Какой стандарт сети wi fi является более новым

Обновлено: 05.07.2024

IEEE 802.11ax - Wi-Fi стандарт следующего поколения, также известный как Wi-Fi 6, является следующим шагом на пути эволюции беспроводных технологий. Стандарт взял все лучшее от своего предшественника Wi-Fi 5 - 802.11ac, при этом в 4 раза увеличилась пропускная способность, добавилась гибкость и масштабируемость сети. В ближайшие 10 лет IEEE 802.11ax будет основополагающим стандартом для обеспечения пользователей надежным и высокоскоростным беспроводным интернетом.

Экскурс в историю развития группы 802.11

По данным немецкого аналитического агентства на 2019 год в мире ежедневно около 15 миллиардов устройств подключается к Wi-Fi сети. Подсчитано, что уже через год это число может возрасти до 20 миллиардов.

Начиная с 2012 года, и по сегодняшний день, 802.11ac является последней действующей ревизией Wi-Fi.

Улучшения от 802.11n к 802.11ac

В стандарте 802.11ac увеличение скорости происходит за счет 3 улучшений:

  • Большая ширина канала, увеличено с максимума 40 МГц с 802.11n до 80 или даже 160 МГц (что дает увеличение скорости на 117 или 333 процента соответственно).
  • Более плотная модуляция, используется 256 квадратурно-амплитудная модуляция (QAM), по сравнению с 64-QAM в 802.11n (для увеличения скорости на 33 процента в более узких, но все еще пригодных для использования диапазонах).
  • Увеличено число приемников и передатчиков до 8, реализована схема MIMO 8x8, в то время как 802.11n остановился на четырех пространственных каналах (это еще одно увеличение скорости на 100 процентов).

Пространственные каналы в 802.11

Обратите внимание! Найти устройства с 8x8 можно только в провайдерском сегменте, но зато есть задел на будущее расширение функционала.

Конструктивные ограничения и экономичность, из-за которых продукты 802.11n находились в одном, двух или трех пространственных потоках, не сильно изменились для 802.11ac. Устройства первой волны стандарта 802.11ac построены на частоте 80 МГц и на физическом уровне работают на скорости до 433 Мбит/с (нижний уровень), 867 Мбит/с (средний уровень) или 1300 Мбит/с (верхний уровень).

802.11ас Wave 2

Устройства "второй волны" 802.11ac поддерживают большее количество каналов связи и пространственных потоков, при этом возможные конфигурации продукта работают на скорости до 3,47 Гбит/с.

Это надо знать! 802.11ac - это технология, работающая только на 5 ГГц, поэтому двухдиапазонные точки доступа и клиенты продолжают использовать 802.11n с частотой 2,4 ГГц. Однако клиенты 802.11ac работают в менее загруженной полосе 5 ГГц.

В Wave 2 добавили поддержку таких технологий как MU-MIMO (многопользовательское планирование) и Beamforming (формирование луча).

MU-MIMO означает многопользовательский, множественный вход, множественный выход и является беспроводной технологией, позволяющей взаимодействовать маршрутизаторам с несколькими пользователями одновременно.

MU-MIMO - это следующая эволюция однопользовательского MIMO (SU-MIMO), который обычно называют MIMO. Технология MIMO была создана для того, чтобы увеличить количество антенн на беспроводном маршрутизаторе, которые используются как для приема, так и для передачи, и повысить пропускную способность беспроводных соединений. На 2019 год многие устройства поддерживают MU-MIMO производитель микросхем Wi-Fi Qualcomm имеет список устройств - включая iPhone версий 6, 6 Plus и более поздних версий, которые включают в себя технологию 802.11ac MU-MIMO, а Wi-Fi Alliance имеет список из более чем 550 продуктов с использованием технологии MU-MIMO.

Больше, лучше, быстрее – новая мантра 802.11ax

Специфика 802.11ax

  • Позволяет точкам доступа обслуживать большее количество клиентов в сетях с высокой нагрузкой и поддерживает их лучшее взаимодействие в беспроводной локальной сети.
  • Обеспечивает большую производительность для high-load приложений, таких как 4K/8K видео высокой четкости.
  • Полностью беспроводные офисы и Интернет вещей (IoT).

Точки доступа 802.11ax

На рынке есть точки доступа 802.11ax, и уже сейчас можно протестировать новый стандарт Wi-Fi 6. Точки доступа, которые выпущены до начала сертификации, могут не поддерживать некоторые ключевые функции стандарта 802.11ax. Однако, когда они станут доступны, можно будет обновить программное обеспечение ТД для включения этих функций. Точно так же обстояло дело с внедрением предыдущих поколений, таких как 802.11ac и 802.11n.

Эволюция развития Wi-Fi стандартов

802.11n (2008) 802.11ac (2012) 802.11ax (2018) Цели проекта 802.11ax (Wi-Fi 6)
Поддержка 2.4 и 5 ГГц Только 5 ГГц Поддержка 2.4 и 5 ГГц Улучшить взаимодействие устройств на 2.4 и 5 ГГц
Ширина каналов (40 МГц) Более широкий канал (80 и 160 МГц) Канал (80 и 160 МГц), OFDMA на прием и передачу, Опция только 20 МГц для Интернета Вещей Шире канал - больше возможностей.
Модуляция (64-QAM) Улучшенная модуляция (256-QAM) Улучшенная модуляция (1024-QAM) Увеличить среднюю пропускную способность станции как минимум в 4 раза в средах с большой плотностью клиентских устройств
Дополнительные потоки (до 4) Дополнительные потоки (до 8) 8 потоков, понятие "ресурсной единицы" Применение: беспроводные корпоративные офисы, уличные Хот-споты, гостиницы, стадионы, концертные залы
Формирование луча (явное и универсальное) Формирование луча (явное), MU-MIMO в нисходящем потоке Формирование луча (явное), перераспределение пространственных потоков, MU-MIMO в нисходящем и восходящем потоке Улучшенное энергосбережение на клиентских устройствах
Обратная совместимость 11a/b/g Обратная совместимость 11a/b/g/n Обратная совместимость 11a/b/g/n/ac Работа внутри помещений и снаружи

16 сентября 2019 года Wi-Fi Alliance объявил об официальном запуске сертифицированной программы Wi-Fi Certified 6, которая обещает более высокую скорость беспроводного соединения, меньшую задержку, увеличенное время автономной работы и меньшую загрузку сети.

8 новых возможностей и преимущества технологии 802.11ax

  1. OFDMA работает как на прием, так и на передачу;
  2. Многопользовательский 8x8 MIMO на прием* и передачу;
  3. Выше уровень модуляции - 1024-QAM;
  4. Увеличенная длина символа OFDM, в 4 раза больше поднесущих;
  5. Работа вне помещений;
  6. Пространственное перераспределение и использование OBSS;
  7. Сниженное энергопотребление;
  8. Технология формирования луча (Beamforming) в передающем потоке*.

*- уже используется в 802.11ac

OFDMA в каналах DownLink и UpLink

OFDMA (множественный доступ с ортогональным частотным разделением каналов) обеспечивает возможность установления Uplink/Downlink соединений между точкой доступа и несколькими клиентами одновременно за счет выделения для отдельных клиентов подмножеств поднесущих, называемых "ресурсными единицами" (Resource Units, RU). Это одна из наиболее сложных функций в стандарте 802.11ax.

Многопользовательская версия OFDM и ресурсные единицы в 802.11ax

OFDMA в канале UpLink по работе эквивалентен OFDMA в DownLink, но в этом случае несколько клиентских устройств осуществляют передачу одновременно на разных группах поднесущих в одном и том же канале. OFDMA UpLink канала сложнее в управлении OFDMA DownLink канала, поскольку необходимо координировать множество разных клиентов: для этого точка доступа передает триггерные кадры, чтобы указать, какие подканалы может использовать каждый клиент.

Если клиент один, ТД отдаст ему весь канал, но как только в сети появятся новые клиенты, пропускная способность канала будет перераспределена между ними.

Важная особенность технологии OFDMA

Передача данных может осуществляться на тех поднесущих, которые для данного пользователя наименее подвержены частотно-селективной интерференции. Для выбора таких поднесущих каждая точка доступа отправляет отчеты о качестве передачи с использованием разных поднесущих.

Формат кадра Wi-Fi6

Каждый кадр начинается с преамбулы, которая состоит из двух частей:

  • Стандартной части, используемой для обеспечения обратной совместимости с предыдущими стандартами. Для синхронизации приемника и его настройки на принимаемый сигнал в кадре содержатся поля с символами обучающих последовательностей (LSTF и LLTF), а поле LSIG необходимо для вычисления длительности кадра.
  • Преамбулы 802.11ax, декодируется только станциями Wi-Fi 6. Новая преамбула содержит обязательное поле HE-SIG-A, опциональное поле HE-SIG-B, а также специальные обучающие последовательности для настройки MIMO.

Формат кадра Wi-Fi6

OFDMA позволяет нарезать полосу 20, 40, 80 и 160 МГц на дополнительные более мелкие подканалы с предопределенным количеством поднесущих. Наименьший выделенный подканал в стандарте 802.11ax составляет 26 поднесущих (2 МГц). В канале 20 МГц имеется 9 доступных подканалов с 26 поднесущими, что позволяет использовать на прием и передачу до 9-ти различных кадров. IEEE использует термин «Ресурсная единица» (RU) для обозначения подканалов. Блок из 26 поднесущих, указанный выше, известен как RU-26, например: полный набор - RU-26, RU-52, RU-106, RU-242, RU-484 и RU-996.

Сравнение методов доступа OFDM и OFDMA

Слева - 4 пользователя в канале с использованием OFDM. Справа мультиплексирование различных пользователей в одном канале с использованием OFDMA.

Есть и другие преимущества. Количество защитных и нулевых поднесущих по каналу может быть уменьшено как процент от количества используемых поднесущих, что снова увеличивает эффективную скорость передачи данных в данном канале.

Важно знать! Приведенные выше цифры показывают увеличение используемых поднесущих на

10% по сравнению со стандартом 802.11ac после учета коэффициента 4x.

Более длинный символ OFDM позволяет увеличить длину циклического префикса, не жертвуя спектральной эффективностью, что, в свою очередь, обеспечивает повышенную устойчивость к разбросам с большой задержкой, особенно в условиях вне помещения.

Уменьшая циклический префикс до минимального символьного времени, мы увеличиваем спектральную эффективность и устойчивость к условиям многолучевого распространения сигнала. Так же снижается чувствительность к джиттеру в передающем канале в многопользовательском режиме. Есть, конечно, и некоторые побочные эффекты. Точность частоты, необходимая для успешной демодуляции более близко расположенных поднесущих, является более строгой. Кроме того, быстрое преобразование Фурье (БПФ) требует немного более сложной схемотехники и вычислительной мощности.

Многопользовательский MIMO на прием и передачу

Расширена функция 802.11ac в канале DL, где точка доступа определяет, что условия многолучевого распространения позволяют передавать фреймы по одному и тому же каналу разным приёмникам одновременно за счёт использования нескольких пространственных потоков.

802.11ax увеличивает размер групп MU-MIMO во входящем потоке, обеспечивая более эффективную работу Wi-Fi сети. Многопользовательский MIMO исходящего канала является новым дополнением к 802.11ax, но откладывается до второй волны (Wave 2).

Многопользовательский MIMO на прием и передачу

Это надо знать! MIMO 8TXх8RX:8SS обеспечивает одновременную передачу до 8 пространственных потоков в обоих направлениях.

Модуляция 1024-QAM и увеличенная длина символа OFDM

Символ OFDM является основным строительным блоком передачи в Wi-Fi сетях. Основные характеристики: размер быстрого преобразования Фурье (БПФ или FFT – Fast Fourier Transform), разнесение поднесущих и длительность символа OFDM связаны, учитывая фиксированную ширину канала. В Wi-FI 6 разнесение поднесущих уменьшается в 4 раза, а длительность символа OFDM увеличивается в 4 раза.

Предусмотрено увеличение защитного интервала (Guard Interval, GI) между OFDM-символами, что позволяет уменьшить межсимвольную интерференцию и обеспечивает более устойчивую связь в помещениях и в смешанных средах – помещение/улица.

организация поднесущих и увеличенная длина символа OFDM

Переход от 256-QAM к 1024-QAM увеличивает число битов, переносимых на символ OFDM, с 8 до 10, что повышает скорость передачи данных и эффективность использования спектра на 25%. Но, как и прежде, улучшение работает в условиях, где уровень сигнала высокий, а шум низкий. Это связано с тем, что приемник должен принять решение об уровне модуляции, выбрав одно из 32 состояний вдоль каждой оси (амплитуда и фаза или квадратура), а не одно из 16 для 256-QAM или одно из 8 для 64-QAM.

Диаграммы сигнальных созвездий сигналов

Для примера! Уровень мощности приема сигнала, необходимый для декодирования кадра в полосе 80 МГц, 1024-QAM 5/6, MCS-11, должен находиться на отметке -45 дБм, а достичь этого можно только когда приемник и передатчик находятся на близком друг от друга расстоянии!

Работа вне помещений

Ряд функций улучшает производительность при работе в уличных условиях. Наиболее важным является новый формат пакета, в котором наиболее чувствительное поле теперь повторяется для надежности. Более длинные защитные интервалы обеспечивают избыточность для корректировки ошибок.

OBSS – перекрывающиеся области радиовидимости

В Wi-Fi сетях каждый клиент и точка доступа прослушивают радиоэфир, декодируя преамбулу пакета, они знают, свободна среда для передачи данных или нет. Если шум в канале при этом превысит порог чувствительности на 20 Дб, среда так же считается занятой.

В стандартах 802.11 введено понятие виртуальной занятости среды (механизм NAV – Network Allocation Vector). В кадре есть поле, которое содержит значение счетчика, при получении кадров оно меняется во времени от некоторого значения до нуля. Если значение кода равно нулю, то канал свободен, иначе – занят.

В версиях Wi-Fi 4 и Wi-Fi 5 определение виртуальной занятости среды не зависит от того, к какой сети принадлежит устройство занявшее среду. Клиент в кадре имеет одно значение NAV. Wi-Fi 6 научился определять, из какой сети ведется передача – из своей собственной или чужой. На основании этих данных устройство может менять значение NAV и подстраивать мощность передатчика, меняя пороги чувствительности.

OBSS – перекрывающиеся области радиовидимости

Преамбула 802.11ax содержит поле "цвет сети" (BSS color), что позволяет быстро определять принадлежность сети без полного декодирования пакета. Значение "цвета" выбирается точкой доступа случайным образом в момент инициализации сети. Длина поля BSS color 6 бит, этого достаточно, что бы помеченные пакеты у двух сетей находящихся в зоне радиовидимости не совпали.

Уменьшенное энергопотребление

Существующие режимы энергосбережения дополнены новыми механизмами, позволяющими увеличить интервалы ожидания и запланированное время пробуждения. Кроме того, для устройств IoT введен режим только для канала с частотой 20 МГц, позволяющий создавать более простые и менее мощные микросхемы, поддерживающие только этот режим. Надежная высокопроизводительная сигнализация для лучшей работы при значительно более низком уровне мощности принимаемого сигнала (RSSI).

Лучшее планирование и более длительное время автономной работы устройства с Target Wake Time (TWT – запланированное время активации). ТД может согласовывать с пользователями использование функции TWT для задания времени доступа к среде путем обмена информацией, которая включает ожидаемую продолжительность активности.

Технология формирования луча (Beamforming) явная и универсальная

Технология явного формирования луча к клиенту (explicit beamforming) решает ряд вопросов, связанных с замиранием и переотражением сигналов, с их не синфазностью. Приходя в разных фазах, сигнал теряет мощность, а это сильно влияет на дальнодействие и скорость передачи данных.

Explicit beamforming требует от клиента возврата диаграммы направленности. Роутер отправляет клиенту сигнальные пакеты со всех своих антенн, клиент в обязательном порядке отсылает назад информацию, что он увидел от этих антенн, роутер вычисляет местоположение клиента, вносит поправки в работу всех своих приемо-передатчиков. Таким образом роутер может устранить замирания, внести поправку в фазовый сдвиг на одной из антенн, увеличить амплитуду сигнала для преодоления препятствия.

Важно знать! Явное формирование луча работает только в случае, если есть 2 передатчика и больше, и есть поддержка на уровне клиента.

Если устройство не поддерживает передачу диаграммы направленности, есть упрощенный вариант алгоритма – implicit beamforming (универсальное формирование луча). В этом случае роутер оценивает канал связи, основываясь на том, каким образом клиент принимает данные. Роутер объявляет данные, на каких скоростях он может работать, а клиент уже отвечает, что он будет работать на такой-то скорости. Путем итераций роутер меняет скорость и фазовый сдвиг, и смотрит, что ответит клиент. Если клиент повысил скорость, принимается решение что все хорошо. Так продолжается до тех пор, пока не будет установлена максимальная скорость со стороны клиента.

Технологии формирования луча - implicit и explicit beamforming

Какие проблемы решает технология Beamforming

  1. Распределение мощностей передатчиков – роутер может повышать и понижать мощность на каждом канале индивидуально;
  2. Огибание препятствий, работа с переотраженными сигналами;
  3. Устранение замирания одного или нескольких каналов;
  4. Синфазность сигнала на приемнике клиента – увеличение мощности сигнала и скорости приема данных;
  5. Увеличение дальности распространения сигнала.

Это очень ресурсоемкая задача, которая требует серьезных вычислительных мощностей и хорошего охлаждения роутера.

Обязательные и дополнительные функции 802.11ax на станции и клиенте

Точка доступа Клиент
Обязательно Дополнительно Обязательно Дополнительно
Передача OFDMA в нисходящем канале Прием OFDMA в нисходящем канале
Прием OFDMA в восходящем канале Передача OFDMA в восходящем канале
Передача MU-MIMO в нисходящем канале (если 4+ SS*) Передача MU-MIMO в нисходящем канале (если 4

Думается, не стоит говорить в очередной раз, насколько незаменимой вещью в нашей жизни стали беспроводные сети. Почти в каждой квартире есть точка доступа Wi-Fi. С появлением все большего количества мобильных устройств без этого беспроводного стандарта уже попросту не обойтись. Wi-Fi-сетями начали покрываться не только крупные торговые центры, парки и организации общепита, но и общественный транспорт. Например, к концу 2015 года Wi-Fi сетью планируется покрыть весь наземный общественный транспорт Москвы. А уже к концу этого года выходить в Интернет через беспроводные точки доступа можно будет в любом месте московского метрополитена. Более того, в планы Правительства Москвы входит покрытие сетью Wi-Fi всего города к 2018 году, когда в России пройдет Чемпионат Мира по футболу. Как видите, перед беспроводным стандартом ставятся все более сложные задачи, поскольку точкам доступам приходится работать с довольно большим и при этом постоянно растущим числом пользователей.

Wi-Fi для всех и для каждого

Не так давно, чуть менее года назад, были приняты окончательные спецификации самого «свежего» на сегодня Wi-Fi стандарта — IEEE 802.11ac. В настоящее время маршрутизаторы с поддержкой IEEE 802.11ac еще только становятся массовыми, но в организации IEEE (Institute of Electrical and Electronics Engineers) уже идет работа над следующим (шестым) поколением беспроводных сетей — 802.11ax. Сегодня мы расскажем вам, какими улучшениями может похвастаться версия «ac» и по какому пути пойдут инженеры IEEE при разработке 802.11ax, а также других беспроводных стандартов.

Совсем скоро весь московский метрополитен будет покрыт Wi-Fi-сетью

802.11ac

Перед тем, как начать нашу «историю», необходимо в общих чертах рассказать о том, как происходит сам процесс принятия спецификаций Wi-Fi. Организация IEEE непосредственно разрабатывает эти спецификации и утверждает их. Однако кроме нее существует еще и объединение Wi-Fi Alliance. Этот консорциум состоит из многочисленных компаний, которые занимаются разработкой девайсов для беспроводных сетей. Так вот, Wi-Fi Alliance занимается тем, что сертифицирует всё выпускаемое железо на соответствие прописанным IEEE требованиям.

Wi-Fi насчитывает далеко не один стандарт

Получение такого сертификата вовсе не обязательно. К тому же для вендоров оно и не бесплатно. Однако зачастую производителям намного выгоднее иметь метку о прохождении сертификации: как ни крути, но этот маркетинговый ход положительно влияет на продажи устройств, особенно на раннем этапе. Все дело в том, что процесс принятия окончательных спецификаций Wi-Fi, как правило, растягивается на несколько лет. Например, на утверждение стандарта 802.11n в свое время ушло около 5 лет. Его разработка началась в 2004 году, а в 2006 была принята первая предварительная драфт-версия. Окончательно 802.11n был утвержден только в 2009 году. Такая же судьба постигла и нынешнее поколение беспроводных сетей — 802.11ac. Его проектирование стартовало еще в 2008 году, а закончилось лишь в конце 2013.

Такое положение дел не совсем устраивает производителей. На протяжении последних лет они выпускали устройства, основываясь на предварительных версиях 802.11ac. А до 2009 года аналогичная ситуация была со стандартом 801.11n. В итоге первые 802.11ac девайсы появились еще в 2012 году, хотя дебютная программа сертификации организации Wi-Fi Alliance состоялась лишь в середине 2013 года. Да и сейчас на рынке можно встретить лишь те устройства, которые соответствуют драфт-версии 802.11ac (в дальнейшем будем называть их роутерами первой волны). В некоторых из них (например, в шестиантенном роутере Netgear Nighthawk X6) производители использовали собственные наработки, которые позволяли «выжать» из технологии еще больше производительности. Ну а появление роутеров второй волны, основанных на окончательной спецификации 802.11ac, ожидается совсем скоро — в первой половине 2015 года. Ожидается, что они смогут предложить более высокую производительность за счет поддержки некоторых новых функций.

Тот самый шестиантенный Netgear Nighthawk X6

Необходимо сказать несколько слов о технической стороне стандарта 802.11ac. Он работает на частоте 5 ГГц. Этот диапазон загружен значительно меньше, чем 2,4 ГГц, поэтому сигнал меньше подвержен различным помехам. В новую технологию также перекочевала функция SU-MIMO (single-user multiple input/multiple output), которая была чуть ли не основной отличительной чертой 802.11n. Принцип ее работы заключается в том, что она позволяет передавать одному клиенту (устройству) сразу несколько потоков информации. В 802.11ac технология получила более производительную систему модуляции, которая обеспечивает максимальную пропускную способность каждого потока в 433 Мбит/с. При этом стоит отметить, что роутеры первой волны поддерживают передачу до трех потоков одновременно, поэтому их суммарная пропускная способность находится в районе 1300 Мбит/с. Это намного больше того, что позволяет стандарт 802.11n. В нем также была реализована параллельная передача данных по трем потокам, однако ширина каждого потока равнялась всего лишь 150 Мбит/с, что в совокупности составляло скромные 450 Мбит/с.

Роутеры второй волны получат несколько важных изменений. Во-первых, у них появится поддержка технологии MU-MIMO (multi-user multiple input/multiple output). Она работает по такому же принципу, как и SU-MIMO, однако в отличие от последней умеет передавать данные не одному, а сразу нескольким клиентам.

Схема работы технологий SU-MIMO и MU-MIMO. Последняя может обслуживать сразу несколько девайсов

Во-вторых, новые роутеры смогут объединять несколько каналов на частоте 5 ГГц в единый поток с полосой пропускания с частотой 160 МГц. Справедливости ради нужно отметить, что роутеры первой волны также умеют объединять несколько каналов, однако частота полосы пропускания составляет 80 МГц. В-третьих, новые роутеры будут поддерживать передачу по восьми потокам одновременно — вместо текущих трех. Помимо всего прочего, девайсы второй волны будут использовать более широкие каналы и дополнительные потоки, улучшенную технологию формирования направленного сигнала (beamforming) и другие функции. Это позволит нарастить скорость физической передачи данных до 7–10 Гбит/с.

Технология формирования направленного сигнала (beamforming)

О бимформинге стоит поговорить отдельно. По большому счету, в 802.11 эта технология используется не впервые. Стандарт n также поддерживал ее, однако только на уровне опций. IEEE не обязывала производителей внедрять бимформинг, а даже если они и решались на такой шаг, то четких указаний со стороны IEEE о том, как должна работать технология, не было. Поэтому возникали ситуации, когда маршрутизаторы и Wi-Fi-адаптеры по-разному формировали направленный сигнал, и технология не работала. Чтобы избежать этого, некоторые компании даже выпускали наборы устройств, одно из которых подключалось к роутеру, а другое — к компьютеру или какому-либо другому гаджету. Одним из таких наборов был Netgear WNHDB3004 Wireless Home Theater Kit, предназначенный для домашних кинотеатров. Стоимость устройств, само собой, была довольно высока и лишь единицы стремились переплачивать за незначительную прибавку производительности.

Грядущее основное обновление стандарта должно сделать Wi-Fi быстрее и лучше. Хотя в продаже уже появилось много роутеров, оснащенных чипами, поддерживающими черновые варианты спецификаций нового стандарта, сам стандарт Wi-Fi 802.11ax в окончательном виде выйдет не раньше декабря 2019 г. За это время появится еще больше модернизированных устройств, предлагающих новые потенциальные возможности беспроводной связи, которые будут способствовать развитию беспроводных сетей следующего поколения – более быстрых и рассчитанных на большее количество одновременно подключаемых пользователей.

Стандарт 802.11ax позиционируется как 'высокоэффективный' и часто обозначается Wi-Fi 6 – в соответствии с новой номенклатурой, установленной Wi-Fi Alliance, где предыдущие поколения обозначены Wi-Fi 5 (802.11ac) и Wi-Fi 4 (802.11n). Как ожидается, эта номенклатура будет отражена в маркировке новых устройств.

Технически Wi-Fi 6 обеспечит отдельному пользователю на 37% большую скорость передачи данных по сравнению с 802.11ac, но что еще более важно – новые спецификации обещают каждому пользователю в четыре раза большую пропускную способность в многолюдных местах (в условиях высокой плотности пользовательских устройств), а также повышенную энергетическую эффективность, которая в конечном счете должна привести к увеличению времени автономной работы устройства.

1

Все это достигается за счет применения в 802.11ax ряда новых технических решений, в том числе нескольких технологий параллельного подключения многих пользователей, а именно – MU-MIMO и OFDMA; эти технологии, заимствованные из сотовой индустрии, значительно повышают нагрузочную способность и производительность сети, обеспечивая большее количество одновременных подключений и более полное использование выделенного диапазона.

Владельцы и пользователи домовых сетей, решившие обновить аппаратное обеспечение, в будущем могут рассчитывать на ряд преимуществ, которые дают эти технологии, особенно когда вырастет количество устройств, приходящееся на каждую домовую сеть: по оценкам некоторых экспертов, в 2022 г. на каждый дом будет приходиться около 50 узловых устройств.

Однако, как уже было сказано, Wi-Fi 6 будет особенно актуален в местах с высокой нагрузкой на сеть и, в конечном счете, сыграет важную роль в закладке фундамента новой «умной» инфраструктуры, включающей в себя, например, устройства, взаимодействующие в рамках концепции Internet of Things (IoT). Помимо обеспечения параллельного адресного взаимодействия множества разнообразных устройств и сетей, составляющего суть концепции IoT, спецификации стандарта Wi-Fi 6 рассчитаны на удовлетворение растущих требований к скорости передачи данных при одновременном подключении многих пользователей.

2

В целом Wi-Fi 6 базируется на стандарте 802.11ac, в котором было обновлено более 50 специализированных технических решений, хотя, возможно, в финальную версию нового стандарта войдут не все нововведения.

  • повышенная средняя пропускная способность отдельного подключения, обеспечивающая возможность трансляции контента с разрешением ultra-HD и VR-трансляций;
  • поддержка большего количества одновременных подключений с увеличенной пропускной способностью;
  • расширенный диапазон (2,4 ГГц и 5 ГГц, в перспективе будут добавлены частоты 1 ГГц и 6 ГГц);
  • выделенный диапазон подразделяется на большее число каналов, что обеспечивает большую вариативность при подключении;
  • передаваемые пакеты содержат большее количество данных, при этом сеть может одновременно обрабатывать разные потоки данных;
  • улучшенная (почти в 4 раза) производительность на максимальном расстоянии от точки доступа;
  • улучшенная производительность/ надежность подключения на улице и в условиях высокой заполненности эфира;
  • возможность получения трафика из сотовых сетей в местах со слабым приемом.

Сравнение стандартов 802.11n, 802.11ac и 802.11ax

Стандарт 802.11n (Wi-Fi 4) 802.11ac Wave 2 (Wi-Fi 5) 802.11ax (Wi-Fi 6)
Год утверждения 2009 2013 2019
Диапазон 2.4 ГГц, 5 ГГц 5 ГГц 2.4 ГГц, 5 ГГц, в перспективе – 1 и 6 ГГц
Ширина канала 20 МГц, 40 МГц (опционально) 20 МГц, 40 МГц, 80 МГц, 80+80 МГц, 160 МГц 2.4 ГГц: 20 МГц, 40 МГц;
5 ГГц: 80 МГц, 80+80 МГц, 160 МГц
Размер FFT 64, 128 64, 128, 256, 512 64, 128, 256, 512, 1024, 2048
Интервал между поднесущими 312.5 кГц 312.5 кГц 78.125 кГц
Длительность передачи символа OFDM 3.6 мс (с коротким интервалом); 4 мс (с длинным интервалом) 3.2 мс (контрольная сумма – 0.4/0.8 мс) 12.8 мс (контрольная сумма – 0.8/1.6/3.2 мс)
Максимальный уровень модуляции 64-QAM 256-QAM 1024-QAM
Скорость передачи данных от 54 до 600 Мбит/с (максимум из 4 пространственных потоков) 433 Мбит/с (80 МГц, 1 пространственный поток);
6933 Мбит/с (160 МГц, 8 пространственных потоков)
600 Мбит/с (80 МГц, 1 пространственный поток);
9607.8 Мбит/с (160 МГц, 8 пространственных потоков)
Поддержка SU/MU-MIMO-OFDM/A SU-MIMO-OFDM SU-MIMO-OFDM (Wave 1), MU-MIMO-OFDM (Wave 2) MU-MIMO-OFDMA

Стандарт 802.11ac (теперь – Wi-Fi 5) был утвержден в 2013 г., и, хотя его спецификации в основном отвечают потребностям большинства сегодняшних домовых сетей, он использует только диапазон 5 ГГц и не поддерживает многопользовательские технологии на том уровне, который соответствовал бы современным темпам роста количества одновременно подключаемых устройств.

  • увеличенная ширина канала (80 или 160 МГц по сравнению с максимальными 40 МГц в диапазоне 5 ГГц);
  • восемь пространственных потоков взамен четырех;
  • уровень модуляции 256-QAM против 64-QAM (большее количество битов данных на каждый передаваемый QAM-символ);
  • многопользовательский MIMO (MU-MIMO) в версии 802.11ac Wave 2, позволяющий точке доступа одновременно передавать данные четырем подключенным устройствам, взамен однопользовательского SU-MIMO, когда в каждую единицу времени точка доступа работает только с одним устройством – как на прием, так и на передачу.

Возможно, еще большего внимания, чем собственно расширение рабочего диапазона, заслуживают технологии его эффективного использования. В Wi-Fi 6 каждый из доступных диапазонов подразделяется на большее (по сравнению с предыдущим стандартом) число относительно узких подканалов, благодаря чему создается больше индивидуальных каналов связи для клиентов и обеспечивается поддержка дополнительных устройств, подключаемых к данной сети.

Хотя точка доступа с поддержкой Wi-Fi 5 в режиме передачи может одновременно обслуживать четырех пользователей благодаря MU-MIMO – это значительное достижение по сравнению с однопользовательским MIMO в Wi-Fi 4 – на сегодняшний день стандарт AC (Wi-Fi 5) позволяет точке доступа в единицу времени принимать сигнал только от одного пользователя. Новый стандарт 802.11ax (пока на бумаге) позволит увеличить число одновременно обслуживаемых пользователей до восьми – как в режиме передачи (downlink), так и в режиме приема (uplink) – с возможностью предоставления отдельному клиенту четырех одновременных потоков данных.

Однако есть информация о том, что первое поколение устройств с поддержкой 802.11ax не будет поддерживать функцию MU-MIMO uplink, и среди текущих моделей устройств найдется очень мало (точно меньше восьми) таких, которые смогут реализовать преимущества четырех пространственных потоков, так как большинство существующих смартфонов и ноутбуков с MU-MIMO обеспечивают формат подключения 2x2:2 или 3x3:3.

Данная форма записи (AxB:C) показывает максимальное число передающих антенн (A), максимальное число приемных антенн (B) и максимальное число пространственных потоков данных (C), поддерживаемое приемопередающим MIMO-устройством. И если Wi-Fi-устройства с поддержкой MU-MIMO получают от новой технологии непосредственные преимущества, то устройства без MU-MIMO могут получить косвенные преимущества в виде дополнительного эфирного времени, предоставляемого точками доступа с MU-MIMO.

3

В Wi-Fi 6 также вводится двухсторонняя (uplink и downlink) поддержка технологии мультиплексирования большого количества абонентов в общей полосе пропускания с частотным разделением каналов (Orthogonal Frequency Division Multiple Access, OFDMA) – данная схема модуляции по сути представляет собой многопользовательскую версию технологии OFDM (входящей в спецификации 802.11ac/n). Это позволит уменьшить задержки и увеличить нагрузочную способность сети с возможностью одновременного обслуживания в общей полосе пропускания целых 30 пользователей.

Для лучшего понимания сути этих технологий представьте, что сочетание технологий MU-MIMO и OFDMA дает нам вместо схемы, где один оператор поочередно обслуживает клиентов на одной линии, схему со многими операторами и многими линиями, где каждый оператор может одновременно обслуживать несколько клиентов.

12

Кроме того, в случае перегрузки в сетях с поддержкой 802.11ax клиенту вместо борьбы за эфир будет предоставлена более четкая информацию о том, когда роутер станет доступен; также предлагается увеличение количества данных в пакетах за счет более высокого уровня модуляции – 1024-QAM против 256-QAM в стандарте Wi-Fi 5 и 64-QAM в Wi-Fi 4.

Хотя в Wi-Fi 6 средние скорости передачи данных и размеры полосы пропускания – того же порядка, что и в Wi-Fi 5, десятки технологий, воплощенные в обновленных спецификациях, должны значительно улучшить эффективность и пропускную способность будущих сетей Wi-Fi, которые потенциально смогут обслуживать десятки устройств в одной полосе пропускания со скоростью порядка нескольких гигабит в секунду.

Вот некоторые ключевые технологии, отличающие стандарт Wi-Fi 6 от текущих спецификаций Wi-Fi:

4_1

    MU-MIMO (Multi-User Multiple-Input Multiple-Output) – многопользовательский (Multi-User) MIMO был введен в Wi-Fi 5 Wave 2, но только с поддержкой четырех одновременных подключений в режиме передачи (и одного в режиме приема), тогда как Wi-Fi 6 сможет обеспечить не только одновременную передачу, но и одновременный прием сигнала от восьми пользователей; это позволит в четыре раза увеличить теоретическую максимальную пропускную способность по сравнению с Wi-Fi 5.
    Точки доступа с поддержкой MU-MIMO обеспечивают также более качественную обработку сигнала по сравнению с точками доступа с SU-MIMO; они передают конечным устройствам служебную информацию об управлении сигналом, что позволяет регулировать MU-MIMO-трафик, поступающий от конечных пользователей.

5

6_1

7_1

8

9

Расширение диапазона (добавление полосы на частоте 6 ГГц)

Лидеры отрасли, в частности, Qualcomm, полагают, что в будущем для адекватного качества сервиса сетям потребуется более широкий диапазон, чем могут обеспечить стандартные 2,4 и 5 ГГц. Диапазон 2,4 ГГц уже давно заполнен разными электронными устройствами, а 5 ГГц предоставляет недостаточную полосу для каналов повышенной ширины (например, 80 или 160 МГц), к тому же отдельные части диапазона 5 ГГц подразумевают ограничения на его использование.

Компания Qualcomm предложила выделить в свободной области частот в районе 5 ГГц полосу шириной около 1280 МГц под открытые информационные технологии.

В ответ на публичный опрос, проведенный FCC в июле 2017 г. касательно расширения использования среднечастотного диапазона (от 3,7 до 24 ГГц), более 30 компаний, включая Qualcomm, внесли предложение, в котором утверждается, что полоса частот от 5925 до 7125 МГц (так называемый "диапазон 6 ГГц") – это "именно то, что отвечает всем требованиям следующего поколения широкополосных беспроводных средств связи общего назначения".

10

Применительно к Wi-Fi это предложение означает, что диапазон 6 ГГц будет открытым и будет подразделяться на четыре поддиапазона с различными техническими требованиями, в том числе в части помехозащищенности.

Принимая во внимание то, что стандарт Wi-Fi 6 в настоящий момент находится в разработке, а Соединенные Штаты входят в число стран, принимающих решение об открытии диапазона 6 ГГц, рабочая группа IEEE закрепила поддержку этого диапазона в стандарте следующего поколения Wi-Fi 802.11ax (Wi-Fi 6).

Объявление диапазона 6 ГГц открытым является привлекательным решением для компаний, поскольку в этом случае они смогут использовать данную полосу частот без дополнительных согласований с FCC; ожидается, что это станет новым стимулом для инноваций и инвестиций, которые в результате приведут к так называемой «четвертой технологической революции».

"Объявив данный диапазон радиочастот открытым для локальных беспроводных сетей, Комиссия даст нам возможность предоставить пользователям быстрый сервис с меньшей задержкой и большей зоной охвата, что будет способствовать росту экономики и общественного правопорядка, которые напрямую связаны с развитием общедоступных информационных технологий," – говорится в обращении компаний к FCC.

Wi-Fi 6 или 802.11ax – это только один из многих разрабатываемых в настоящее время новых стандартов беспроводной связи, которые будут определять требования к разнообразным сетям с различными типами устройств.

11

Новые стандарты – от 802.11aj/ay, которые предлагают скорость порядка десятков Гбит/с в миллиметровом диапазоне (60 ГГц), до низкочастотных (до 1 ГГц) спецификаций, например, 802.11ah, который предлагает относительно низкую пропускную способность при большей дальности действия (актуально для устройств IoT), – войдут в перечень стандартов 5G, регламентирующих использование открытых и специальных (требующих дополнительного согласования) диапазонов частот.

Заключение: перспективы Wi-Fi 6

Идущий на смену стандартам 802.11n и 802.11ac стандарт следующего поколения беспроводных сетей 802.11ax или Wi-Fi 6 разрабатывается с целью заметного повышения эффективности и емкости (нагрузочной способности) сетей Wi-Fi в многолюдных местах, а также – умеренного стабильного повышения скорости передачи данных, которая не будет падать при увеличении количества одновременно подключаемых к сети устройств.

Потому что, по выражению Qualcomm, "вопрос не в том, насколько быстрым может быть Wi-Fi, а в том, обладает ли сеть Wi-Fi достаточной емкостью, чтобы удовлетворять растущие потребности многочисленных пользователей различных клиентских устройств и сервисов".

Так как Wi-Fi 6 должен оказать непосредственное влияние на производительность сетей в местах с высокой концентрацией людей, например, на стадионах или в многоквартирных домах, ожидается, что этот стандарт будет принят быстрее, чем предыдущие версии Wi-Fi, и в перспективе станет необходимым для пользователей домовых сетей, поскольку сделает широкополосные подключения со скоростью от 100 Мбит/с до 1 Гбит/с более доступными, а широкое внедрение концепции «интернета вещей» (IoT) сделает доступным в режиме онлайн «что угодно».

Если посмотреть на Wi-Fi 6 шире, то можно увидеть, что усиление поддержки многопользовательских технологий, и особенно – введение поддержки одновременного приема сигнала от нескольких пользователей, совпадает с ростом требований к качеству обработки пользовательских данных, которые будут собираться с устройств IoT и обрабатываться с помощью технологий ИИ (например, алгоритмов машинного обучения); то есть в будущем новый стандарт может быть интегрирован в целостную систему цифровой экономики.

content/ru-ru/images/repository/isc/2021/wep-vs-wpa-1.jpg

Защита беспроводной сети – важнейший аспект безопасности. Подключение к интернету с использованием небезопасных ссылок или сетей угрожает безопасности системы и может привести к потере информации, утечке учетных данных и установке в вашей сети вредоносных программ. Очень важно применять надлежащие меры защиты Wi-Fi, однако также важно понимать различия стандартов беспроводного шифрования: WEP, WPA, WPA2 и WPA3.

WPA (Wi-Fi Protected Access) – это стандарт безопасности для вычислительных устройств с беспроводным подключением к интернету. Он был разработан объединением Wi-Fi Alliance для обеспечения лучшего шифрования данных и аутентификации пользователей, чем было возможно в рамках стандарта WEP (Wired Equivalent Privacy), являющегося исходным стандартом безопасности Wi-Fi. С конца 1990-х годов стандарты безопасности Wi-Fi претерпели некоторые изменения, направленные на их улучшение.

Что такое WEP?

Беспроводные сети передают данные посредством радиоволн, поэтому, если не приняты меры безопасности, данные могут быть с легкостью перехвачены. Представленная в 1997 году технология WEP является первой попыткой защиты беспроводных сетей. Ее целью было повышение безопасности беспроводных сетей за счет шифрования данных. Даже в случае перехвата данных, передаваемых в беспроводной сети, их невозможно было прочитать, поскольку они были зашифрованы. Однако системы, авторизованные в сети, могут распознавать и расшифровывать данные, благодаря тому, что все устройства в сети используют один и тот же алгоритм шифрования.

Одна из основных задач технологии WEP – предотвращение атак типа «человек посередине», с которой она успешно справлялась в течение определенного времени. Однако, несмотря на изменения протокола и увеличение размера ключа, со временем в стандарте WEP были обнаружены различные недостатки. По мере роста вычислительных мощностей злоумышленникам стало проще использовать эти недостатки. Объединение Wi-Fi Alliance официально отказалось от использования технологии WEP в 2004 году из-за ее уязвимостей. В настоящее время технология безопасности WEP считается устаревшей, хотя иногда она все еще используется либо из-за того, что администраторы сети не изменили настроенные умолчанию протоколы безопасности беспроводных роутеров, либо из-за того, что устройства устарели и не способны поддерживать новые методы шифрования, такие как WPA.

Что такое WPA?

WPA (Wi-Fi Protected Access) – это появившийся в 2003 году протокол, которым объединение Wi-Fi Alliance заменило протокол WEP. WPA похож на WEP, однако в нем усовершенствована обработка ключей безопасности и авторизации пользователей. WEP предоставляет всем авторизованным системам один ключ, а WPA использует протокол целостности временного ключа (Temporal Key Integrity Protocol, TKIP), динамически изменяющий ключ, используемый системами. Это не позволяет злоумышленникам создать собственный ключ шифрования, соответствующий используемому в защищенной сети. Стандарт шифрования TKIP впоследствии был заменен расширенным стандартом шифрования (Advanced Encryption Standard, AES).

Иногда используется термин «ключ WPA» – это пароль для подключения к беспроводной сети. Пароль WPA можно получить от администратора сети. В ряде случаев установленный по умолчанию пароль WPA может быть напечатан на беспроводном роутере. Если не удается определить пароль роутера, возможно, его можно сбросить.

Что такое WPA2?

Протокол WPA2 появился в 2004 году. Он является обновленной версией WPA. WPA2 основан на механизме сети высокой безопасности (RSN) и работает в двух режимах:

  • Персональный режим или общий ключ (WPA2-PSK) – использует общий пароль доступа и обычно применяется в домашних сетях.
  • Корпоративный режим (WPA2-EAP) – больше подходит для сетей организаций и коммерческого использования.

Однако у протокола WPA2 также есть недостатки. Например, он уязвим для атак с переустановкой ключа (KRACK). Атаки с переустановкой ключа используют уязвимость WPA2, позволяющую имитировать реальную сеть и вынуждать пользователей подключаться к вредоносной сети вместо настоящей. Это позволяет злоумышленникам расшифровывать небольшие фрагменты данных, объединение которых позволит взломать ключ шифрования. Однако на устройства могут быть установлены исправления, поэтому WPA2 считается более надежным, чем WEP и WPA.

Что такое WPA? Понимание безопасности Wi-Fi поможет надежно защитить собственную домашнюю сеть. На изображении показан подросток, сидящий на диване и изучающий Wi-Fi роутер.

Что такое WPA3?

WPA3 – это третья версия протокола защищенного доступа Wi-Fi. Объединение Wi-Fi Alliance выпустило WPA3 в 2018 году. В протоколе WPA3 реализованы следующие новые функции для личного и для корпоративного использования:

Протокол SAE (одновременная аутентификация равных). Этот протокол используется для создания безопасного «рукопожатия», при котором сетевое устройство подключается к беспроводной точке доступа, и оба устройства обмениваются данными для проверки аутентификации и подключения. Даже если пароль пользователя не достаточно надежный, WPA3 обеспечивает более безопасное взаимодействие по протоколу DPP для сетей Wi-Fi .

Усиленная защита от атак методом подбора пароля. Протокол WPA3 защищает от подбора пароля в автономном режиме. Пользователю позволяется выполнить только одну попытку ввода пароля. Кроме того, необходимо взаимодействовать напрямую с устройством Wi-Fi: при каждой попытке ввода пароля требуется физическое присутствие. В протоколе WPA2 отсутствует встроенное шифрование и защита данных в публичных открытых сетях, что делает атаки методом подбора пароля серьезной угрозой.

Устройства, работающие по протоколу WPA3, стали широко доступны в 2019 году. Они поддерживают обратную совместимость с устройствами, работающими по протоколу WPA2.

Какой протокол безопасности применяется в моей сети Wi-Fi?

Для обеспечения надлежащего уровня безопасности сети Wi-Fi важно знать, какой тип шифрования в ней используется. Устаревшие протоколы являются более уязвимыми, чем новые, поэтому вероятность их взлома выше. Устаревшие протоколы были разработаны до того, как стало полностью понятно, каким способом злоумышленники осуществляют атаки на роутеры. В новых протоколах эти уязвимости устранены, поэтому считается, что они обеспечивают лучшую безопасность сетей Wi-Fi.

Как определить тип безопасности вашей сети Wi-Fi

В Windows 10

  • Найдите значок подключения к Wi-Fi на панели задач и нажмите на него.
  • Затем выберите пункт Свойства под текущим подключением Wi-Fi.
  • Прокрутите вниз и найдите сведения о подключении Wi-Fi в разделе Свойства.
  • Под ним найдите пункт Тип безопасности, в котором отображаются данные вашего протокола Wi-Fi.

В macOS

  • Удерживайте нажатой клавишу Option.
  • Нажмите на значок Wi-Fi на панели инструментов.
  • В результате отобразятся сведения о вашей сети Wi-Fi, включая тип безопасности.

В Android

  • На телефоне Android перейдите в раздел Настройки.
  • Откройте категорию Wi-Fi.
  • Выберите роутер, к которому вы подключены, и посмотрите информацию о нем.
  • Отобразится тип безопасности сети Wi-Fi.
  • Путь к этому экрану может отличаться в зависимости от устройства.

В iPhone

К сожалению, в iOS нет возможности проверить безопасность вашей сети Wi-Fi. Чтобы проверить уровень безопасности сети Wi-Fi, можно использовать компьютер или войти на роутер через телефон. Все модели роутеров отличаются, поэтому, возможно, придется обратиться к документации устройства. Если роутер настроен интернет-провайдером, можно обратиться к нему за помощью.

WEP или WPA. Заключение

Если роутер не защищен, злоумышленники могут получить доступ к вашим частотам подключения к интернету, осуществлять незаконные действия, используя ваше подключение, отслеживать вашу сетевую активность и устанавливать вредоносные программы в вашей сети. Важным аспектом защиты роутера является понимание различий между протоколами безопасности и использование самого продвинутого из поддерживаемых вашим роутером (или обновление роутера, если он не поддерживает стандарты безопасности текущего поколения). В настоящее время WEP считается устаревшим стандартом шифрования Wi-Fi, и по возможности следует использовать более современные протоколы.

Ниже перечислены дополнительные действия, которые можно предпринять для повышения безопасности роутера:

  1. Изменить имя, заданное по умолчанию для домашней сети Wi-Fi.
  2. Изменить имя пользователя и пароль роутера.
  3. Поддерживать прошивку в актуальном состоянии.
  4. Отключить удаленный доступ, универсальную настройку сетевых устройств (Universal Plug and Play) и настройку защищенного Wi-Fi.
  5. Если возможно, использовать гостевую сеть.

Вы можете ознакомиться с полным руководством по настройке безопасной домашней сети. Один из лучших способов для сохранения безопасности в интернете – использование современного антивирусного решения, такого как Kaspersky Total Security, обеспечивающего защиту от злоумышленников, вирусов и вредоносных программ, а также включающего средства сохранения конфиденциальности, предоставляющие всестороннюю защиту.

Читайте также: