Какой тип памяти в основном используется в качестве кэш памяти

Обновлено: 06.07.2024

Что такое кэш в процессоре и зачем он нужен

Для многих пользователей основополагающими критериями выбора процессора являются его тактовая частота и количество вычислительных ядер. А вот параметры кэш-памяти многие просматривают поверхностно, а то и вовсе не уделяют им должного внимания. А зря!

В данном материале поговорим об устройстве и назначении сверхбыстрой памяти процессора, а также ее влиянии на общую скорость работы персонального компьютера.

Предпосылки создания кэш-памяти

Любому пользователю, мало-мальски знакомому с компьютером, известно, что в составе ПК работает сразу несколько типов памяти. Это медленная постоянная память (классические жесткие диски или более быстрые SSD-накопители), быстрая оперативная память и сверхбыстрая кэш-память самого процессора. Оперативная память энергозависимая, поэтому каждый раз, когда вы выключаете или перезагружаете компьютер, все хранящиеся в ней данные очищаются, в отличие от постоянной памяти, в которой данные сохраняются до тех пор, пока это нужно пользователю. Именно в постоянную память записаны все программы и файлы, необходимые как для работы компьютера, так и для комфортной работы за ним.

Каждый раз при запуске программы из постоянной памяти, ее наиболее часто используемые данные или вся программа целиком «подгружаются» в оперативную память. Это делается для ускорения обработки данных процессором. Считывать и обрабатывать данные из оперативной памяти процессор будет значительно быстрей, а, следовательно, и система будет работать значительно быстрее в сравнении с тем, если бы массивы данных поступали напрямую из не очень быстрых (по меркам процессорных вычислений) накопителей.

Если бы не было «оперативки», то процесс считывания напрямую с накопителя занимал бы непозволительно огромное, по меркам вычислительной мощности процессора, время.


Но вот незадача, какой бы быстрой ни была оперативная память, процессор всегда работает быстрее. Процессор — это настолько сверхмощный «калькулятор», что произвести самые сложные вычисления для него — это даже не доля секунды, а миллионные доли секунды.

Производительность процессора в любом компьютере всегда ограничена скоростью считывания из оперативной памяти.

Процессоры развиваются так же быстро, как память, поэтому несоответствие в их производительности и скорости сохраняется. Производство полупроводниковых изделий постоянно совершенствуется, поэтому на пластину процессора, которая сохраняет те же размеры, что и 10 лет назад, теперь можно поместить намного больше транзисторов. Как следствие, вычислительная мощность за это время увеличилась. Впрочем, не все производители используют новые технологии для увеличения именно вычислительной мощности. К примеру, производители оперативной памяти ставят во главу угла увеличение ее емкости: ведь потребитель намного больше ценит объем, нежели ее быстродействие. Когда на компьютере запущена программа и процессор обращается к ОЗУ, то с момента запроса до получения данных из оперативной памяти проходит несколько циклов процессора. А это неправильно — вычислительная мощность процессора простаивает, и относительно медленная «оперативка» тормозит его работу.

Такое положение дел, конечно же, мало кого устраивает. Одним из вариантов решения проблемы могло бы стать размещение блока сверхбыстрой памяти непосредственно на теле кристалла процессора и, как следствие, его слаженная работа с вычислительным ядром. Но проблема, мешающая реализации этой идеи, кроется не в уровне технологий, а в экономической плоскости. Такой подход увеличит размеры готового процессора и существенно повысит его итоговую стоимость.


Объяснить простому пользователю, голосующему своими кровными сбережениями, что такой процессор самый быстрый и самый лучший, но за него придется отдать значительно больше денег — довольно проблематично. К тому же существует множество стандартов, направленных на унификацию оборудования, которым следуют производители «железа». В общем, поместить оперативную память прямо на кристалл процессора не представляется возможным по ряду объективных причин.

Как работает кэш-память

Как стало понятно из постановки задачи, данные должны поступать в процессор достаточно быстро. По меркам человека — это миг, но для вычислительного ядра — достаточно большой промежуток времени, и его нужно как можно эффективнее минимизировать. Вот здесь на выручку и приходит технология, которая называется кэш-памятью. Кэш-память — это сверхбыстрая память, которую располагают прямо на кристалле процессора. Извлечение данных из этой памяти не занимает столько времени, сколько бы потребовалось для извлечения того же объема из оперативной памяти, следовательно, процессор молниеносно получает все необходимые данные и может тут же их обрабатывать.

Кэш-память — это, по сути, та же оперативная память, только более быстрая и дорогая. Она имеет небольшой объем и является одним из компонентов современного процессора.

На этом преимущества технологии кэширования не заканчиваются. Помимо своего основного параметра — скорости доступа к ячейкам кэш-памяти, т. е. своей аппаратной составляющей, кэш-память имеет еще и множество других крутых функций. Таких, к примеру, как предугадывание, какие именно данные и команды понадобятся пользователю в дальнейшей работе и заблаговременная загрузка их в свои ячейки. Но не стоит путать это со спекулятивным исполнением, в котором часть команд выполняется рандомно, дабы исключить простаивание вычислительных мощностей процессора.

Спекулятивное исполнение — метод оптимизации работы процессора, когда последний выполняет команды, которые могут и не понадобиться в дальнейшем. Использование метода в современных процессорах довольно существенно повышает их производительность.

Речь идет именно об анализе потока данных и предугадывании команд, которые могут понадобиться в скором будущем (попадании в кэш). Это так называемый идеальный кэш, способный предсказать ближайшие команды и заблаговременно выгрузить их из ОЗУ в ячейки сверхбыстрой памяти. В идеале их надо выбирать таким образом, чтобы конечный результат имел нулевой процент «промахов».

Но как процессор это делает? Процессор что, следит за пользователем? В некоторой степени да. Он выгружает данные из оперативной памяти в кэш-память для того, чтобы иметь к ним мгновенный доступ, и делает это на основе предыдущих данных, которые ранее были помещены в кэш в этом сеансе работы. Существует несколько способов, увеличивающих число «попаданий» (угадываний), а точнее, уменьшающих число «промахов». Это временная и пространственная локальность — два главных принципа кэш-памяти, благодаря которым процессор выбирает, какие данные нужно поместить из оперативной памяти в кэш.

Временная локальность

Процессор смотрит, какие данные недавно содержались в его кэше, и снова помещает их в кэш. Все просто: высока вероятность того, что выполняя какие-либо задачи, пользователь, скорее всего, повторит эти же действия. Процессор подгружает в ячейки сверхбыстрой памяти наиболее часто выполняемые задачи и сопутствующие команды, чтобы иметь к ним прямой доступ и мгновенно обрабатывать запросы.

Пространственная локальность

Принцип пространственной локальности несколько сложней. Когда пользователь выполняет какие-то действия, процессор помещает в кэш не только данные, которые находятся по одному адресу, но еще и данные, которые находятся в соседних адресах. Логика проста — если пользователь работает с какой-то программой, то ему, возможно, понадобятся не только те команды, которые уже использовались, но и сопутствующие «слова», которые располагаются рядом.

Набор таких адресов называется строкой (блоком) кэша, а количество считанных данных — длиной кэша.

При пространственной локации процессор сначала ищет данные, загруженные в кэш, и, если их там не находит, то обращается к оперативной памяти.

Иерархия кэш-памяти

Любой современный процессор имеет в своей структуре несколько уровней кэш-памяти. В спецификации процессора они обозначаются как L1, L2, L3 и т. д.


Если провести аналогию между устройством кэш-памяти процессора и рабочим местом, скажем столяра или представителя любой другой профессии, то можно увидеть интересную закономерность. Наиболее востребованный в работе инструмент находится под рукой, а тот, что используется реже, расположен дальше от рабочей зоны.

Так же организована и работа быстрых ячеек кэша. Ячейки памяти первого уровня (L1) располагаются на кристалле в непосредственной близости от вычислительного ядра. Эта память — самая быстрая, но и самая малая по объему. В нее помещаются наиболее востребованные данные и команды. Для передачи данных оттуда потребуется всего около 5 тактовых циклов. Как правило, кэш-память первого уровня состоит из двух блоков, каждый из которых имеет размер 32 КБ. Один из них — кэш данных первого уровня, второй — кэш инструкций первого уровня. Они отвечают за работу с блоками данных и молниеносное обращение к командам.

Кэш второго и третьего уровня больше по объему, но за счет того, что L2 и L3 удалены от вычислительного ядра, при обращении к ним будут более длительные временные интервалы. Более наглядно устройство кэш-памяти проиллюстрировано в следующем видео.

Кэш L2, который также содержит команды и данные, занимает уже до 512 КБ, чтобы обеспечить необходимый объем данных кэшу нижнего уровня. Но на обработку запросов уходит в два раза больше времени. Кэш третьего уровня имеет размеры уже от 2 до 32 МБ (и постоянно увеличивается вслед за развитием технологий), но и его скорость заметно ниже. Она превышает 30 тактовых циклов.


Процессор запрашивает команды и данные, обрабатывая их, что называется, параллельными курсами. За счет этого и достигается потрясающая скорость работы. В качестве примера рассмотрим процессоры Intel. Принцип работы таков: в кэше хранятся данные и их адрес (тэг кэша). Сначала процессор ищет их в L1. Если информация не найдена (возник промах кэша), то в L1 будет создан новый тэг, а поиск данных продолжится на других уровнях. Для того, чтобы освободить место под новый тэг, информация, не используемая в данный момент, переносится на уровень L2. В результате данные постоянно перемещаются с одного уровня на другой.

Также при хранении одних и тех же данных могут задействоваться различные уровни кэша, например, L1 и L3. Это так называемые инклюзивные кэши. Использование лишнего объема памяти окупается скоростью поиска. Если процессор не нашел данные на нижнем уровне, ему не придется искать их на верхних уровнях кэша. В этом случае задействованы кэши-жертвы. Это полностью ассоциативный кэш, который используется для хранения блоков, вытесненных из кэша при замене. Он предназначен для уменьшения количества промахов. Например, кэши-жертвы L3 будут хранить информацию из L2. В то же время данные, которые хранятся в L2, остаются только там, что помогает сэкономить место в памяти, однако усложняет поиск данных: системе приходится искать необходимый тэг в L3, который заметно больше по размеру.

В некоторых политиках записи информация хранится в кэше и основной системной памяти. Современные процессоры работают следующим образом: когда данные пишутся в кэш, происходит задержка перед тем, как эта информация будет записана в системную память. Во время задержки данные остаются в кэше, после чего их «вытесняет» в ОЗУ.

Итак, кэш-память процессора — очень важный параметр современного процессора. От количества уровней кэша и объема ячеек сверхбыстрой памяти на каждом из уровней, во многом зависит скорость и производительность системы. Особенно хорошо это ощущается в компьютерах, ориентированных на гейминг или сложные вычисления.


Кэш-память или просто кэш, – это тип памяти, используемый для ускорения выполнения программ. Её можно рассматривать как расширение основной памяти компьютера RAM (Random Access Memory).

Кэш-память используется аппаратным обеспечением для хранения наиболее часто используемых данных, для увеличения скорости отклика компьютера и, следовательно, его производительности.

Чтобы понять, что такое кэш, мы должны объяснить, в чем разница между оперативной памятью и кэшем.

В чем разница между оперативкой и кэшем

Оперативная память (RAM) организована как последовательность ячеек памяти. Всякий раз, когда центральный процессор компьютера должен считать или записать информацию в оперативную память, он должен идентифицировать ячейку, в которой хранится информация. После получения запроса от процессора ячейка памяти отвечает, предоставляя свои данные. Это время отклика называется временем доступа (чтение или записи).

Даже если это очень короткое время, оно слишком большое для процессора, которые выполняет операции гораздо, чем оперативная память.

Чтобы сократить время ожидания процессора, компьютер использует кэш, – гораздо более быстрый тип памяти по сравнению с основной памятью.

Поэтому для оптимизации производительности объединены два типа памяти. Большой объем памяти с медленным временем доступа в ОЗУ и небольшой объём памяти с очень быстрым временем доступа в кэше.

Почему бы просто не использовать кэш-память, если она быстрее? Потому что кэш намного дороже оперативной памяти и по этой причине его используют только в небольших количествах.

Как работает кэш-память

Чтобы понять, что такое кэширование и как оно работает, нам нужно объяснить, что такое принцип локальности.

Принцип локальности гласит, что когда центральный процессор считывает данные из ячеек основной памяти компьютера, весьма вероятно, что другие данные, которые он будет использовать, также будут расположены рядом с рассматриваемой ячейкой. По этой причине вся информация, смежная с запрашиваемой центральным процессором, передаётся в кэш. Когда процессор компьютера запрашивает новую информацию, она, скорее всего, уже будет в кэше.

В случае, если запрошенные данные не кэшируются, центральный процессор сделает запрос в основную память, чтобы найти ячейку, содержащую информацию. Также в этом случае центральный процессор будет передавать информацию, смежную с информацией о ячейке, используемой в кеше. Этот процесс будет продолжаться до тех пор, пока кэш полностью не заполнится.

Уровни кэш-память

После понимания, что такое кэш-память, давайте посмотрим, сколько существует типов или уровней кеш-памяти.

Есть 4 возможных уровня (L), и они организованы иерархически:

  • L1 или кэш первого уровня. Он является внутренним по отношению к процессору и часто разделяется на кэш данных и кэш инструкций.
  • L2 или кэш второго уровня. Он может быть как внутренним, так и внешним, и не различает данные и инструкции.
  • L3 или кэш третьего уровня. Он может быть как внутренним, так и внешним, но может вовсе отсутствовать. Он не различает данных и инструкций.

Типы кэш-памяти

Мы завершаем руководство о том, что такое кэш-память, объясняя, каковы основные типы этого типа памяти.

Кэш процессора

Кэш процессора является кэшем, используемым процессором компьютера для ускорения операций доступа к основной памяти.

Кэш страницы

Кэш страниц является частью памяти, используемой операционной системой, чтобы скопировать данные использования на жестком диске. Операционная система использует всю оперативную память, которая не выделяется непосредственно другим приложениям, поскольку доступ к этой основной памяти происходит быстрее, чем к жесткому диску.

Дисковый кеш

Дисковый кэш тип похож на оперативную память, которая интегрирована в жесткий диск. Когда он присутствует, он используется для загрузки секторов жесткого диска, смежных с требуемыми, избегая перемещения читающей головки и ускоряя операцию чтения.

Веб-кэш

Веб-кэш является частью жесткого диска, который используют веб-браузеры (Chrome, Edge, Firefox) или прокси-серверs, чтобы сохранить просмотренные интернет-страницы.

Веб-кэш используется для сохранения HTML-кода, изображений и всей информации, необходимой для просмотра интернет-страницы, чтобы сократить время доступа к странице в случае, если пользователь захочет просмотреть её снова. Когда пользователь повторно заходит на такую страницу, нет необходимости запрашивать весь код с веб-сервера, на котором размещена страница, поскольку большая часть информация уже будет храниться в веб-кэше.


Во всех центральных процессорах любого компьютера, будь то дешёвый ноутбук или сервер за миллионы долларов, есть устройство под названием «кэш». И с очень большой вероятностью он обладает несколькими уровнями.

Наверно, он важен, иначе зачем бы его устанавливать? Но что же делает кэш, и для чего ему разные уровни? И что означает «12-канальный ассоциативный кэш» (12-way set associative)?

Что такое кэш?

TL;DR: это небольшая, но очень быстрая память, расположенная в непосредственной близости от логических блоков центрального процессора.

Однако мы, разумеется, можем узнать о кэше гораздо больше…

Давайте начнём с воображаемой волшебной системы хранения: она бесконечно быстра, может одновременно обрабатывать бесконечное количество операций передачи данных и всегда обеспечивает надёжное и безопасное хранение данных. Конечно же, ничего подобного и близко не существует, однако если бы это было так, то структура процессора была бы гораздо проще.

Процессорам бы тогда требовались только логические блоки для сложения, умножения и т.п, а также система управления передачей данных, ведь наша теоретическая система хранения способна мгновенно передавать и получать все необходимые числа; ни одному из логических блоков не приходится простаивать в ожидании передачи данных.

Но, как мы знаем, такой волшебной технологии хранения не существует. Вместо неё у нас есть жёсткие диски или твердотельные накопители, и даже самые лучшие из них далеки от возможностей обработки, необходимых для современного процессора.


Великий Т'Фон хранения данных

Причина этого заключается в том, что современные процессоры невероятно быстры — им требуется всего один тактовый цикл для сложения двух 64-битных целочисленных значений; если процессор работает с частотой 4 ГГЦ, то это составляет всего 0,00000000025 секунды, или четверть наносекунды.

В то же время, вращающемуся жёсткому диску требуются тысячи наносекунд только для нахождения данных на дисках, не говоря уже об их передаче, а твердотельным накопителям — десятки или сотни наносекунд.

Очевидно, что такие приводы невозможно встроить внутрь процессоров, поэтому между ними будет присутствовать физическое разделение. Поэтому ещё добавляется время на перемещение данных, что усугубляет ситуацию.


Увы, но это Великий А'Туин хранения данных

Именно поэтому нам нужна ещё одна система хранения данных, расположенная между процессором и основным накопителем. Она должна быть быстрее накопителя, способна одновременно управлять множеством операций передачи данных и находиться намного ближе к процессору.

Ну, у нас уже есть такая система, и она называется ОЗУ (RAM); она присутствует в каждом компьютере и выполняет именно эту задачу.

Почти все такие хранилища имеют тип DRAM (dynamic random access memory); они способны передавать данные гораздо быстрее, чем любой накопитель.


Однако, несмотря на свою огромную скорость, DRAM не способна хранить такие объёмы данных.

Одни из самых крупных чипов памяти DDR4, разработанных Micron, хранят 32 Гбит, или 4 ГБ данных; самые крупные жёсткие диски хранят в 4 000 раз больше.

Итак, хоть мы и повысили скорость нашей сети данных, нам потребуются дополнительные системы (аппаратные и программные), чтобы разобраться, какие данные должны храниться в ограниченном объёме DRAM, готовые к обработке процессором.

DRAM могут изготавливаться в корпусе чипа (это называется встроенной (embedded) DRAM). Однако процессоры довольно малы, поэтому в них не удастся поместить много памяти.


10 МБ DRAM слева от графического процессора Xbox 360. Источник: CPU Grave Yard

Подавляющее большинство DRAM расположено в непосредственной близости от процессора, подключено к материнской плате и всегда является самым близким к процессору компонентом. Тем не менее, эта память всё равно недостаточно быстра…

DRAM требуется примерно 100 наносекунд для нахождения данных, но, по крайней мере, она способна передавать миллиарды битов в секунду. Похоже, нам нужна ещё одна ступень памяти, которую можно разместить между блоками процессора и DRAM.

На сцене появляется оставшаяся ступень: SRAM (static random access memory). DRAM использует микроскопические конденсаторы для хранения данных в виде электрического заряда, а SRAM для той же задачи применяет транзисторы, которые работают с той же скоростью, что и логические блоки процессора (примерно в 10 раз быстрее, чем DRAM).


Разумеется, у SRAM есть недостаток, и он опять-таки связан с пространством.

Память на основе транзисторов занимает гораздо больше места, чем DRAM: в том же размере, что чип DDR4 на 4 ГБ, можно получить меньше 100 МБ SRAM. Но поскольку она производится по тому же технологическому процессу, что и CPU, память SRAM можно встроить прямо внутрь процессора, максимально близко к логическим блокам.

С каждой дополнительной ступенью мы увеличивали скорость перемещаемых данных ценой хранимого объёма. Мы можем продолжить и добавлять новые ступени,, которые будут быстрее, но меньше.

И так мы добрались до более строгого определения понятия кэша: это набор блоков SRAM, расположенных внутри процессора; они обеспечивают максимальную занятость процессора благодаря передаче и сохранению данных с очень высокими скоростями. Вас устраивает такое определение? Отлично, потому что дальше всё будет намного сложнее!

Кэш: многоуровневая парковка


На приведённом выше изображении процессор (CPU) обозначен прямоугольником с пунктирной границей. Слева расположены ALU (arithmetic logic units, арифметико-логические устройства); это структуры, выполняющие математические операции. Хотя строго говоря, они не являются кэшем, ближайший к ALU уровень памяти — это регистры (они упорядочены в регистровый файл).

Каждый из них хранит одно число, например, 64-битное целое число; само значение может быть элементом каких-нибудь данных, кодом определённой инструкции или адресом памяти каких-то других данных.

Регистровый файл в десктопных процессорах довольно мал, например, в каждом из ядер Intel Core i9-9900K есть по два банка таких файлов, а тот, который предназначен для целых чисел, содержит всего 180 64-битных целых чисел. Другой регистровый файл для векторов (небольших массивов чисел) содержит 168 256-битных элементов. То есть общий регистровый файл каждого ядра чуть меньше 7 КБ. Для сравнения: регистровый файл потоковых мультипроцессоров (так в GPU называются аналоги ядер CPU) Nvidia GeForce RTX 2080 Ti имеет размер 256 КБ.

Регистры, как и кэш, являются SRAM, но их скорость не превышает скорость обслуживаемых ими ALU; они передают данные за один тактовый цикл. Но они не предназначены для хранения больших объёмов данных (только одного элемента), поэтому рядом с ними всегда есть более крупные блоки памяти: это кэш первого уровня (Level 1).


Одно ядро процессора Intel Skylake. Источник: Wikichip

На изображении выше представлен увеличенный снимок одного из ядер десктопного процессора Intel Skylake.

ALU и регистровые файлы расположены слева и обведены зелёной рамкой. В верхней части фотографии белым обозначен кэш данных первого уровня (Level 1 Data cache). Он не содержит много информации, всего 32 КБ, но как и регистры, он расположен очень близко к логическим блокам и работает на одной скорости с ними.

Ещё одним белым прямоугольником справа показан кэш инструкций первого уровня (Level 1 Instruction cache), тоже имеющий размер 32 КБ. Как понятно из названия, в нём хранятся различные команды, готовые к разбиению на более мелкие микрооперации (обычно обозначаемые μops), которые должны выполнять ALU. Для них тоже существует кэш, который можно классифицировать как Level 0, потому что он меньше (содержит всего 1 500 операций) и ближе, чем кэши L1.

Вы можете задаться вопросом: почему эти блоки SRAM настолько малы? Почему они не имеют размер в мегабайт? Вместе кэши данных и инструкций занимают почти такую же площадь на чипе, что основные логические блоки, поэтому их увеличение приведёт к повышению общей площади кристалла.

Но основная причина их размера в несколько килобайт заключается в том, что при увеличении ёмкости памяти повышается время, необходимое для поиска и получения данных. Кэшу L1 нужно быть очень быстрым, поэтому необходимо достичь компромисса между размером и скоростью — в лучшем случае для получения данных из этого кэша требуется около 5 тактовых циклов (для значений с плавающей запятой больше).


Кэш L2 процессора Skylake: 256 КБ SRAM

Но если бы это был единственный кэш внутри процессора, то его производительность наткнулась бы на неожиданное препятствие. Именно поэтому в ядра встраивается еще один уровень памяти: кэш Level 2. Это обобщённый блок хранения, содержащий инструкции и данные.

Он всегда больше, чем Level 1: в процессорах AMD Zen 2 он занимает до 512 КБ, чтобы кэши нижнего уровня обеспечивались достаточным объёмом данных. Однако большой размер требует жертв — для поиска и передачи данных из этого кэша требуется примерно в два раза больше времени по сравнению с Level 1.

Во времена первого Intel Pentium кэш Level 2 был отдельным чипом, или устанавливаемым на отдельной небольшой плате (как ОЗУ DIMM), или встроенным в основную материнскую плату. Постепенно он перебрался в корпус самого процессора, и, наконец, полностью интегрировался в кристалл чипа; это произошло в эпоху таких процессоров, как Pentium III и AMD K6-III.

За этим достижением вскоре последовал ещё один уровень кэша, необходимый для поддержки более низких уровней, и появился он как раз вовремя — в эпоху расцвета многоядерных чипов.


Чип Intel Kaby Lake. Источник: Wikichip

На этом изображении чипа Intel Kaby Lake в левой части показаны четыре ядра (интегрированный GPU занимает почти половину кристалла и находится справа). Каждое ядро имеет свой «личный» набор кэшей Level 1 и 2 (выделены белыми и жёлтым прямоугольниками), но у них также есть и третий комплект блоков SRAM.

Кэш третьего уровня (Level 3), хоть и расположен непосредственно рядом с одним ядром, является полностью общим для всех остальных — каждое ядро свободно может получать доступ к содержимому кэша L3 другого ядра. Он намного больше (от 2 до 32 МБ), но и намного медленнее, в среднем более 30 циклов, особенно когда ядру нужно использовать данные, находящиеся в блоке кэша, расположенного на большом расстоянии.

Ниже показано одно ядро архитектуры AMD Zen 2: кэши Level 1 данных и инструкций по 32 КБ (в белых прямоугольниках), кэш Level 2 на 512 КБ (в жёлтых прямоугольниках) и огромный блок кэша L3 на 4 МБ (в красном прямоугольнике).


Увеличенный снимок одного ядра процессора AMD Zen 2. Источник: Fritzchens Fritz

Но постойте: как 32 КБ могут занимать больше физического пространства чем 512 КБ? Если Level 1 хранит так мало данных, почему он непропорционально велик по сравнению с кэшами L2 и L3?

Не только числа

Кэш повышает производительность, ускоряя передачу данных в логические блоки и храня поблизости копию часто используемых инструкций и данных. Хранящаяся в кэше информация разделена на две части: сами данные и место, где они изначально располагаются в системной памяти/накопителе — такой адрес называется тег кэша (cache tag).

Когда процессор выполняет операцию, которой нужно считать или записать данные из/в память, то он начинает с проверки тегов в кэше Level 1. Если нужные данные там есть (произошло кэш-попадание (cache hit)), то доступ к этим данным выполняется почти сразу же. Промах кэша (cache miss) возникает, если требуемый тег не найден на самом нижнем уровне кэша.

В кэше L1 создаётся новый тег, а за дело берётся остальная часть архитектуры процессора выполняющая поиск в других уровнях кэша (при необходимости вплоть до основного накопителя) данных для этого тега. Но чтобы освободить пространство в кэше L1 под этот новый тег, что-то обязательно нужно перебросить в L2.

Это приводит к почти постоянному перемешиванию данных, выполняемому всего за несколько тактовых циклов. Единственный способ добиться этого — создание сложной структуры вокруг SRAM для обработки управления данными. Иными словами, если бы ядро процессора состояло всего из одного ALU, то кэш L1 был бы гораздо проще, но поскольку их десятки (и многие из них жонглируют двумя потоками инструкций), то для перемещения данных кэшу требуется множество соединений.


Для изучения информации кэша в процессоре вашего компьютера можно использовать бесплатные программы, например CPU-Z. Но что означает вся эта информация? Важным элементом является метка set associative (множественно-ассоциативный) — она указывает на правила, применяемые для копирования блоков данных из системной памяти в кэш.

Представленная выше информация кэша относится к Intel Core i7-9700K. Каждый из его кэшей Level 1 разделён на 64 небольших блока, называемые sets, и каждый из этих блоков ещё разбит на строки кэша (cache lines) (размером 64 байта). «Set associative» означает, что блок данных из системы привязывается к строкам кэша в одном конкретном сете, и не может свободно привязываться к какому-то другому месту.


Инклюзивный кэш L1+L2, victim cache L3, политики write-back, есть даже ECC. Источник: Fritzchens Fritz

Ещё один аспект сложности кэша связан с тем, как хранятся данные между разными уровнями. Правила задаются в inclusion policy (политике инклюзивности). Например, процессоры Intel Core имеют полностью инклюзивные кэши L1+L3. Это означает, что одни данные в Level 1, например, могут присутствовать в Level 3. Может показаться, что это пустая трата ценного пространства кэша, однако преимущество заключается в том, что если процессор совершает промах при поиске тега в нижнем уровне, ему не потребуется обыскивать верхний уровень для нахождения данных.

В тех же самых процессорах кэш L2 неинклюзивен: все хранящиеся там данные не копируются ни на какой другой уровень. Это экономит место, но приводит к тому, что системе памяти чипа нужно искать ненайденный тег в L3 (который всегда намного больше). Victim caches (кэши-жертвы) имеют похожий принцип, но они используются для хранения информации, переносимой с более низких уровней. Например, процессоры AMD Zen 2 используют victim cache L3, который просто хранит данные из L2.

Существуют и другие политики для кэша, например, при которых данные записываются и в кэш, и основную системную память. Они называются политиками записи (write policies); большинство современных процессоров использует кэши write-back — это означает, что когда данные записываются на уровень кэшей, происходит задержка перед записью их копии в системную память. Чаще всего эта пауза длится в течение того времени, пока данные остаются в кэше — ОЗУ получает эту информацию только при «выталкивании» из кэша.


Графический процессор Nvidia GA100, имеющий 20 МБ кэша L1 и 40 МБ кэша L2

Для проектировщиков процессоров выбор объёма, типа и политики кэшей является вопросом уравновешивания стремления к повышению мощности процессора с увеличением его сложности и занимаемым чипом пространством. Если бы можно было создать 1000-канальные ассоциативные кэши Level 1 на 20 МБ такими, чтобы они при этом не занимали площадь Манхэттена (и не потребляли столько же энергии), то у нас у всех бы были компьютеры с такими чипами!

Самый нижний уровень кэшей в современных процессорах за последнее десятилетие практически не изменился. Однако кэш Level 3 продолжает расти в размерах. Если бы десять лет назад у вас было 999 долларов на Intel i7-980X, то вы могли бы получить кэш размером 12 МБ. Сегодня за половину этой суммы можно приобрести 64 МБ.

Подведём итог: кэш — это абсолютно необходимое и потрясающее устройство. Мы не рассматривали другие типы кэшей в CPU и GPU (например, буферы ассоциативной трансляции или кэши текстур), но поскольку все они имеют такую же простую структуру и расположение уровней, разобраться в них будет несложно.

Был ли у вас компьютер с кэшем L2 на материнской плате? Как насчёт слотовых Pentium II и Celeron (например, 300a) на дочерних платах? Помните свой первый процессор с общим L3?

На правах рекламы

Наша компания предлагает в аренду серверы с процессорами от Intel и AMD. В последнем случае — это эпичные серверы! VDS с AMD EPYC, частота ядра CPU до 3.4 GHz. Максимальная конфигурация — 128 ядер CPU, 512 ГБ RAM, 4000 ГБ NVMe.

Кэш-память DRAM

Концепция Cache DRAM заключается в добавлении дополнительного уровня кеша между процессором и Оперативная память память в целях повышения производительности первого. Но какие изменения это означает в архитектуре процессора и как работает эта концепция? Мы объясняем вам и попутно, какие процессоры будут использовать эту архитектуру.

Несколько дней назад Apple появился патент, в котором упоминалось использование Cache DRAM в одном из будущих процессоров, концепция, которая, хотя и может показаться экзотической, не является, поэтому мы собираемся демистифицировать ее.

Память DRAM как кэш, противоречие

Битовая ячейка SRAM

Битовая ячейка DRAM

Вся текущая память RAM, которая используется вне процессора, относится к типу DRAM или Dynamic RAM, тогда как память, которая используется внутри процессоров, является статической RAM или SRAM. Оба работают примерно одинаково с точки зрения доступа к данным, но они не одинаковы в том, как они хранят немного памяти.

Память DRAM намного дешевле, но по своей природе требует постоянного обновления, а ее скорость доступа ниже, чем у SRAM, поэтому она обычно не используется в процессорах. С другой стороны, он масштабируется хуже, чем DRAM, поэтому, несмотря на то, что IBM использовала память DRAM в качестве кэша последнего уровня в своих процессорах для высокопроизводительных вычислений, POWER, в следующем поколении они будут использовать SRAM. объем памяти.

Таким образом, концепция кеш-памяти, которая связана с памятью типа SRAM, вместе с концепцией DRAM в принципе не совпадают, и хотя мы имеем дело с процессорами IBM, мы не будем говорить об использовании памяти DRAM в качестве кеша внутри процессор.

Кэш DRAM и память HBM в качестве примера

Кэш-память DRAM - это концепция добавления дополнительного уровня в иерархию памяти между кешем последнего уровня процессора и основной системной памятью, но построенная через память DRAM с более высокой скоростью доступа и меньшей задержкой, чем DRAM, используемая в качестве основной памяти.

Одним из способов достижения этого является использование памяти типа HBM в качестве кеш-памяти DRAM, которая представляет собой тип памяти DRAM, в которой разные микросхемы памяти уложены и соединены вертикально с помощью кабеля, называемого TSV, или сквозных путей. кремний тем, что они проходят сквозь микросхемы. Этот тип подключения также используется для построения памяти 3D-NAND.

Кэш-память DRAM

Поскольку соединение вертикальное, необходим переходник, который представляет собой часть электроники в виде платы, которая отвечает за связь между процессором и памятью HBM. Оба процессора, будь то CPU / ЦЕНТРАЛЬНЫЙ ПРОЦЕССОР or GPU / ГРАФИЧЕСКИЙ ПРОЦЕССОР, установлены на указанном переходнике, что из-за небольшого расстояния дает памяти HBM возможность функционировать как тип памяти DRAM с более низкой задержкой, чем классическая память DDR и GDDR.

Следует пояснить, что если бы DRAM находилась ближе к процессору, поскольку конфигурация 3DIC помещает ее чуть выше него, то уровень задержки по сравнению с памятью HBM был бы ниже, а, следовательно, и скорость доступа выше, из-за того, что электроны имеют путешествовать на меньшее расстояние.

Мы действительно использовали память HBM, чтобы дать вам представление, но в качестве примера работает любой тип памяти в конфигурации 2.5DIC.

Но стандартного интерпозера недостаточно


Следующая проблема заключается в том, что кэш не работает так же, как оперативная память, поскольку система поиска данных процессора не копирует строки команд из ОЗУ одну за другой, а скорее систему памяти. Кэш копирует фрагмент памяти, в котором текущая строка кода находится на последнем уровне кеша.

На последнем уровне хранится кеш процессора, который используется всеми ядрами, но по мере приближения к первому уровню они становятся более частными. Следует уточнить, что в порядке убывания каждый уровень кеша содержит фрагмент предыдущего кеша. Когда процессор ищет данные, он ищет их в порядке возрастания уровней кэша, где каждый уровень имеет большую емкость, чем предыдущий.

Но для того, чтобы память HBM вела себя как кеш-память, нам нужен элемент, который связывает процессор с указанной памятью, промежуточное устройство, чтобы иметь необходимую схему, чтобы вести себя как кэш-память. Таким образом, обычный преобразователь нельзя использовать, и необходимо добавить в него дополнительную схему, которая позволяет памяти HBM вести себя как дополнительный кэш памяти.

Читайте также: