется второй заголовок POH, а именно уровень VC-4. Один Server trail передает много Client Trail, соответственно, на этом уровне защита организуется сразу для нескольких клиентских потоков.

Обычно SDH сеть представляет собой кольцо, соответственно строиться два канала по двум сторонам кольца. Один из них рабочий, другой запасной.

Много всего осталось за пределами поста, может в будущем исправлюсь. Стоит, как минимум, поговорить о конкатенации, схемах резервирования, заголовках. но это как-нибудь потом. Так же для меня остается открытым вопрос, почему PDH - почти синхронная иерархия, а SDH - уже совсем синхронная. )

Ну что же, в следующих постах возвращаемся в MPLS. Поговорим о такой штуке как VLL.

Update: Подумал, что нужно продолжить серию "Что Ethernet-инженеру нужно знать о. ". В следующих постах напишу про ATM и DSL, далее, наверное, будет PON.

Читайте также: