Компьютер является одним из способов реализации эвм

Обновлено: 01.07.2024

Эта статья о происхождении и значении терминов ЭВМ, компьютер и computer; в ней раскрываются классификационные отношения между терминами: computer , вычислительная машина, аналоговая вычислительная машина (АВМ), цифровая вычислительная машина (ЦВМ), электронная цифровая вычислительная машина (ЭЦВМ), программируемая электронная цифровая вычислительная машина, универсальная программируемая электронная цифровая вычислительная машина (ЭВМ), персональный компьютер (ПК, ПЭВМ), стационарный персональный компьютер, носимый персональный компьютер, и пр.; в статье объясняется отличие ЭВМ от прочих вычислительных машин.

Вспоминая сокращение и перевод, получаем:

- ЭВМ - это электронно-вычислительная машина,

- компьютер - computer - э то вычислитель.

Другими словами, и то, и другое является вычислителем. Первый термин лишь подчеркивает, что вычислитель является (а) машиной, а не человеком, и (б) электронной машиной, а не механической, к примеру, он не является арифмометром. Второй термин таких уточнений в себе не несёт.

Происхождение, значение и сопоставление

Слово computer появилось в английском литературном языке в начале XVII века [1 ], правда, тогда оно означало "человек, занимающийся вычислениями". В конце девятнадцатого века у этого слова появилось второе значение "машина-вычислитель", но лишь в середине XX века второе значение "машина-вычислитель" вытеснило первое. И теперь computer означает в английском языке любую вычислительную машину: аналоговую, цифровую, гибридную и пр.

Слово ЭВМ (точнее, ЭСМ, электронная счётная машина) появилось в СССР в сороковых годах XX века, т. е. в то же самое время, когда за словом computer в английском языке закрепилось значение машины-вычислителя. Однако с самого начала сокращение ЭВМ подразумевало не любую машину, а электронную.

В те годы «железный занавес» разделял не только государства, но и лексиконы народов 1 , поэтому до конца 80-х в русском языке употреблялось только слово ЭВМ, которым с разными приставками обозначали и «большие» ЭВМ, и мини-, и микро-ЭВМ.

После перестройки в СССР начались массовые поставки персональных ЭВМ (т. е. personal computers ); вместе с поставками в русском языке укоренилось слово «компьютер». Поэтому в нашем быту - но не в науке и технике - «компьютер» означает всего лишь «персональный компьютер». В отличие от бытового языка, в современном научном, юридическом и техническом русском языке ЭВМ и компьютер - одно и то же.

ЭВМ и компьютер - это машина-вычислитель, которая отличается от прочих вычислителей:

- дискретными (цифровыми) вычислительными блоками, а не аналоговыми;

- электронным (не механическим) устройством вычислительных блоков;

- автоматической обработкой данных по заданной программе;

Дискретность вычислителя означает, что операндами в вычислительных операциях являются числа, состоящие, естественно, из цифр, поэтому второе название дискретного вычислителя "цифровой".

Электронное устройство вычислительных блоков подразумевает, что основные арифметические и логические блоки вычислителя состоят из электронных компонентов (вакуумных ламп, транзисторов, микросхем и т. п.). В частности, вычислитель на основе реле, т. е. на основе электротехнических, а не электронных компонент, сделанный Конрадом Цузе в 1941 году, сегодня компьютером по-русски не называют, но в английском предложении его упомянут как computer .

Автоматическая обработка данных предполагает невмешательство человека в обработку, пока она не завершится. Разумеется также, что обработка достаточно «длинная», т. е. состоит из нескольких операций, иначе нет смысла устраивать автоматическую обработку. Переключение с одной операции на следующую управляется программой, а не человеком.

Универсальность назначения понимается в каждую эпоху по-своему, сообразно человеческой фантазии и возможностям технических средств. В сороковых годах универсальность компьютера заключалась в том, что результатом работы его программ были разнообразные математические расчеты: баллистические, аэродинамические и т. п. В пятидесятых и шестидесятых программы универсального компьютера должны были уметь делать еще и научные, экономические, финансовые расчеты, управлять сложными технологическими процессами. В семидесятых, помимо уже упомянутого, - планировать перевозки, резервировать билеты на транспорт, пересылать электронную почту; в восьмидесятые годы - показывать картинки, помогать проектировать здания, электронные приборы, а в девяностых - играть и развлекать.

Сегодня программы универсального компьютера должны, по-прежнему, уметь делать любые расчеты, проводить численное моделирование физических процессов, раскодировать ДНК, обрабатывать картинки, географические карты, тексты, показывать кино, проигрывать музыку, распознавать образы и пр. Все только что перечисленные возможности программ являются внешними проявлениями внутренних способностей компьютера. Само собой разумеется, что внешние проявления основаны на внутренних способностях алгебраических, арифметических и логических блоков, которые остаются по-прежнему исключительно вычислительными. Других внутренних способностей у компьютера просто нет.

Неуниверсальный, специализированный вычислитель и его программы умеют делать что-нибудь одно: либо обрабатывать картинки, либо прокладывать маршрут по географической карте, либо показывать кино. Специализированный вычислитель называют контроллером. Контроллерами, а не компьютерами являются вычислители, встроенные в коммуникаторы, навигаторы, видеорегистраторы, стиральные машины и прочие бытовые приборы. Контроллеры, встроенные в движущиеся механизмы (самолеты, автомобили, танки), называют бортовыми.

Смена программ в ЭВМ означает, что её владелец, а не производитель, может легко выбрать для исполнения любую из установленных на ЭВМ программ или установить новую программу, которая появилась даже позже, чем была выпущена эта ЭВМ.

Прародительницами всех ЭВМ можно считать вычислительные машины, которые бывают трех типов: аналоговые, дискретные или цифровые, гибридные. Цифровые вычислительные машины могут быть механическими (арифмометр), электротехническими (машина Конрада Цузе на реле), электронными. Последние и называются ЭВМ или компьютерами. Еще раз стоит отметить, что в английском языке словом computer называют любые вычислительные машины.

На классификационной схеме (Рисунок 1 ) достаточно полно показана та ветвь вычислительных машин, которая ведёт от вычислительных машин к ЭВМ и их разновидностям. Прочие классификационные ветви не полны. На схеме также показано место нескольких английских понятий.

ЭВМ и компьютер - это одно и то же, это разновидность вычислительных машин

На схеме достаточно полно показана (и выделена цветом) только ветвь ЭВМ.

Рисунок 1 - ЭВМ = компьютер = разновидность вычислительных машин

Эта схема задумана 2 , чтобы показать, в первую очередь:

- место ЭВМ в семействе вычислительных машин;

- классификационную равнозначность терминов «ЭВМ» и «компьютер»;

- деление персональных компьютеров на два вида: стационарные (например, настольные) и носимые (например, ноутбуки и планшеты).

Возможно, что после появления и массового распространения оптических или биологических вычислительных машин термин "компьютер" станет по значению гораздо шире термина "электронная вычислительная машина". Возможно, что тогда появится термин "оптическая вычислительная машина, ОВМ" или, скорее, "оптический компьютер". Тогда изменится классификационная схема.

Кстати, производные понятия: ПЭВМ ( " персональная ЭВМ " ) и " персональный компьютер " сошлись в русском бытовом языке гораздо ближе между собой, чем исходные.

Слова ЭВМ и компьютер нельзя противопоставлять. В современном русском языке в научном, юридическом и техническом смыслах они означают одно и то же.

Когда в быту говорят «компьютер», то чаще имеют в виду «персональный компьютер» только потому, что с другими ЭВМ мало знакомы.

Слово «компьютер» постепенно вытесняет слово «ЭВМ». Возможно, что вскоре термин "компьютер" будет означать не только электронную (возможно, что вообще не электронную), а оптическую или биологическую основу вычислительной машины, то есть станет по значению гораздо шире термина "электронная вычислительная машина". Тогда понятия ЭВМ и компьютер разойдутся в значениях.

1 От железного занавеса, впрочем, была кое-какая польза. Изоляция заставляла переводчиков переводить иноязычные термины на русский язык, а не просто пытаться произнести их на русский лад. К примеру, недавно я обнаружил в научной книге 60-х годов перевод слова gadget ; он звучал как «штуковина».

ЭВМ используется как один из способов реализации компьютера. В настоящее время термин ЭВМ, как относящийся больше к вопросам конкретной физической реализации компьютера, почти вытеснен из бытового употребления и в основном используется инженерами цифровой электроники, как правовой термин в

Содержание

После изобретения 1965 году соучредителем компании Intel Гордоном Е. Муром , назвали по его имени 1946 году Математические модели [ ]

  • Автомат фон Неймана
  • Универсальная машина Тьюринга
  • Архитектура и структура [ ]

1960-х годах , однако сегодня стали достаточно редким явлением.

  • Архитектура фон Неймана
  • Шинная архитектура компьютера против канальной архитектуры
  • Архитектура персонального компьютера
  • По назначению [ ]

  • Планшетный персональный компьютер
    • Тонкий персональный компьютер ( Slate PC )
    • Игровая приставка (Игровая консоль)
    • Карманный компьютер (КПК)
    • Элементная основа цифрового компьютера [ ]

    По способностям [ ]

    Одним из наиболее простых способов классифицировать различные типы вычислительных устройств является определение их способностей. Все вычислители могут, таким образом, быть отнесены к одному из трёх типов:

    Современный компьютер общего назначения [ ]

    При рассмотрении современных компьютеров наиболее важной особенностью, отличающей их от ранних вычислительных устройств, является то, что при соответствующем компьютеров общего назначения и устройств специального назначения. Определение «компьютер общего назначения» может быть формализовано в требовании, чтобы конкретный компьютер был способен подражать поведению универсальной машины Тьюринга . Первым компьютером, удовлетворяющим такому условию, считается машина Z3 , созданная немецким инженером Конрадом Цузе в 1941 году (доказательство этого факта было проведено в 1998 году ).

    Конструктивные особенности [ ]

    Современные компьютеры используют весь спектр конструкторских решений, разработанных за всё время развития вычислительной техники. Эти решения, как правило, не зависят от физической реализации компьютеров, а сами являются основой, на которую опираются разработчики. Ниже приведены наиболее важные вопросы, решаемые создателями компьютеров:

    Цифровой или аналоговый [ ]

    Фундаментальным решением при проектировании компьютера является выбор, будет ли он цифровой или аналоговой системой. Если цифровые компьютеры работают с аналоговый звуковой процессор , Система счисления [ ]

    Примером компьютера на основе десятичной системы счисления является первая американская вычислительная машина Марк I .

    Во время выполнения программы в той же самой памяти ( архитектура фон Неймана , она же «принстонская»), что и данные. Это решение используется сегодня в большинстве компьютерных систем. Однако для управляющих сигнальных процессоров более удобной оказалась схема, при которой данные и программы хранятся в различных разделах памяти ( Программирование [ ]

    Способность машины к выполнению определённого изменяемого набора инструкций (программы) без необходимости физической переконфигурации является фундаментальной особенностью компьютеров. Дальнейшее развитие эта особенность получила, когда машины приобрели способность динамически управлять процессом выполнения программы. Это позволяет компьютерам самостоятельно изменять порядок выполнения инструкций программы в зависимости от состояния данных. Первую реально работающую программируемую вычислительную машину сконструировал немец 1941 году .

    Применение [ ]

    Первые компьютеры создавались исключительно для вычислений (что отражено в названиях «компьютер» и «ЭВМ»). Даже самые примитивные компьютеры в этой области во много раз превосходят людей (если не считать некоторых уникальных людей-счётчиков). Не случайно первым высокоуровневым языком программирования был Примечания [ ]

    Компьютер" - "вычислитель") - устройство или система, способная выполнять заданную, чётко определённую, изменяемую последовательность операций. Это чаще всего операции численных расчётов и манипулирования данными, однако сюда относятся и операции ввода-вывода. Описание последовательности операций называется программой.
    Компьютерная система - любое устройство или группа взаимосвязанных или смежных устройств, одно или более из которых, действуя в соответствии с программой, осуществляет автоматизированную обработку данных.

    image

    1. Этимология и особенности терминологии
    Слово компьютер является производным от английских слов to compute, computer, которые переводятся как "вычислять", "вычислитель". Первоначально в английском языке это слово означало человека, производящего арифметические вычисления с привлечением или без привлечения механических устройств. В дальнейшем его значение было перенесено на сами машины, однако современные компьютеры выполняют множество задач, не связанных напрямую с математикой.
    Впервые трактовка слова компьютер появилась в 1897 году в Оксфордском словаре английского языка. Его составители тогда понимали компьютер как механическое вычислительное устройство. В 1946 году словарь пополнился дополнениями, позволяющими разделить понятия цифрового, аналогового и электронного компьютера.
    Понятие компьютер следует отличать от понятия Электронно-вычислительная машина ЭВМ; последняя является одним из способов реализации компьютера. ЭВМ подразумевает использование электронных компонентов в качестве её функциональных узлов, однако компьютер может быть устроен и на других принципах - он может быть механическим, биологическим, оптическим, квантовым и т. п., работая за счёт перемещения механических частей, движения электронов, фотонов или эффектов других физических явлений. Кроме того, по типу функционирования вычислительная машина может быть цифровой ЦВМ и аналоговой АВМ. С другой стороны, термин "компьютер" предполагает возможность изменения выполняемой программы перепрограммирования, что возможно не для всех видов ЭВМ.
    В настоящее время термин ЭВМ, как относящийся больше к вопросам конкретной физической реализации компьютера, почти вытеснен из бытового употребления и в основном используется инженерами цифровой электроники, как правовой термин в юридических документах, а также в историческом смысле - для обозначения компьютерной техники 1940 - 1980-х годов и больших вычислительных устройств, в отличие от персональных.

    3. Экспоненциальное развитие компьютерной техники
    После изобретения интегральной схемы развитие компьютерной техники резко ускорилось. Этот эмпирический факт, замеченный в 1965 году соучредителем компании Intel Гордоном Е. Муром, назвали по его имени Законом Мура. Столь же стремительно развивается и процесс миниатюризации компьютеров. Первые электронно-вычислительные машины были огромными устройствами, весившими тонны, занимавшими целые комнаты и требовавшими большого количества обслуживающего персонала для успешного функционирования. Они были настолько дороги, что их могли позволить себе только правительства и большие исследовательские организации, и представлялись настолько экзотическими, что казалось, будто небольшая горстка таких систем сможет удовлетворить любые будущие потребности. В контрасте с этим, современные компьютеры - гораздо более мощные и компактные и гораздо менее дорогие - стали воистину вездесущими.

    4. Архитектура и структура
    Архитектура компьютеров может изменяться в зависимости от типа решаемых задач. Оптимизация архитектуры компьютера производится с целью максимально реалистично математически моделировать исследуемые физические или другие явления. Так, электронные потоки могут использоваться в качестве моделей потоков воды при компьютерном моделировании симуляции дамб, плотин или кровотока в человеческом мозгу. Подобным образом сконструированные аналоговые компьютеры были обычны в 1960-х годах, однако сегодня стали достаточно редким явлением.
    Шинная архитектура компьютера против канальной архитектуры
    Процессор
    Гарвардская архитектура
    Архитектура персонального компьютера
    Классификация параллельных вычислительных систем
    Архитектура фон Неймана
    Компьютерная память
    Результат выполненной задачи может быть представлен пользователю при помощи различных устройств ввода-вывода информации, таких как ламповые индикаторы, мониторы, принтеры, проекторы и т. п.

    5. Квантовые ЭВМ
    Квантовый компьютер - вычислительное устройство, использующее явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Квантовый компьютер оперирует не битами, а кубитами. В результате он имеет возможность обрабатывать все возможные состояния одновременно, достигая огромного превосходства над обычными компьютерами в ряде алгоритмов.
    Полноценный квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьёзным развитием квантовой теории. Разработки в данной области связаны с новейшими открытиями и достижениями современной физики. Сейчас реализованы лишь единичные экспериментальные системы, исполняющие фиксированный алгоритм небольшой сложности.
    Первым практическим высокоуровневым языком программирования для такого вида компьютеров считается язык Quipper, основанный на Haskell см. Квантовое программирование.

    6.1. Классификация По назначению
    Настольный
    Сервер
    Домашний
    Игровой
    Домашний
    Plug PC
    Медиацентр
    Бесшумный ПК
    Рабочая станция
    Игровая приставка
    Моноблок
    Персональный
    Интернет-устройство
    Интернет-планшет
    Планшетный нетбук
    Неттоп
    Нетбук
    Консольный компьютер

    6.2. Классификация Суперкомпьютеры
    супермини
    Мини
    Персональный
    Мейнфрейм супермощный отказоустойчивый сервер

    6.3. Классификация Малые и мобильные
    Ноутбук
    Мобильное интернет-устройство
    Нетбук
    Карманный персональный компьютер
    Микро
    Ультрабук
    Смартбук
    Субноутбук
    Интернет-планшет
    Планшетный ПК
    Электронная книга
    Handheld PC
    UMPC
    Stick PC
    Портативная игровая система
    Мобильный
    Терминал
    Slate PC
    Смартфон
    Калькулятор
    Электронный переводчик
    Носимый

    6.6. Классификация Современный компьютер общего назначения
    При рассмотрении современных компьютеров наиболее важной особенностью, отличающей их от ранних вычислительных устройств, является то, что при соответствующем программировании любой компьютер может подражать поведению любого другого. Таким образом, предполагается, что современные машины могут эмулировать любое вычислительное устройство будущего, которое когда-либо может быть создано. В некотором смысле эта пороговая способность полезна для различия компьютеров общего назначения и устройств специального назначения. Определение "компьютер общего назначения" может быть формализовано в требовании, чтобы конкретный компьютер был способен подражать поведению универсальной машины Тьюринга. Первым компьютером, удовлетворяющим такому условию, считается машина Z3, созданная немецким инженером Конрадом Цузе в 1941 году доказательство этого факта было проведено в 1998 году.

    7. Конструктивные особенности
    Современные компьютеры используют весь спектр конструкторских решений, разработанных за всё время развития вычислительной техники. Эти решения, как правило, не зависят от физической реализации компьютеров, а сами являются основой, на которую опираются разработчики. Ниже приведены наиболее важные вопросы, решаемые создателями компьютеров:

    7.3. Конструктивные особенности Хранение программ и данных
    Во время выполнения вычислений часто бывает необходимо сохранить промежуточные данные для их дальнейшего использования. Производительность многих компьютеров в значительной степени определяется скоростью, с которой они могут читать и писать значения в из памяти и её общей ёмкости. Первоначально компьютерная память использовалась только для хранения промежуточных значений, но вскоре было предложено сохранять код программы в той же самой памяти архитектура фон Неймана, она же "принстонская", что и данные. Это решение используется сегодня в большинстве компьютерных систем. Однако для управляющих контроллеров микро-ЭВМ и сигнальных процессоров более удобной оказалась схема, при которой данные и программы хранятся в различных разделах памяти гарвардская архитектура.

    8. Программирование
    Способность машины к выполнению определённого изменяемого набора инструкций программы без необходимости физической переконфигурации является фундаментальной особенностью компьютеров. Дальнейшее развитие эта особенность получила, когда машины приобрели способность динамически управлять процессом выполнения программы. Это позволяет компьютерам самостоятельно изменять порядок выполнения инструкций программы в зависимости от состояния данных. Первую реально работающую программируемую вычислительную машину сконструировал немец Конрад Цузе в 1941 году.
    При помощи вычислений компьютер способен обрабатывать информацию по определённому алгоритму. Решение любой задачи для компьютера является последовательностью вычислений.
    В большинстве современных компьютеров проблема сначала описывается в понятном им виде, после чего действия по её обработке сводятся к применению простой алгебры логики. Достаточно быстрый электронный компьютер может быть применим для решения большинства математических задач, а также и большинства задач по обработке информации, которые могут быть сведены к математическим.
    Было обнаружено, что компьютеры могут решить не любую математическую задачу. Впервые задачи, которые не могут быть решены при помощи компьютеров, были описаны английским математиком Аланом Тьюрингом.

    Компью́тер- устройство или система, способное выполнять заданную, чётко определённую изменяемую последовательность операций. Это чаще всего операции численных расчётов и манипулирования данными, однако сюда относятся и операции ввода-вывода . Описание последовательности операций называется программой.

    Электро́нная вычисли́тельная маши́на , ЭВМ — комплекс технических средств, где основные функциональные элементы (логические, запоминающие, индикационные и др.) выполнены на электронных элементах , предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

    ЭВМ используется как один из способов реализации компьютера. В настоящее время термин ЭВМ, как относящийся больше к вопросам конкретной физической реализации компьютера, почти вытеснен из бытового употребления и в основном используется инженерами цифровой электроники, как правовой термин в юридических документах, а также в историческом смысле — для обозначения компьютерной техники 1940—1980-х годов и больших вычислительных устройств, в отличие от персональных .

    Электронная вычислительная машина подразумевает использование электронных компонентов в качестве её функциональных узлов, однако компьютер может быть устроен и на других принципах — он может быть механическим, биологическим, оптическим, квантовым и т. п. Классы компьютеров По виду рабочей среды , работая за счёт перемещения механических частей, движения электронов , фотонов или эффектов других физических явлений. Кроме того, по типу функционирования вычислительная машина может быть цифровой и аналоговой .

    С другой стороны, термин «компьютер» предполагает возможность изменения выполняемой программы (перепрограммирования).

    Многие электронные вычислительные машины могут выполнять строго определенную последовательность операций, содержат устройства ввода и вывода или состоят из похожих на используемые в электронном компьютере конструктивных элементов (например, регистры), но не предполагают возможность перепрограммирования.

    Одним из наиболее простых способов классифицировать различные типы вычислительных устройств является определение их способностей. Все вычислители могут, таким образом, быть отнесены к одному из трёх типов:

    специализированные устройства, умеющие выполнять только одну функцию.

    устройства специального назначения, которые могут выполнять ограниченный диапазон функций.

    Устройства общего назначения, используемые сегодня. Название компьютер применяется, как правило, именно к машинам общего назначения.

    Первые компьютеры создавались исключительно для вычислений (что отражено в названиях «компьютер» и «ЭВМ»). Даже самые примитивные компьютеры в этой области во много раз превосходят людей (если не считать некоторых уникальных людей-счётчиков). Не случайно первым высокоуровневым языком программирования был Фортран , предназначенный исключительно для выполнения математических расчётов.

    Вторым крупным применением были базы данных. Прежде всего, они были нужны правительствам и банкам. Базы данных требуют уже более сложных компьютеров с развитыми системами ввода-вывода и хранения информации. Для этих целей был разработан язык Кобол . Позже появились СУБД со своими собственными языками программирования .

    Третьим применением было управление всевозможными устройствами. Здесь развитие шло от узкоспециализированных устройств (часто аналоговых) к постепенному внедрению стандартных компьютерных систем, на которых запускаются управляющие программы. Кроме того, всё бо́льшая часть техники начинает включать в себя управляющий компьютер.

    Четвёртое. Компьютеры развились настолько, что стали главным информационным инструментом как в офисе, так и дома. Теперь почти любая работа с информацией зачастую осуществляется через компьютер — будь то набор текста или просмотр фильмов . Это относится и к хранению информации, и к её пересылке по каналам связи. Основное применение современных домашних компьютеров — навигация в Интернете и игры .

    Пятое. Современные суперкомпьютеры используются для компьютерного моделирования сложных физических, биологических, метеорологических и других процессов и решения прикладных задач. Например, для моделирования ядерных реакций или климатических изменений. Некоторые проекты проводятся при помощи распределённых вычислений , когда большое число относительно слабых компьютеров одновременно работает над небольшими частями общей задачи, формируя таким образом очень мощный компьютер.

    5. Компьютер как техническое средство реализации технологий, структура компьютера и программного обеспечения с точки зрения конечного пользователя.

    5.1. Основные функциональные блоки ПЭВМ, устройство и назначение.

    Структура и принципы функционирования ЭВМ

    Более чем за полвека развития вычислительных средств прогресс в аппаратной реализации ЭВМ и их технических характеристик превзошел все прогнозы, и пока не заметно снижение его темпов. Несмотря на то, что современные ЭВМ внешне не имеют ничего общего с первыми моделями, основополагающие идеи, заложенные в них и связанные с понятием алгоритма, разработанным Аланом Тьюрингом, а также архитектурной реализацией, предложенной Джоном фон Нейманом, пока не претерпели коренных изменений (за исключением систем параллельной обработки информации).

    Любая ЭВМ неймановской архитектуры содержит следующие основные устройства:

    · арифметико-логическое устройство (АЛУ);

    · устройство управления (УУ)

    · запоминающее устройство (ЗУ);

    · устройства ввода-вывода (УВВ);

    · пульт управления (ПУ).

    В современных ЭВМ АЛУ и УУ объединены в общее устройство, называемое центральным процессором. Обобщенная логическая структура ЭВМ представлена на рис. 1.3.


    Рис. 1.3. Обобщённая логическая структура ЭВМ

    Процессор, илимикропроцессор, является основным устройством ЭВМ. Он предназначен для выполнения вычислении по хранящейся в запоминающем устройстве программе и обеспечения общего управления ЭВМ. Быстродействие ЭВМ в значительной мере определяется скоростью работы процессора. Для ее увеличения процессор использует собственную намять небольшого объема, именуемую местной или сверхоперативной, что в некоторых случаях исключает необходимость обращения к запоминающему устройству ЭВМ.

    Вычислительный процесс должен быть предварительно представлен для ЭВМ в виде программы — последовательности инструкций (команд), записанных в порядке выполнения. В процессе выполнения программы ЭВМ выбирает очередную команду, расшифровывает ее, определяет, какие действия и над какими операндами следует выполнить. Эту функцию осуществляет УУ. Оно же помещает выбранные из ЗУ операнды в АЛУ, где они и обрабатываются. Само АЛУ работает под управлением УУ.

    Обрабатываемые данные и выполняемая программа должны находиться в запоминающем устройстве —памяти ЭВМ, куда они вводятся через устройство ввода. Емкость памяти измеряется в величинах, кратных байту. Память представляет собой сложную структуру, построенную по иерархическому принципу, и включает в себя запоминающие устройства различных типов. Функционально она делится на две части: внутреннюю и внешнюю.

    Внутренняя, илиосновная память — это запоминающее устройство, напрямую связанное с процессором и предназначенное для хранения выполняемых программ и данных, непосредственно участвующих в вычислениях. Обращение к внутренней памяти ЭВМ осуществляется с высоким быстродействием, но она имеет ограниченный объем, определяемый системой адресации машины.

    Внутренняя память, в свою очередь, делится на оперативную (ОЗУ) и постоянную (ПЗУ) память.Оперативная память, по объему составляющая" большую часть внутренней памяти, служит для приема, хранения и выдачи информации. При выключении питания ЭВМ содержимое оперативной памяти в большинстве случаев теряется.Постоянная память обеспечивает хранение и выдачу информации. В отличие от содержимого оперативной памяти, содержимое постоянной заполняется при изготовлении ЭВМ и не может быть изменено в обычных условиях эксплуатации. В постоянной памяти хранятся часто используемые (универсальные) программы, и данные, к примеру, некоторые программы операционной системы, программы тестирования оборудования ЭВМ и др. При выключении питания содержимое постоянной памяти сохраняется.

    Внешняя память (ВЗУ) предназначена для размещения больших объемов информации и обмена ею с оперативной памятью. Для построения внешней памяти используют энергонезависимые носители информации (диски и ленты), которые к тому же являются переносимыми. Емкость этой памяти практически не имеет ограничений, а для обращения к ней требуется больше времени, чем ко внутренней.




    Внешние запоминающие устройства конструктивно отделены от центральных устройств ЭВМ (процессора и внутренней памяти), имеют собственное управление и выполняют запросы процессора без его непосредственного вмешательства. В качестве ВЗУ используют накопители на магнитных и оптических дисках, а также накопители на магнитных лентах.

    ВЗУ по принципам функционирования разделяются на устройства прямого доступа (накопители на магнитных и оптических дисках) и устройства последовательного доступа (накопители на магнитных лентах). Устройства прямого доступа обладают большим быстродействием, поэтому они являются основными внешними запоминающими устройствами, постоянно используемыми в процессе функционирования ЭВМ. Устройства последовательного доступа используются в основном для резервирования информации.

    Устройства ввода-вывода служат соответственно для ввода информации в ЭВМ и вывода из нее, а также для обеспечения общения пользователя с машиной. Процессы ввода-вывода протекают с использованием внутренней памяти ЭВМ. Иногда устройства ввода-вывода называют периферийными или внешними устройствами ЭВМ. К ним относятся, в частности, дисплеи (мониторы), клавиатура, манипуляторы типа «мышь», алфавитно-цифровые печатающие устройства (принтеры), графопостроители, сканеры и др. Для управления внешними устройствами (в том числе и ВЗУ) и согласования их с системным интерфейсом служат групповые устройства управления внешними устройствами, адаптеры или контроллеры.

    Системный интерфейс — это конструктивная часть ЭВМ, предназначенная для взаимодействия ее устройств и обмена информацией между ними.

    В больших, средних и супер-ЭВМ в качестве системного интерфейса используются сложные устройства, имеющие встроенные процессоры ввода-вывода, именуемые каналами. Такие устройства обеспечивают высокую скорость обмена данными между компонентами ЭВМ.

    Отличительной особенностью малых ЭВМ является использование в качестве системного интерфейса системных шин. Различают ЭВМ с многошинной структурой и с общей шиной. В первых для обмена информацией между устройствами используются отдельные группы шин, во втором случае все устройства ЭВМ объединяются с помощью одной группы шин, в которую входят подмножества шин для передачи данных, адреса и управляющих сигналов. При такой организации системы шин обмен информацией между процессором, памятью и периферийными устройствами выполняется по единому правилу, что упрощает взаимодействие устройств машины.

    Пульт управления служит для выполнения оператором ЭВМ или системным программистом системных операций в ходе управления вычислительным процессом. Кроме того, при техническом обслуживании ЭВМ за пультом управления работает инженерно-технический персонал. Пульт управления конструктивно часто выполняется вместе с центральным процессором.

    Основные характеристики вычислительной техники

    К основным характеристикам вычислительной техники относятся ее эксплуатационно-технические характеристики, такие, как быстродействие, емкость памяти, точность вычислений и др.

    Быстродействие ЭВМ рассматривается в двух аспектах. С одной стороны, оно характеризуется количеством элементарных операций, выполняемых центральным процессором в секунду Под элементарной операцией понимается любая простейшая операция типа сложения, пересылки, сравнения и т. д. С другой стороны, быстродействие

    ЭВМ существенно зависит от организации ее памяти. Время, затрачиваемое на поиск необходимой информации в памяти, заметно сказывается на быстродействии ЭВМ.

    В зависимости от области применения выпускаются ЭВМ с быстродействием от нескольких сотен тысяч до миллиардов операций в секунду. Для решения сложных задач возможно объединение нескольких ЭВМ в единый вычислительный комплекс с требуемым суммарным быстродействием.

    Наряду с быстродействием часто пользуются понятиемпроизводительность. Если первое обусловлено, главным образом, используемой в ЭВМ системой элементов, то второе связано с ее архитектурой и разновидностями решаемых задач. Даже для одно» ЭВМ такая характеристика, как быстродействие, не является величиной постоянной. В связи с этим различают:

    • пиковое быстродействие, определяемое тактовой частотой процессора без учета обращения к оперативной памяти;
    • номинальное быстродействие, определяемое с учетом времени обращения к оперативной памяти;
    • системное быстродействие, определяемое с учетом системных издержек на организацию вычислительной процесса;
    • эксплуатационное, определяемое с учетом характера решаемых задач (состав, операций или их «смеси»).

    Емкость, или объем памяти определяется максимальным количеством информации которое можно разместить в памяти ЭВМ. Обычно емкость памяти измеряется в байтах. Как уже отмечалось, память ЭВМ подразделяется на внутреннюю и внешнюю. Внутренняя, или оперативная память, по своему объему у различных классов машин различна и определяется системой адресации ЭВМ. Емкость внешней памяти из-за блочной структуры и съемных конструкций накопителей практически неограниченна.

    Точность вычислений зависит от количества разрядов, используемых для представления одного числа. Современные ЭВМ комплектуются 32- или 64-разрядными микропроцессорами, что вполне достаточно для обеспечения высокой точности расчетов самых разнообразных приложениях. Однако, если этого мало, можно использовать уд военную или утроенную разрядную сетку.

    Система команд — это перечень команд, которые способен выполнить процессор ЭВМ. Система команд устанавливает, какие конкретно операции может выполнять процессор, сколько операндов требуется указать в команде, какой вид (формат) должна имеет команда для ее распознания. Количество основных разновидностей команд невелико, с их помощью ЭВМ способны выполнять операции сложения, вычитания, умножена деления, сравнения, записи в память, передачи числа из регистра в регистр, преобразования из одной системы счисления в другую и т. д. При необходимости выполняете модификация команд, учитывающая специфику вычислений. Обычно в ЭВМ используется от десятков до сотен команд (с учетом их модификации). На современном этап развития вычислительной техники используются два основных подхода при формировании системы команд процессора. С одной стороны, это традиционный подход, свзязанный с разработкой процессоров с полным набором команд, — архитектураCIS(Complete Instruction Set Computer — компьютер с полным набором команд). С друге стороны, это реализация в ЭВМ сокращенного набора простейших, но часто употреблю емых команд, что позволяет упростить аппаратные средства процессора и повысить ei быстродействие — архитектураRISC(Reduced Instruction Set Computer — компьютер сокращенным набором команд).

    Стоимость ЭВМ зависит от множества факторов, в частности от быстродействия, емкости памяти, системы команд и т. д. Большое влияние на стоимость оказывает конкретная комплектация ЭВМ и, в первую очередь, внешние устройства, входящие в состав машины. Наконец, стоимость программного обеспечения ощутимо влияет на стоимость ЭВМ.

    Надежность ЭВМ — это способность машины сохранять свои свойства при заданных условиях эксплуатации в течение определенного промежутка времени. Количественной оценкой надежности ЭВМ, содержащей элементы, отказ которых приводит к отказу всей машины, могут служить следующие показатели:

    · вероятность безотказной работы за определенное время при данных условиях эксплуатации;

    · наработка ЭВМ на отказ;

    · среднее время восстановления машины и др.

    Для более сложных структур типа вычислительного комплекса или системы понятие «отказ» не имеет смысла. В таких системах отказы отдельных элементов приводят к некоторому снижению эффективности функционирования, а не к полной потере работоспособности в целом.

    Важное значение имеют и другие характеристики вычислительной техники, например: универсальность, программная совместимость, вес, габариты, энергопотребление и др. Они принимаются во внимание при оценивании конкретных сфер применения ЭВМ.

    Перспективы развития вычислительных средств

    Появление новых поколений ЭВМ обусловлено расширением сферы их применения, требующей более производительной, дешевой и надежной вычислительной техники. В настоящее время стремление к реализации новых потребительских свойств ЭВМ стимулирует работы по созданию машин пятого и последующего поколений. Вычислительные средства пятого поколения, кроме более высокой производительности и надежности при более низкой стоимости, обеспечиваемых новейшими электронными технологиями, должны удовлетворять качественно новым функциональным требованиям:

    · работать с базами знаний в различных предметных областях и организовывать на их основе системы искусственного интеллекта;

    • обеспечивать простоту применения ЭВМ путем реализации эффективных систем ввода-вывода информации голосом, диалоговой обработки информации с использованием естественных языков, устройств распознавания речи и изображения;

    · упрощать процесс создания программных средств путем автоматизации синтеза программ.

    В настоящее время ведутся интенсивные работы как по созданию ЭВМ пятого поколения традиционной (неймановской) архитектуры, так и по созданию и апробации перспективных архитектур и схемотехнических решений. На формальном и прикладном уровнях исследуются архитектуры на основе параллельных абстрактных вычислителей (матричные и клеточные процессоры, систолические структуры, однородные вычислительные структуры, нейронные сети и др.) Развитие вычислительной техники с высоким параллелизмом во многом определяется элементной базой, степенью развития параллельного программного обеспечения и методологией распараллеливания алгоритмов решаемых задач.

    Проблема создания эффективных системпараллельного программирования, ориентированных на высокоуровневое распараллеливание алгоритмов вычислении и обработки данных, представляется достаточно сложной и предполагает дифференцированный подход с учетом сложности распараллеливания и необходимости синхронизации процессов во времени.

    Наряду с развитием архитектурных и системотехнических решений ведутся работы по совершенствованию технологий производства интегральных схем и по созданию принципиально новых элементных баз, основанных на оптоэлектронных и оптических принципах.

    В плане создания принципиально новых архитектур вычислительных средств большое внимание уделяется проектамнейрокомпьютеров, базирующихся на понятии нейронной сети (структуры на формальных нейронах), моделирующей основные свойства реальных нейронов. В случае применения био- или оптоэлементов могут быть созданы соответственно биологические или оптические нейрокомпьютеры. Многие исследователи считают, что в следующем веке нейрокомпьютеры в значительной степени вытеснят современные ЭВМ, используемые для решения трудно формализуемых задач. Последние достижения в микроэлектронике и разработка элементной базы на основе биотехнологий дают возможность прогнозировать создание биокомпьютеров.

    Важным направлением развития вычислительных средств пятого и последующих поколений является интеллектуализация ЭВМ, связанная с наделением ее элементами интеллекта, интеллектуализацией интерфейса с пользователем и др. Работа в данном направлении, затрагивая, в первую очередь, программное обеспечение, потребует и создания ЭВМ определенной архитектуры, используемых в системах управления базами знаний, — компьютеров баз знаний, а так же других подклассов ЭВМ. При этом ЭВМ должна обладать способностью к обучению, производить ассоциативную обработку информации и вести интеллектуальный диалог при решении конкретных задач.

    В заключение отметим, что ряд названных вопросов реализован в перспективных ЭВМ пятого поколения либо находится

    Читайте также: