Класс компьютеры можно разделить на три подкласса суперкомпьютеры серверы и персональные компьютеры

Обновлено: 06.07.2024

Аналоговые вычислительные машины (АВМ), в которых информация представляется в виде непрерывно изменяющихся переменных, выраженных какими-либо физическими величинами.

Цифровые вычислительные машины (ЦВМ), в которых информация представляется в виде дискретных значений переменных (чисел), выраженных комбинацией дискретных значений какой-либо физической величины (цифр)

Каждый из этих способов представления информации имеет свои преимущества и недостатки. Основным достоинством ЦВМ, определившим их широкое распространение и преобладание среди всех ЭВМ, является то, что точность получаемых с их помощью результатов вычислений не зависит от точности, с которой они сами (т.е. ЦВМ) изготовлены. Точность же результатов вычислений с помощью АВМ непосредственно зависит от точности устройства самой АВМ.

2 подход к классификации средств вычислительной техники

Еще десятилетие назад в основном использовалась классификация средств вычислительной техники, в основу которой было положено их разделение по быстродействию.


СуперЭВМ для решения крупномасштабных вычислительных задач, для обслуживания крупнейших информационных банков данных.


Большие ЭВМ для комплектования ведомственных, территориальных и региональных вычислительных центров.

3 подход к классификации средств вычислительной техники

С развитием сетевых технологий все больше начинает использоваться другой классификационный признак, отражающий место и роль ЭВМ в сети. Согласно ему классификация принимает следующий вид.

Мощные машины и вычислительные системы для управления гигантскими сетевыми хранилищами информации - предназначаются для обслуживания крупных сетевых банков данных и банков знаний. По своим характеристикам их можно отнести к классу суперЭВМ, но в отличие от них они являются более специализированными и ориентированными на обслуживание мощных потоков информации.

Кластерные структуры - представляют собой многомашинные распределенные вычислительные системы, объединяющие под единым управлением несколько серверов. Это позволяет гибко управлять ресурсами сети, обеспечивая необходимую производительность, надежность, готовность и другие характеристики.

Серверы - это вычислительные машины и системы, управляющие определенным видом ресурсов сети. Различают файл-серверы, серверы приложений, факс - серверы, почтовые, коммуникационные, Web-серверы и др.

Рабочие станции – представляют собой наличие в сетях абонентских пунктов, ориентированных на работу профессиональных пользователей с сетевыми ресурсами. Этот термин как бы отделяет их от ПЭВМ, обеспечивающих работу основной массы непрофессиональных пользователей, работающих обычно в автономном режиме.

Сетевые компьютеры - представляют собой упрощенные персональные компьютеры, вплоть до карманных персональных компьютеров. Они становятся еще одним стандартом, объединяющим целый класс компьютеров, который получает массовое производство и распространение. Их применение позволяет аккумулировать вычислительные мощности и все виды вычислительных услуг на серверах в сетях ЭВМ. В связи с этим отпадает необходимость каждому пользователю иметь собственные автономные средства обработки. Очень многие из них могут обращаться к вычислительным ресурсам сетей с помощью простейших средств доступа - сетевых компьютеров. Требуемая информация и нужные виды ее обработки будут выполнены серверами сети, а пользователи получают уже готовые, требуемые им результаты.

Уже теперь понятие “сетевой компьютер” отождествляется с целым спектром моделей, различающихся своими функциональными возможностями. Чаще всего под сетевым компьютером понимают достаточно дешевый компьютер с малой оперативной памятью, с отсутствием жесткого и гибкого дисков и со слабым программным обеспечением. Стоимость сетевого компьютера должна быть намного ниже стоимости персонального компьютера достаточно сложной конфигурации.

Классификация сетевых компьютеров

  • Windows-терминалы (Windows-based Terminal, WBT) – настольные и мобильные персональные компьютеры (ПК) с операционной системой Windows СЕ. Рассчитаны на запуск приложений на сервере и получение от него данных;
  • простейшие универсальные сетевые компьютеры (“тонкие клиенты”) – настольные ПК с доступом к различным сетевым ресурсам. Практически все требуемые пользователям программы должны выполняться на сервере;
  • сетевые компьютеры Java (Java Net PC), способные выполнять простейшие Java-программы;
  • достаточно мощные сетевые компьютеры (Net PC) – настольные ПК с резидентной операционной системой, способные работать с большинством приложений.

Классы персональных компьютеров






Рис. 1. Электронные органайзеры, калькуляторы, электронные игры

Учитель информатики Кузнецова Л. Л. МОУ СОШ №10

Нас окружает множество различных объектов, каждый из которых обладает определённым свойствами. Однако некоторые из группы объектов имеют одинаковые общие свойства, которые отличают их от объектов других групп. Внутри классов объектов могут быть выделены подклассы, объекты которых обладают некоторыми особенными свойствами, в свою очередь подклассы могут делиться на ещё более мелкие группы и так далее. В процессе классификации объектов часто строятся информационные модели, которые имеют иерархическую структуру. В биологии весь животный мир рассматривается как иерархическая система (тип, класс, отряд, семейство, род, вид), в информатике используется иерархическая файловая система и так далее.

Рассмотрим процесс построения информационной модели, которая позволяет классифицировать современные компьютеры. Класс Компьютеры можно разделить на три подкласса: Суперкомпьютер, Серверы Персональные компьютеры.

В иерархической структуре элементы распределяются по уровням, от первого (верхнего) уровня до нижнего (последнего) уровня. На первом уровне может располагаться только один элемент, который является «вершиной» иерархической структуры. Основное отношение между уровнями состоит в том, что элемент более высокого уровня может состоять из нескольких элементов нижнего уровня, при этом каждый элемент нижнего уровня может входить в состав только одного элемента верхнего уровня. В иерархической информационной модели объекты распределены по уровням. Каждый элемент более высокого уровня может, состоят из элементов нижнего уровня, а элемент нижнего уровня может входить в состав только одного элемента более высокого уровня. В рассмотренной иерархической модели, классифицирующей компьютеры, имеется три уровня. На первом, верхнем, уровне располагается элемент Компьютеры, в него входят три элемента второго уровня Суперкомпьютеры, Серверы и Персональные компьютеры. В состав последнего входят три элемента третьего, нижнего, уровня Настольные, Портативные и Карманные компьютеры.

Иерархические модели данных используются для представления объектов, находящихся друг с другом в отношении упорядоченности.

Для описания исторического процесса смены поколений семьи используются динамические информационные модели в форме генеалогического дерева. В качестве примера можно рассмотреть фрагмент (X - XI века) генеалогического дерева династии Рюриковичей.

ТСО: компьютер, мультимедийный проектор.

Ход урока

I. Организационный момент.

  • Что нас окружает? Множество объектов.
  • Какие системы объектов целесообразно и возможно представить с помощью табличных моделей?
  • Что отражают информационные модели?

III. Объяснение нового материала.

Информационные модели отражают различные типы систем объектов, в которых реализуются различные структуры взаимодействия и взаимосвязи между элементами системы. В узком понимании информационная модель – это модель, описывающая, изучающая, актуализирующая информационные связи и отношения в исследуемой системе. Информационные модели представляют объекты и процессы в образной или знаковой форме. (Приложение, слайд 2.)

Для отражения систем с различными структурами используются различные типы информационных моделей: табличные, иерархические и сетевые.

Мы уже изучили табличные информационные модели, которые реализуются в виде прямоугольной таблицы. Создавая таблицу, вы выбирали некоторое количество объектов и указывали их свойства. Свойства объектов – различны.

Однако некоторые группы объектов имеют одинаковые общие свойства, которые отличают их от объектов других групп.

Группа объектов, обладающих одинаковыми общими свойствами, называется классом объектов. Внутри класса объектов могут быть выделены подклассы, объекты которых обладают некоторыми особенными свойствами, в свою очередь подклассы могут делиться на ещё более мелкие группы и так далее. (Приложение, слайд 3.) Класс Четырёхугольники можно разделить на два подкласса: Параллелограммы и Трапеции. Подкласс Параллелограммы делится, свою очередь, на Прямоугольники и Ромбы, а в Прямоугольниках выделяются ещё Квадраты. Подкласс Трапеции делится на Равнобедренные и Прямоугольные.

Такой процесс систематизации объектов называется процессом классификации. В качестве примера классификации можно рассмотреть классификацию способов решения физических задач. (Приложение, слайд 4).

В процессе классификации объектов часто строятся информационные модели, которые имеют иерархическую структуру. (Приложение, слайд 5.) В биологии весь животный мир рассматривается как иерархическая система (тип, класс, отряд, семейство, род, вид), в информатике используется иерархическая файловая система.

В иерархической структуре элементы распределяются по уровням, от первого (верхнего) уровня до нижнего (последнего) уровня. Рассмотрим на примере объекта “Часы”, в качестве основания классификации возьмём способы функционирования.

В иерархической информационной модели объекты распределены по уровням. Каждый элемент более высокого уровня может состоять из элементов нижнего уровня, а элемент нижнего уровня может входить в состав только одного элемента более высокого уровня.

Рассмотрим процесс построения статической иерархической информационной модели, которая позволяет классифицировать современные компьютеры. (Приложение, слайд 7.)

Класс компьютеры можно разделить на три подкласса: Суперкомпьютеры, Серверы, Персональные компьютеры. Подкласс Персональные компьютеры делится, в свою очередь, на Настольные, Портативные и Карманные.

Удобным способом наглядного представления структуры информационных моделей является граф. (Приложение, слайд 8.)

В случае представления информации о составе и структуре системы в виде графа компоненты системы изображаются вершинами, а связи между ними – линиями (дугами или рёбрами). Графы используются во многих областях практической научной деятельности людей. Следующий пример относится к органической химии. Известно, что свойства химических веществ, называемых углеводородами, зависят не только от того, из какого количества атомов углерода и водорода состоит молекула, но и от способа их соединения, т.е. от структуры молекулы. Возьмём молекулу углеводорода , состоящую из пяти атомов углерода и двенадцати атомов водорода. В зависимости от способа соединения мы получим пентан (Приложение, слайд 9,) или, при другом способе соединения атомов, можно получить 2,2 деметилпропан (Приложение, слайд 10). Принятый в химии способ отображения структуры молекулы фактически является графом.

Следующий пример относится к медицине. Как известно, у разных людей кровь отличается по группе. Всего групп крови четыре.

Когда важно знание группы крови?

Да, при переливании крови, когда группа крови играет существенную роль. Дело в том, что не все группы крови совместимы. Вливание человеку “не той” группы может иметь весьма печальные последствия. Возможность переливания крови разных групп на следующем слайде. (Приложение, слайд 11.)

Какую группу крови можно перелить человеку, имеющему III, II, I группы крови?

Что сейчас вы держите в руках?

Правильно, шариковую ручку.

Из чего она состоит?

Её устройство тоже можно представить в виде графа. Школьники изображают устройство шариковой ручки в виде графа, используя средства Microsoft Word, панель рисование.

Полученный граф напоминает ветвящийся куст, который “растёт сверху вниз”. Граф, отражающий состав шариковой ручки, является деревом. Корень этого дерева – вершина “Шариковая ручка”.

Дерево – это граф, предназначенный для отображения таких связей между объектами как вложенность, подчинённость, наследование.

В виде дерева можно отразить иерархическую структуру разделов книги, в том числе и нашего учебника информатики. Это были примеры статических иерархических информационных моделей.

Для описания исторического процесса смены поколений семьи используются динамические информационные модели в форме генеалогического дерева. В качестве примера можно рассмотреть фрагмент генеалогического дерева династии Рюриковичей. (Приложение, слайд 12).

Назовите предков Ярослава?

IV. Самостоятельная работа.

Отобразите в виде графа структуру объектов: велосипед, ботинок.

Первый компьютер был создан в 1946 году в США. Данная электронная вычислительная машина (ЭВМ) состояла из 18 тыс. вакуумных ламп, весила 30 тонн, занимала площадь около 200 м 2 и потребляла огромное количество энергии. В 1964 г. фирма IBM объявила о создании семейства компьютеров System 360, после чего продолжается постоянное развитие компьютерной техники и элементной базы.

Компьютерная техника может классифицироваться по назначению, мощности, размерам, элементной базе и т.д. Такое разделение компьютеров является условным, что объясняется стремительным развитием компьютерной науки и техники.

В общем виде компьютеры можно разделить:

  • по производительности и быстродействию;
  • по назначению;
  • по уровню специализации;
  • по типу процессора;
  • по особенностям архитектуры;
  • по размерам.

В зависимости от набора решаемых задач, на основании которых формируются требования к характеристикам, компьютеры делят на:

  • персональные компьютеры;
  • рабочие станции;
  • серверы;
  • мэйнфреймы;
  • суперкомпьютеры (кластерные архитектуры).

Персональный компьютер


Характерным для ПК являются:

  • ориентация на широкое применение и наличие некоторого набора стандартных технических средств со средними значениями характеристик, которые могут быть существенно улучшены по желанию пользователя;
  • автономное использование ПК и, как следствие, обязательное наличие у каждого компьютера средств ввода и отображения информации, таких как: клавиатура, мышь, монитор, принтер и др, характерных для решаемых задач;
  • индивидуальное использование ресурсов ПК и незначительное использование ресурсов других компьютеров при наличии подключения к информационной сети, например, Internet.
  • работа под управлением, как минимум, не сетевой операционной системы.

Рабочая станция

Существуют достаточно устойчивые признаки конфигураций рабочих станций, предназначенных для решения определенного круга задач, позволяет отделять их в отдельный профессиональный подкласс: мультимедиа (обработка изображений, видео, звука), САПР (системы автоматизированного проектирования и т.д.).


Каждый такой подкласс может иметь присущие ему особенности и уникальные компоненты, например:

  • большой размер монитора и / или несколько мониторов (САПР),
  • быстродействующая графическая плата (обработка видео и мультипликация, компьютерные игры),
  • большой объем накопителей данных,
  • наличие сканера (работа с изображением),
  • защищенное исполнение (вооруженные силы, секретные базы данных) и другие.

Сервер


Характерным для сервера являются:

Мэйнфрейм


Научные исследования показывают, что при использовании глобальных информационных массивов, обработка данных будет выполняться значительно легче и экономически выгоднее с помощью мейнфрейму, чем при участии сети персональных устройств. Мэйнфрейм опережает обычные современные ПК практически по всем показателям.

Отдельно стоит уделить внимание высокой надежности самого устройства и данных, с которыми он работает. Наличие резервных составляющих устройств системы и возможность их «горячей» замены обеспечивают непрерывность работы. А стандартная величина загруженности процессора без особых усилий превышает отметку в 85% от общей мощности. Управление таким устройством происходит с помощью цепи терминалов, а с недавних пор и через сетевой интерфейс. Лидирующие позиции в производстве мэйнфреймов занимает компания IBM.

Для мэйнфреймов характерны следующие особенности:

  • дублирования: резервные процессоры; запасные микросхемы памяти; альтернативные пути доступа к периферийным устройствам. Горячая замена всех элементов до каналов, плат памяти и центральных процессоров;
  • целостность данных: в мэйнфреймах используется память, исправляет ошибки. Ошибки не приводят к разрушению данных в памяти, или данных, ожидающих устройства ввода-вывода информации. Дисковые подсистемы построены на основе RAID-массивов с горячей заменой и встроенными средствами резервного копирования, которые гарантируют защиту от потерь данных;
  • рабочую нагрузку мэйнфреймов может составлять 80-95% от их пиковой производительности;
  • пропускная способность подсистемы ввода-вывода мэйнфреймов разработана так, чтобы работать в среде с высоким рабочим нагрузкам на ввод-вывод;
  • доступ к данным: поскольку данные хранятся на одном сервере, приложения не требуют сбора исходной информации из множества источников, не нужен дополнительный дисковое пространство для их временного хранения;
  • требуется небольшое количество необходимых физических серверов и довольно простое программное обеспечение. Все это, в совокупности, ведет к повышению скорости и эффективности обработки.
  • использования дискового пространства: пропускная способность ввода-вывода достаточное для загрузки процессора.

Суперкомпьютер


Аппаратная и программная часть комплекса позволяет при обнаружении отказа одного процессора быстро перераспределить работу на другие процессоры внутри кластера. При этом сбой в работе кластера выражается лишь в некотором снижении производительности системы или в недоступности приложений на короткое время, необходимое для переключения на другой узел. Производительность кластерной системы легко масштабируется, а это значит, что добавление в систему дополнительных процессоров, оперативной и дисковой памяти или новых узлов может выполняться при необходимости в любое время.

Сравнение мейнфрейма и суперкомпьютера.

В контексте общей вычислительной мощности мэйнфреймы проигрывают суперкомпьютерам.

Автор Статьи

Computer в переводе означает «вычислитель». Это основная функция устройства, но использовать его можно по-разному. Отсюда и деление современных компьютеров на типы и виды. В этой статье мы представим классификацию устройств и приведем их основные отличительные характеристики.

Классы компьютеров

Все выпускаемые компьютеры можно разделить на два класса: персональные и корпоративные. Помимо внешнего вида, основное отличие между ними – быстродействие.

Эту характеристику по-другому называют флопс (в англоязычном варианте FLOPS или полностью FLoating-point Operations Per Second). Она означает количество определенных операций, которое может выполнить компьютер в единицу времени. Для персонального компьютера нормальной считается величина 0,1 терафлопса, у корпоративного она может доходить до 10 терафлопсов.

Основные типы персональных компьютеров

Устройства этого типа позволяют работать на них одиночным пользователям. Они универсальны, а перечень решаемых с их помощью задач достаточно широк: на ПК можно набирать тексты, смотреть видео, оформлять чертежи, выполнять вычисления и решать другие задачи. Подобные устройства, в свою очередь, делятся на несколько типов.

Стационарные компьютеры

Такие устройства предназначены для постоянного использования в одном месте и делятся на несколько видов:

  1. Настольные компьютеры или по-другому десктопы (desktop) отличаются модульной конфигурацией. Они состоят из системного блока и подключенных к нему монитора, клавиатуры и мышки. Модульная конфигурация – основное преимущество таких компьютеров. Она дает возможность подобрать отдельные элементы под решаемые задачи (например, размер монитора, быстродействие, объем памяти и прочее), а в будущем модернизировать компьютер, заменив их на более современные. Недостаток таких моделей – внушительные габаритные размеры.
  2. Моноблоки отличаются от настольных компьютеров тем, что у них системный блок и монитор размещены в одном корпусе. Соответственно, они более компактные, но менее производительные. Последняя особенность связана со сложностью охлаждения энергоемких комплектующих (например, процессора, оперативной памяти и других), поэтому их заменяют на менее энергоемкие и производительные.
  3. Неттопы отличаются от классических настольных компьютеров уменьшенными габаритами системного блока, очень тихой работой, пониженным энергопотреблением и более низкой производительностью. Это отличный выбор для навигации в интернете или просмотра видео, но для современных игр они не подходят.

Мобильные компьютеры

Производительность – одна из основных характеристик современного компьютера, но в ряде случаев более важной оказывается их мобильность. К мобильному типу относится несколько видов устройств:

Удобство ноутбука в его мобильности

  1. Ноутбуки (на английском notebook, что в переводе означает «записная книжка») по-другому их часто называют лэптопами (на английском laptop, что в переводе означает «на коленях»). У них есть несколько характерных отличий от стационарных моделей: монитор совмещен с крышкой компьютера, клавиатура встроена в корпус и оснащена сенсорной панелью (тачпадом), имеется аккумуляторная батарея, позволяющая определенное время работать без подключения к сети электропитания. Последняя особенность и обеспечивает мобильность ноутбуков. Современные модели практически не уступают по производительности стационарным аналогам.
  2. Нетбуки меньше ноутбуков и уступают им по производительности, но могут дольше работать от аккумуляторной батареи. По функциональности их можно назвать неттопами, но в мобильном исполнении.
  3. Ультрабуки (на английском ultrabook) отличаются от ноутбуков очень тонким корпусом и аккумулятором повышенной емкости. Это легкие, удобные и производительные, но дорогие устройства.
  4. Планшеты (на английском tablet PC), в отличие от всех предыдущих видов устройств этого типа, не имеют книжной конструкции. Они оснащены сенсорным дисплеем, имеют клавиатуру, на которой можно работать пальцами рук или стилусом. Такие устройства легкие и тонкие. С их помощью удобно читать электронные книги или смотреть фильмы, но набирать тексты или работать с графическими программами не получится: они для этого не предназначены.
  5. Карманные компьютеры (на английском их часто называют Personal Digital Assistant, сокращенно PDA, что в переводе означает «личный цифровой секретарь») стали следующим этапом на пути уменьшения размеров компьютеров, но сейчас их полностью заменили смартфоны. По функциональности они ни в чем не уступают планшетам, но при этом более компактные.

Переносные компьютеры

Возможности современных компьютеров не ограничиваются только выполнением заданных операций. Это качество в полной мере реализуется в переносных моделях (на английском wearables). Их вполне можно было бы отнести к мобильным, но у них есть два ярких отличия: форма и способность анализировать окружающую среду и выдавать рекомендации владельцу. К этому типу относится несколько видов устройств:

Основные типы корпоративных компьютеров

Корпоративные компьютеры превосходят персональные по производительности и часто на них одновременно работают несколько пользователей. Такой класс устройств часто используют в бизнесе, в системе образования или на производстве. Они делятся на следующие типы.

Серверы

К серверам относят мощные компьютеры, способные обрабатывать большие массивы информации, принимать и выполнять запросы от персональных компьютеров или рабочих станций. Их используют, например, все интернет-провайдеры. Помимо этого, серверы применяют для хранения больших объемов информации. В этом случае их используют в качестве хостингов, файлообменников или облачных сервисов.

Мейнфреймы

Мейнфреймы выполняют схожие с серверами задачи, но превосходят их по техническим параметрам и обладают очень высокой надежностью. Чаще всего их используют на крупных предприятиях, которые выполняют обработку большого количества информации: в банках, аэропортах, на железнодорожных вокзалах и других предприятиях.

Суперкомпьютеры

Суперкомпьютеры – это уже не отдельные компьютеры, а многопроцессорные комплексы. Они отличаются высочайшей производительностью и способны выполнять несколько триллионов операций в секунду. На задачу, которую суперкомпьютеры решают за несколько минут, обычному ПК понадобится несколько дней. Такие устройства отличаются крупными габаритами. Чаще всего их используют для моделирования различных природных (смерчи, наводнения и прочее) или техногенных (аварии, войны и прочее) событий.

Заключение

Выбор компьютеров сейчас действительно огромен. Устройство с требуемыми функциями и возможностями можно подобрать под любые задачи. Главное – четко сформулировать цели, для которых предназначен компьютер.

Оставьте свою электронную почту и получайте самые свежие статьи из нашего блога. Подписывайтесь, чтобы ничего не пропустить

Читайте также: