Могут ли два файла размещаться в одном кластере

Обновлено: 05.07.2024

Файловая система (ФС) является важной частью любой операционной системы, которая отвечает за организацию хранения и доступа к информации на каких-либо носителях. Рассмотрим в качестве примера файловые системы для наиболее распространенных в наше время носителей информации – магнитных дисков. Как известно, информация на жестком диске хранится в секторах (обычно 512 байт) и само устройство может выполнять лишь команды считать/записать информацию в определенный сектор на диске. В отличие от этого файловая система позволяет пользователю оперировать с более удобным для него понятием - файл. Файловая система берет на себя организацию взаимодействия программ с файлами, расположенными на дисках. Для идентификации файлов используются имена. Современные файловые системы предоставляют пользователям возможность давать файлам достаточно длинные мнемонические названия.

Под каталогом в ФС понимается, с одной стороны, группа файлов, объединенных пользователем исходя из некоторых соображений, с другой стороны каталог - это файл, содержащий системную информацию о группе составляющих его файлов. Файловые системы обычно имеют иерархическую структуру, в которой уровни создаются за счет каталогов, содержащих информацию о файлах и каталогах более низкого уровня.

Рассмотрим более подробно структуру жесткого диска. Базовой единицей жесткого диска является раздел, создаваемый во время разметки жесткого диска. Каждый раздел содержит один том, обслуживаемый какой-либо файловой системой и имеющий таблицу оглавления файлов - корневой каталог. Некоторые операционные системы поддерживают создание томов, охватывающих несколько разделов. Жесткий диск может содержать до четырех основных разделов. Это ограничение связано с характером организации данных на жестких дисках IBM-совместимых компьютеров. Многие операционные системы позволяют создавать, так называемый, расширенный (extended) раздел, который по аналогии с разделами может разбиваться на несколько логических дисков.

В первом физическом секторе жесткого диска располагается головная запись загрузки и таблица разделов (табл. 1). Головная запись загрузки (master boot record, MBR) - первая часть данных на жестком диске. Она зарезервирована для программы начальной загрузки BIOS (ROM Bootstrap routine), которая при загрузке с жесткого диска считывает и загружает в память первый физический сектор на активном разделе диска, называемый загрузочным сектором (Boot Sector). Каждая запись в таблице разделов (partition table) содержит начальную позицию и размер раздела на жестком диске, а также информацию о том, первый сектор какого раздела содержит загрузочный сектор.

Размер (байт)

Загрузочная запись (MBR)

Запись 1 раздела

Запись 2 раздела

Запись 3 раздела

Запись 4 раздела

Табл. 1. Таблица деления диска

В широком смысле понятие "файловая система" включает:

  • совокупность всех файлов на диске,
  • наборы служебных структур данных, используемых для управления файлами, такие как, например, каталоги файлов, дескрипторы файлов, таблицы распределения свободного и занятого пространства на диске,
  • комплекс системных программных средств, реализующих управление файлами, в частности операции по созданию, уничтожению, чтению, записи, именованию файлов, установке атрибутов и уровней доступа, поиску и т.д.

Различие между файловыми системами заключается, в основном, в способах распределения пространства между файлами на диске и организации на диске служебных областей.

Современные операционные системы стремятся обеспечить пользователя возможностью работать одновременно с несколькими файловыми системами. В этом случае ФС рассматривается как часть подсистемы ввода-вывода. В большинстве операционных систем (Windows 95, NT, OS/2) реализуется механизм переключения файловых систем (File System Switch, FSS), позволяющий поддерживать различные типы ФС. В соответствии с этим подходом информация о файловых системах и файлах разбивается на две части – зависимую от ФС и не зависимую. FSS обеспечивает интерфейс между ядром и файловой системой, транслируя запросы ядра в операции, зависящие от типа файловой системы. При этом ядро имеет представление только о независимой части ФС.

Файловая система представляет многоуровневую структуру (рис. 1), на верхнем уровне которой располагается так называемый переключатель файловых систем (в Windows, такой переключатель называется устанавливаемым диспетчером файловой системы - installable filesystem manager, IFS). Он обеспечивает интерфейс между приложением и конкретной файловой системой, к которой обращается приложение. Переключатель файловых систем преобразует запросы к файлам в формат, воспринимаемый следующим уровнем - уровнем драйверов файловых систем. Для выполнения своих функций драйверы файловых систем обращаются к драйверам конкретных устройств хранения информации.

Клиент-серверные приложения предъявляют повышенные требования к производительности файловых систем. Современные файловые системы должны обеспечивать эффективный доступ к файлам, поддержку носителей данных достаточно большого объема, защиту от несанкционированного доступа к данным и сохранение целостности данных. Под целостностью данных подразумевается способность ФС обеспечивать отсутствие ошибок и нарушений согласованности в данных, а также восстанавливать поврежденные данные.

Файловая система FAT (File Allocation Table) была разработана Биллом Гейтсом и Марком МакДональдом в 1977 году и первоначально использовалась в операционной системе 86-DOS. Чтобы добиться переносимости программ из операционной системы CP/M в 86-DOS, в ней были сохранены ранее принятые ограничения на имена файлов. В дальнейшем 86-DOS была приобретена Microsoft и стала основой для ОС MS-DOS 1.0, выпущенной в августе 1981 года. FAT была предназначена для работы с гибкими дисками размером менее 1 Мбайта, и вначале не предусматривала поддержки жестких дисков. В настоящее время FAT поддерживает файлы и разделы размеров до 2 Гбайт.

В FAT применяются следующие соглашения по именам файлов:

    • имя должно начинаться с буквы или цифры и может содержать любой символ ASCII, за исключением пробела и символов "/\[]:;|=,^*?
    • Длина имени не превышает 8 символов, за ним следует точка и необязательное расширение длиной до 3 символов.
      • регистр символов в именах файлов не различается и не сохраняется.

      Структура раздела FAT изображена на рисунке 2. В блоке параметров BIOS содержится необходимая BIOS информация о физических характеристиках жесткого диска. Файловая система FAT не может контролировать отдельно каждый сектор, поэтому она объединяет смежные сектора в кластеры (clusters). Таким образом, уменьшается общее количество единиц хранения, за которыми должна следить файловая система. Размер кластера в FAT является степенью двойки и определяется размером тома при форматировании диска (табл. 2). Кластер представляет собой минимальное пространство, которое может занимать файл. Это приводит к тому, что часть пространства диска расходуется впустую. В состав операционной системы входят различные утилиты (DoubleSpace, DriveSpace), предназначенные для уплотнения данных на диске.

      Блок параметров BIOS (BPB)

      Свое название FAT получила от одноименной таблицы размещения файлов. В таблице размещения файлов хранится информация о кластерах логического диска. Каждому кластеру в FAT соответствует отдельная запись, которая показывает, свободен ли он, занят ли данными файла, или помечен как сбойный (испорченный). Если кластер занят под файл, то в соответствующей записи в таблице размещения файлов указывается адрес кластера, содержащего следующую часть файла. Из-за этого FAT называют файловой системой со связанными списками. Оригинальная версия FAT, разработанная для DOS 1.00, использовала 12-битную таблицу размещения файлов и поддерживала разделы объемом до 16 Мб (в DOS можно создать не более двух разделов FAT). Для поддержки жестких дисков размером более 32 Мб разрядность FAT была увеличена до 16 бит, а размер кластера - до 64 секторов (32 Кб). Так как каждому кластеру может быть присвоен уникальный 16-разрядный номер, то FAT поддерживает максимально 2 16 , или 65536 кластеров на одном томе.

      Размер раздела

      Размер кластера

      512 Мб – 1023 Мб

      Поскольку загрузочная запись слишком мала для хранения алгоритма поиска системных файлов на диске, то системные файлы должны находиться в определенном месте, чтобы загрузочная запись могла их найти. Фиксированное положение системных файлов в начале области данных накладывает жесткое ограничение на размеры корневого каталога и таблицы размещения файлов. Вследствие этого общее число файлов и подкаталогов в корневом каталоге на диске FAT ограничено 512.

      Каждому файлу и подкаталогу в FAT соответствует 32-байтный элемент каталога (directory entry), содержащий имя файла, его атрибуты (архивный, скрытый, системный и “только для чтения”), дату и время создания (или внесения в него последних изменений), а также прочую информацию (табл. 3).

      Размер (байт)

      Номер начального кластера с данными

      Табл. 3. Элемент каталога

      Файловая система FAT всегда заполняет свободное место на диске последовательно от начала к концу. При создании нового файла или увеличении уже существующего она ищет самый первый свободный кластер в таблице размещения файлов. Если в процессе работы одни файлы были удалены, а другие изменились в размере, то появляющиеся в результате пустые кластеры будут рассеяны по диску. Если кластеры, содержащие данные файла, расположены не подряд, то файл оказывается фрагментированным. Сильно фрагментированные файлы значительно снижают эффективность работы, так как головки чтения/записи при поиске очередной записи файла должны будут перемещаться от одной области диска к другой. В состав операционных систем, поддерживающих FAT, обычно входят специальные утилиты дефрагментации диска, предназначенные повысить производительность файловых операций.

      Еще один недостаток FAT заключается в том, что ее производительность сильно зависит от количества файлов, хранящихся в одном каталоге. При большом количестве файлов (около тысячи), выполнение операции считывания списка файлов в каталоге может занять несколько минут. Это обусловлено тем, что в FAT каталог имеет линейную неупорядоченную структуру, и имена файлов в каталогах идут в порядке их создания. В результате, чем больше в каталоге записей, тем медленнее работают программы, так как при поиске файла требуется просмотреть последовательно все записи в каталоге.

      Поскольку FAT изначально проектировалась для однопользовательской операционной системы DOS, то она не предусматривает хранения такой информации, как сведения о владельце или полномочия доступа к файлу/каталогу.

      FAT является наиболее распространенной файловой системой и ее в той или иной степени поддерживают большинство современных ОС. Благодаря своей универсальности FAT может применяться на томах, с которыми работают разные операционные системы.

      Хотя нет никаких препятствий использовать при форматировании дискет любую другую файловую систему, большинство ОС для совместимости используют FAT. Отчасти это можно объяснить тем, что простая структура FAT требует меньше места для хранения служебных данных, чем остальные системы. Преимущества других файловых систем становятся заметны только при использовании их на носителях объемом более 100 Мб.

      Надо отметить, что FAT - простая файловая система, не предотвращающая порчи файлов из-за ненормального завершения работы компьютера. В состав операционных систем, поддерживающих FAT, входят специальные утилиты проверяющие структуру и корректирующие несоответствия в файловой системе.

      Высокопроизводительная файловая система HPFS (High Performance File System) была представлена фирмой IBM в 1989 году вместе с операционной системой OS/2 1.20. Файловая система HPFS также поддерживалась ОС Windows NT до версии 3.51 включительно. По производительности эта ФС существенно опережает FAT. HPFS позволяет использовать жесткие диски объемом до 2 Терабайт (первоначально до 4 Гбайт). Кроме того, она поддерживает разделы диска размером до 512 Гб и позволяет использовать имена файлов длиной до 255 символов (на каждый символ при этом отводится 2 байта). В HPFS по сравнению с FAT уменьшено время доступа к файлам в больших каталогах.

      HPFS распределяет пространство на диске не кластерами как в FAT, а физическими секторами по 512 байт, что не позволяет ее использовать на жестких дисках, имеющих другой размер сектора. Эти секторы принято называть блоками. Чтобы уменьшить фрагментацию диска, при распределении пространства под файл HPFS стремится, по возможности, размещать файлы в последовательных смежных секторах. Фрагмент файла, располагающийся в смежных секторах, называется экстентом.

      Для нумерации единиц распределения пространства диска HPFS использует 32 разряда, что дает 2 32 , или более 4 миллиардов номеров. Однако HPFS использует числа со знаком, что сокращает число возможных номеров блоков до 2 миллиардов. Помимо стандартных атрибутов файла, HPFS поддерживает расширенные атрибуты файла (Extended Attributes, EA), которые могут содержать до 64 Кб различных дополнительных сведений о файле.

      Диск HPFS имеет следующие три базовые структуры (рис. 3): загрузочный блок (BootBlock), дополнительный блок (SuperBlock) и резервный блок (SpareBlock).

      Битовая карта группы 1

      Битовая карта группы 2

      Битовая карта группы 3

      Битовая карта группы 4

      Рис. 3. Дисковый раздел HPFS

      Загрузочный блок в HPFS аналогичен загрузочному блоку в FAT. Он располагается в секторах с 0 по 15 и занимает на диске 8 Кб. Системные файлы, также как и в FAT, располагаются в корневом каталоге, но при этом физически могут находиться в любом месте на диске.

      В 16 секторе размещается дополнительный блок, содержащий указатель на список блоков битовых карт (bitmap block list). В этом списке перечислены все блоки на диске, в которых расположены битовые карты, используемые для обнаружения свободных секторов. Также в дополнительном блоке хранится указатель на список дефектных блоков (bad block list), указатель на группу каталогов (directory band), указатель на файловый узел корневого каталога и дата последней проверки диска. Файловый узел (fnode) – это структура диска HPFS, которая содержит информацию о расположении файла и о его расширенных атрибутах.

      В следующем секторе находится резервный блок, содержащий карту аварийного замещения (hotfix map), указатель на список свободных запасных блоков (directory emergency free block list) и ряд системных флагов. Резервный блок обеспечивает высокую отказоустойчивость HPFS и позволяет восстанавливать поврежденные данные на диске.

      Остальное пространство диска разделено на группы (band) хранения данных. Каждая группа занимает 8 Мб и имеет свою собственную битовую карту свободного пространства, которая похожа на таблицу размещения файлов FAT. Каждому сектору группы соответствует один бит к ее битовой карте, показывающий занят ли соответствующий сектор. Битовые карты двух групп располагаются на диске рядом, также как располагаются и сами группы. Это дает возможность непрерывно разместить на жестком диске файл размером до 16 Мб.

      Одна из групп данных размером 8 Мб, расположенная в середине жесткого диска и называемая группой каталогов, хранит информацию о каталогах диска. В ней наряду с остальными каталогами располагается и корневой каталог. Расположение группы каталогов в центре диска значительно сокращает время позиционирования головок чтения/записи.

      В отличие от линейной структуры FAT, структура каталога в HPFS представляет собой сбалансированное дерево (так называемое B-дерево) с записями, расположенными в алфавитном порядке. Как показано на рисунке 4, сбалансированное дерево состоит из корневого (root block) и оконечных блоков (leaf block). Блоки занимают 4 последовательных сектора и в среднем могут содержать 40 записей. Каждая запись корневого блока указывает на один из оконечных блоков (если только в каталоге не меньше 40 файлов); в свою очередь, каждая запись в оконечном блоке указывает на файловый узел файла или на оконечный блок следующего уровня. Таким образом, двухуровневая структура может содержать 40 оконечных блоков по 40 записей в каждом и описывать до 1600 файлов. При поиске файловая система HPFS просматривает только необходимые ветви дерева.

      Рис. 4. Структура каталогов в HPFS

      Файловый узел имеет размер 512 байт и всегда по возможности располагается непосредственно перед первым блоком своего файла. Каждый файл и каталог диска HPFS имеет свой файловый узел. Информация, хранящаяся в файловом узле, включает в себя расширенные атрибуты файла, если они достаточно малы, чтобы поместится в один сектор диска, и сокращенное имя файла в формате 8.3. Если расширенные атрибуты не помещаются в файловый узел, то в него записывается указатель на них. Положение файла на диске описывается в файловом узле двумя 32-битными числами. Первое из чисел представляет собой указатель на первый блок файла, а второе - длину экстента. Если же файл фрагментирован, то его размещение описывается дополнительными парами 32-битных чисел. В файловом узле можно хранить информацию максимум о 8 экстентах файла. Если файл имеет больше число экстентов, то в его файловый узел записывается указатель на блок размещения (allocation block), который может содержать до 40 указателей на экстенты или на другие блоки размещения. Таким образом, двухуровневая структура блоков размещения может хранить информацию о 480 (12*40) секторах, что теоретически, позволяет работать с файлами размером до 7.68 Гб (12*40*16 Мб).

      Файловая система VFAT (Virtual FAT), реализованная в Windows NT 3.5, Windows 95 (DOS 7.0), - это файловая система FAT, включающая поддержку длинных имен файлов (Long File Name, LFN) в кодировке UNICODE (каждый символ имени кодируется 2 байтами). VFAT использует ту же самую схему распределения дискового пространства, что и файловая система FAT, поэтому размер кластера определяется величиной раздела.

      В VFAT ослаблены ограничения, устанавливаемые соглашениями по именам файлов FAT:

        • имя может быть длиной до 255 символов.
        • в имя можно включать несколько пробелов и точек, однако, текст после последней точки рассматривается как расширение.
          • регистр символов в именах не различается, но сохраняется.

          Основной задачей при разработке VFAT была необходимость корректной работы старых программ, не поддерживающих длинные имена файлов. Как правило, прикладные программы для доступа к файлам используют функции ОС. Если у элемента каталога установить “нереальную” комбинацию битов атрибутов: “только для чтения”, “скрытый”, “системный”, “метка тома” – то любые файловые функции старых версий DOS и Windows не заметят такого элемента каталога. В итоге для каждого файла и подкаталога в VFAT хранится два имени: длинное и короткое в формате 8.3 для совместимости со старыми программами. Длинные имена (LFN) хранятся в специальных записях каталога, байт атрибутов, у которых равен 0Fh. Для любого файла или подкаталога непосредственно перед единственной записью каталога с его именем в формате 8.3 находится группа из одной или нескольких записей, представляющих длинное имя. Каждая такая запись содержит часть длинного имени файла не более 13 символов, из всех таких записей ОС составляет полное имя файла. Поскольку одно длинное имя файла может занимать до 21 записи, а корневой каталог FAT ограничен 512 записями, желательно ограничить использование длинных имен в корневом каталоге.

          Область данных диска, отведенную для хранения файлов, можно представить как линейную последовательность адресуемых блоков (секторов). Размещая файлы в этой области, ОС должна отвести для каждого файла необходимое количество блоков и сохранить информацию о том, в каких именно блоках размещен данный файл. Существуют два основных способа использования дискового пространства для размещения файлов.

          Непрерывное размещение характеризуется тем, что каждый файл занимает непрерывную последовательность блоков.

          Сегментированное размещение означает, что файлы могут размещаться «по кусочкам», т.е. один файл может занимать несколько несмежных сегментов разной длины. Оба способа размещения показаны на рис. 16.1.

          Рис. 16.1 Способы размещения файлов на диске

          Непрерывное размещение имеет два серьезных достоинства.

          Информация о размещении файла очень проста и занимает мало места. Фактически достаточно хранить два числа: номер начального блока файла и число занимаемых блоков (или размер файла в байтах, по которому легко вычислить число блоков).

          Доступ к любой позиции в файле выполняется быстро, поскольку, зная смещение от начала файла, легко можно вычислить номер требуемого блока и прочитать сразу этот блок, не читая предыдущие блоки.

          К сожалению, недостатки непрерывного распределения еще более весомы.

          При создании файла требуется заранее знать его размер, чтобы найти и зарезервировать на диске область достаточной величины. Последующее возможное увеличение файла весьма затруднено, т.к. после конца файла может не оказаться достаточно свободного места. Фактически вместо увеличения файла обычно приходится заново создавать файл большего размера в другом месте, переписывать в него данные и удалять старый файл. Но такое решение требует много времени на чтение и запись данных и, кроме того, снижает надежность хранения данных, поскольку ошибка при чтении или записи гораздо более вероятна, чем порча данных, «спокойно лежащих» на диске.

          В ходе обычной эксплуатации файловой системы, после многократного создания и удаления файлов разной длины, свободное пространство на диске оказывается разбитым на небольшие кусочки. Суммарный объем свободного места на диске может быть достаточно большим, но создать файл приличного размера не удается, для него нет непрерывной области нужной длины. Это явление носит название фрагментации диска. Для борьбы с ним приходится использовать специальную процедуру дефрагментации, которая перемещает все файлы, размещая их впритык друг к другу от начала области данных диска. Но такая процедура требует много времени, снижает, как сказано выше, надежность и усугубляет проблемы в случае, если позднее потребуется увеличить файл.

          Сегментированное размещение лишено первого из недостатков непрерывного: при создании файла ему обычно вообще не выделяют память, а потом, по мере возрастания размера файла, ему могут быть выделены любые свободные сегменты на диске, независимо от их длины.

          Не так просто с фрагментацией. Конечно, в отличие от непрерывного размещения, при сегментированном никакая фрагментация не помешает системе использовать все блоки, имеющиеся на диске. Однако последовательное чтение из сегментированного файла может выполняться существенно медленнее за счет необходимости переходить от сегмента к сегменту. Замедление особенно заметно, если файл оказался разбросан маленькими кусочками по нескольким цилиндрам диска. В результате, время от времени целесообразно выполнять дефрагментацию диска, чтобы повысить скорость доступа к данным. При сегментированном размещении дефрагментация означает не только объединение всех свободных участков диска, но и, главным образом, объединение сегментов каждого файла. Эта процедура выполняется значительно сложнее, чем дефрагментация при непрерывном размещении.

          Недостатком сегментированного размещения является то, что информация о размещении файла в этом случае намного сложнее, чем для непрерывного случая и, что наиболее неприятно, объем этой информации переменный: чем большее число сегментов занимает файл, тем больше нужно информации, ибо надо перечислить все сегменты. Имеется почти столько же способов решения этой проблемы, сколько вообще придумано разных файловых систем.




          Чтобы уменьшить влияние сегментации на скорость доступа к данным файла, в ОС, использующих сегментированное размещение, применяются различные алгоритмы выбора места для файла. Их целью является разместить файл по возможности в одном сегменте, и только в крайнем случае разбивать файл на несколько сегментов.

          В современных ОС для файловых систем на магнитных дисках практически всегда используют сегментированное размещение. Иное дело файловые системы на дисках, предназначенных только для чтения (например, CD ROM). Нетрудно понять, что в этом случае недостатки непрерывного размещения не имеют никакого значения, а его достоинства сохраняются.

          Еще одной важной характеристикой размещения файлов является степень его «дробности». До сих пор мы предполагали, что файл может занимать любое целое число блоков, а под блоком фактически понимали сектор диска. Проблема в том, что для дисков большого объема число блоков может быть слишком большим. Допустим, в некоторой файловой системе размер блока равен 512 байт, а для хранения номеров блоков файла используются 16-разрядные числа. В этом случае размер области данных диска не сможет превысить 512 * 216 = 32 Мб. Конечно, можно перейти к использованию 32-разрядных номеров блоков, но тогда суммарный размер информации о размещении всех файлов на диске становится чересчур большим. Обычный выход из этого затруднения заключается в том, что минимальной единицей размещения файлов считают кластер (называемый в некоторых системах блоком или логическим блоком), который принимается равным 2k секторов, т.е., например, 1, 2, 4, 8, 16, 32 сектора, редко больше. Каждому файлу отводится целое число кластеров, и в информации о размещении файла хранятся номера кластеров, а не секторов. Увеличение размера кластеров позволяет сократить количество данных о размещении файлов «и в длину и в ширину»: во-первых, для каждого файла нужно хранить информацию о меньшем числе кластеров, а во-вторых, уменьшается число двоичных разрядов, используемых для задания номера кластера (либо при той же разрядности можно использовать больший диск). Так, при кластере размером 32 сектора и 16-разрядных номерах можно адресовать до 1 Гб дисковой памяти.

          Использование больших кластеров имеет свою отрицательную сторону. Поскольку размер файла можно считать случайной величиной (по крайней мере, этот размер никак не связан с размером кластера), то можно приближенно считать, что в среднем половина последнего кластера каждого файла остается незанятой. Это явление иногда называют внутренней фрагментацией (в отличие от описанной выше фрагментации свободного пространства диска, которую называют также внешней фрагментацией). Кроме того, если хотя бы один из секторов, входящих в кластер, отмечен как дефектный, то и весь кластер считается дефектным, т.е. не может быть использован. Очевидно, что при увеличении размера кластера возрастает и число неиспользуемых секторов диска.

          Оптимальный размер кластера либо вычисляется автоматически при форматировании диска, либо задается вручную.

          Для нормальной работы файловой системы требуется, чтобы, кроме информации о размещении файлов, система хранила в удобном для использования виде информацию об имеющихся свободных кластерах диска. Эта информация необходима при создании новых или увеличении существующих файлов. Используются различные способы представления информации о свободном месте, некоторые из них перечислены ниже.

          Можно хранить все свободные кластеры как связанный линейный список, т.е. в начале каждого свободного кластера хранить номер следующего по списку. Недостаток такого способа в том, что затрудняется поиск свободного непрерывного фрагмента нужного размера, поэтому сложнее оптимизировать размещение файлов.

          Названный недостаток можно преодолеть, если хранить список не из отдельных кластеров, а из непрерывных свободных фрагментов диска. Правда, работать с таким списком несколько сложнее.

          В системах с непрерывным размещением часто каждый непрерывный фрагмент диска описывают так же, как файл, но отмечают его флажком «свободен».

          Удобный и простой способ заключается в использовании битовой карты (bitmap) свободных кластеров. Она представляет собой массив, содержащий по одному биту на каждый кластер, причем значение 1 означает «кластер занят», а 0 – «кластер свободен». Для поиска свободного непрерывного фрагмента нужного размера система должна будет просмотреть весь массив.

          Физическая организация выделяет способ размещения файлов на диске и учет соответствия блоков диска файлам. Основными критериями эффективности физической организации файлов являются:

          • скорость доступа к данным;
          • объем адресной информации файла;
          • степень фрагментированности дискового пространства;
          • максимально возможный размер файла.

          Наиболее часто используются следующие схемы размещения файлов:

          • непрерывное размещение (непрерывные файлы);
          • сводный список блоков (кластеров) файла;
          • сводный список индексов блоков (кластеров) файла;
          • перечень номеров блоков (кластеров) файла в структурах, называемых i-узлами (index-node – индекс-узел).

          Простейший вариант физической организации – непрерывное размещение в наборе соседних кластеров (рис. 7.15a). Достоинство этой схемы – высокая скорость доступа и минимальный объем адресной информации, поскольку достаточно хранить номер первого кластера и объем файла. Размер файла при такой организации не ограничивается.

          Однако у этой схемы имеется серьезный недостаток – фрагментация, возрастающая по мере удаления и записи файлов. Кроме того, возникает вопрос, какого размера область нужно выделить файлу, если при каждой модификации он может увеличить свой размер.

          И все-таки есть ситуации, в которых непрерывные файлы могут эффективно использоваться и действительно широко применяются – на компакт-дисках. Здесь все размеры файлов заранее известны и не могут меняться.

          Второй метод размещения файлов состоит в представлении файла в виде связного списка кластеров дисковой памяти (рис. 7.15б). Первое слово каждого кластера используется как указатель на следующий кластер . В этом случае адресная информация минимальна, поскольку расположение файла задается номером его первого кластера.

          Варианты физической организации файлов


          Рис. 7.15. Варианты физической организации файлов

          Кроме того, отсутствует фрагментация на уровне кластеров, а файл легко может изменять размер наращиванием или удалением цепочки кластеров. Однако доступ к такому файлу может оказаться медленным, так как для получения доступа к кластеру n операционная система должна прочитать первые n-1 кластеры. Кроме того, размер кластера уменьшается на несколько байтов, требуемых для хранения. Указателю это не очень важно, но многие программы читают и пишут блоками, кратными степени двойки.

          Оба недостатка предыдущей схемы организации файлов могут быть устранены, если указатели на следующие кластеры хранить в отдельной таблице, загружаемой в память . Таким образом, образуется связный список не самих блоков (кластеров) файла, а индексов, указывающих на эти блоки (рис. 7.16).

          Вариант физической организации файлов


          Рис. 7.16. Вариант физической организации файлов

          Такая таблица , называемая FAT -таблицей (File Allocation Table ), используется в файловых системах MS- DOS и Windows ( FAT 16 и FAT 32). Файлу выделяется память на диске в виде связного списка кластеров. Номер первого кластера запоминается в записи каталога, где хранятся характеристики этого файла. С каждым кластером диска связывается индекс . Индексы располагаются в FAT -таблице в отдельной области диска. Когда память свободна, все индексы равны нулю. Если некоторый кластер N назначен файлу, то индекс этого кластера либо становится равным номеру M следующего кластера файла, либо принимает специальное значение , являющееся признаком того, что кластер является последним для файла. Вообще индексы могут содержать следующую информацию о кластере диска (для FAT 32):

          • не используется (Unused) – 0000.0000;
          • используется файлом (Cluster in use by a file) – значение, отличное от 000.000, FFFF.FFFF и FFFF.FFF7;
          • плохой кластер ( Bad cluster ) – FFFF.FFF7;
          • последний кластер файла (Last cluster in a file) – FFFF.FFFF.

          При такой организации сохраняются все достоинства второго метода организации файлов: отсутствие фрагментации, отсутствие проблем при изменении размера. Кроме того, данный способ обладает дополнительными преимуществами: для доступа к произвольному кластеру файла не требуется последовательно считывать его кластеры, достаточно прочитать FAT -таблицу, отсчитать нужное количество кластеров файла по цепочке и определить номера нужного кластера. Во-вторых, данные файла заполняют кластер целиком в объеме, кратном степени двойки.

          Еще один способ заключается в простом перечислении номеров кластеров, занимаемых файлом (рис. 7.17). Этот перечень и служит адресом файла. Недостаток такого подхода – длина адреса зависит от размера файла. Достоинства – высокая скорость доступа к произвольному кластеру благодаря прямой адресации, отсутствие внешней фрагментации.

          Вариант физической организации файлов


          Рис. 7.17. Вариант физической организации файлов

          Эффективный метод организации файлов, используемый в Unix -подобных операционных системах, состоит в связывании с каждым файлом структуры данных, называемой i-узлами. Такой узел содержит атрибуты файла и адреса кластеров файла (рис. 7.18). Преимущество такой схемы перед FAT -таблицей заключается в том, что каждый конкретный i-узел должен находиться в памяти только тогда, когда открыт соответствующий ему файл . Если каждый узел занимает n байт , а одновременно может быть открыто k файлов, то массив i-узлов займет в памяти k * n байт , что значительно меньше, чем FAT - таблица .

          Это объясняется тем, что размер FAT -таблицы растет линейно с размером диска и даже быстрее, чем линейно, так как с увеличением количества кластеров на диске может потребоваться увеличить разрядность числа для хранения их номеров.

          вариант физической организации файлов


          Рис. 7.18. вариант физической организации файлов

          Достоинством i-узлов является также высокая скорость доступа к произвольному кластеру файла, так как здесь применяется прямая адресация . Фрагментация на уровне кластеров также отсутствует.

          Однако с такой схемой связана проблема, заключающаяся в том, что при выделении каждому файлу фиксированного количества адресов кластеров этого количества может не хватить. Выход из этой ситуации может быть в сочетании прямой и косвенной адресации. Такой поход реализован в файловой системе ufs , используемой в ОС UNIX , схема адресации в которой приведена на рис. 7.19.

          Файловая система ufs

          Для хранения адреса файла выделено 15 полей, каждое из которых состоит из 4 байт . Если размер файлов меньше или равен 12 кластерам, то номера этих кластеров непосредственно перечисляются в первых двенадцати полях адреса. Если кластер имеет размер 8 Кбайт, то можно адресовать файл размеров до 8 Кбайт * 12 = 98304 байт . Если размер кластера превышает 12 кластеров, то следующее 13 поле содержит адрес кластера, в котором могут быть расположены номера следующих кластеров, и размер файла может возрасти до 8192 * (12 + 2048) = 16.875.520 байт .

          Следующий уровень адресации, обеспечиваемый 14-м полем, позволяет адресовать до 8192 * (12 + 2048 + 20482) = 3,43766*1020 байт . Если и этого недостаточно, используется следующее 15-е поле . В этом случае максимальный размер файла может составить 8192 * (12 + 2048 + 20482 + 20483) = 7,0403*1013 байт .

          При этом объеме самой адресной информации составит всего 0,05% от объема адресуемых данных (задачи. ).

          Метод перечисления адресов кластеров файла задействован и в файловой системе NTFS , применяемой в Windows NT/2000/2003. Для сокращения объема адресной информации в NTFS адресуются не кластеры файла, а непрерывные области, состоящие из смежных кластеров диска. Каждая такая область называется экстентом ( extent ) и описывается двумя числами: номером начального кластера и количеством кластеров.

          Каждый раз, когда пользуюсь либой FatFs думаю, что неплохо бы разобраться с тем, как все устроено внутри. Долго откладывал этот вопрос, наконец лед тронулся. Итак, глобальная цель это раскуривание карт памяти, если получится то детально, текущая цель разобраться с файловой системой.

          Итак, первое что мы должны понять, при общении с картой памяти напрямую, мы можем либо прочитать, либо записать 512 байт, других действий не дано. Так как файлы мы постоянно что то копируем, удаляем, а размеры файлов всегда разные, то на карте будут образовываться пустые участки в перемешку с записанными. Чтобы пользователю не запариваться с размещением данных, существует прослойка которая берет на себя эти заботы, это и есть файловая система.

          Логично было бы делать кластеры, маленького размера, то тут вступает в дело ограничение на максимальное количество файлов и на их размер. FAT16 оперирует 16 битными данными, поэтому нельзя запихать больше чем 2^16 кластеров. Поэтому чем меньше их размер, тем более эффективно используется место под мелкие файлы, но тем меньше информации можно запихать на диск. И наоборот, чем больше размер, тем больше информации можно впихать, но тем менее эффективно используется место под мелкие файлы. Максимальный размер кластера 64кБ, поэтому максимум для FAT16 64кб*2^16 = 4Гб.

          fdisk

          Исходные данные: имеется карта памяти micro SD на 1Гб. Имеет метку MYDISK, отформатирована полностью, размер кластера 16кБ.

          fat16_struct

          Для начала стоит рассмотреть структуру FAT16, картинка показывает в каком порядке расположены различные части файловой системы.

          В загрузочном секторе хранится вся служебная информация. Внутри области FAT хранится инфорция о том, как расположены данные файлов на диске. В корневом каталоге информация о том, какие файлы есть в корне диска. Область данных содержит информацию содержащуюся внутри файлов. Все области строго следуют друг за другом подряд, т.е. после загрузочного сектора сразу начинается область FAT. Подробности рассмотрим ниже.

          Задача: понять по какому принципу располагаются имена файлов и их содержимое. Поэтому начнем с поиска корневого каталога, чтобы понять какие файлы у нас есть в наличии. В этом нам помогут данные из загрузочной области.

          boot_sector

          Наиболее интересные данные указаны в таблице

          Смещение Размер в байтах Описание
          0x0D 1 количество секторов в кластере = 0x20 или 32
          0x0E 2 количество зарезервированных секторов = 0x0004 или 4
          0x10 1 0x02 количество таблиц FAT
          0x11 2 0x0200*32 размер корневой директории
          0x16 2 количество секторов для одной таблицы FAT = 0x00EE или 238
          0x36 8 используется FAT16
          0x1FE 2 0x55AA конец загрузочного сектора

          Первое что нам нужно, это узнать размер загрузочной области. Смотрим адрес 0x0E и видим, что под загрузочную область выделено 4 сектора, т.е. с адреса 4*512 = 0x800 начинается область FAT.

          Количество таблиц FAT можно определить по адресу 0x10 загрузочной области. В нашем примере их две, почему две, потому что каждая таблица дублируется резервной, что бы в случае сбоя можно было восстановить данные. Размер таблицы указан по адресу 0x16. Таким образом размер фата 512*2*0xEE = 0x3B800, а корневой каталог начинается с адреса: 0x800 + 0x3B800 = 0x3C000

          Внутри корневого каталога все элементы разбиты по 32 байта. Первый элемент, это метка тома, а вот последующие элементы это файлы и папки. Если название файла начинается с 0xE5, то это значит что файл удален. Если название начинается с 0x00, то это значит, что предыдущий файл был последним.

          data_fat16

          Довольно интересная структура корневого каталога получилась у меня. Карта была отформатирована полностью, затем создано 2 текстовых файла, которые переименованы в MyFile.txt и BigFile.txt.

          root_dir

          Как можно увидеть, что помимо моих двух файлов, создалось еще куча левых, о происхождении которых можно только догадываться.

          Самое важное, что можно здесь подчерпнуть, это адрес первого кластера, с которого начинаются данные нашего файла. Адрес всегда находится по смещению 0x1A. Например, имя нашего файла MyFile.txt расположено по адресу 0x3C100, к нему прибавляем 0x1A, там видим номер первого кластера. = 0x0002 т.е. второй кластер. Для файла BigFile.txt, данные начинаются с третьего кластера.

          Также в корневом каталоге можно узнать еще дату и время, последнего редактирования файла, мне этот вопрос был не очень интересен, поэтому обойду его стороной. Последнее полезное, что может сказать корневой каталог, это свой размер, дабы мы могли найти то, откуда начинаются данные.

          Размер указан в загрузочном секторе по адресу 0x11(2байта) = 0x0200*32 = 0x4000 или 16384 байт.

          Прибавим к адресу корня его размер: 3С000 + 4000 = 40000 это адрес первого кластера данных, но нам нужен второй, чтобы найти MyFile.txt. Количество секторов в кластере 32, размер кластера = 32*512 = 16384 или 0x4000, поэтому прибавим к адресу первого кластера, его размер т.е. с 0x44000 по идее должен начаться второй кластер.

          cluster2

          Идем по адресу 0x44000 и видим, что данные принадлежат BigFile.txt (в нем просто мусор)

          cluster1

          Оказывается есть небольшая тонкость, нумерация кластеров начинается со второго, не понятно зачем так сделано но факт, т.е. на самом деле мы перешли на третий кластер. Вернемся на один кластер назад на адрес 0x40000 и видим ожидаемые данные.

          Теперь спрашивается. Зачем же нам нужна таблица FAT? Дело в том, что данные могут быть фрагментированы, т.е. начало файла может находиться в одном кластере, а конец в совсем другом. Причем это могут быть совершенно разные кластеры. Их может быть несколько, разбросанных в разных областях данных. Таблица FAT это своего рода карта, которая нам указывает, как нам перемещаться между кластерами.

          fat16_table

          Приведем пример, в файле BigFile.txt запихано куча рандомного мусора, чтобы занимал не один кластер, а несколько. Идем туда, где начинается таблица FAT и смотрим ее содержание.

          Проверим, действительно ли это так. Файл весить 163кБ, т.е. занимает 163000/(32*512) = 9.9 кластеров, что вполне походит на ожидаемое. Повторимся еще раз, что один элемент в таблице FAT занимает 2 байта, т.е. 16 бит, отсюда и пошло название FAT16. Соответственно максимальный адрес равен 0xFFFF, т.е. максимальный объем для FAT16 0xFFFF*размер кластера.

          fat32_boot

          Перейдем к FAT32. Загрузочная часть немного изменена.

          Смещение Размер в байтах Описание
          0x52 8 Имя файловой системы
          0x24 4 Количество секторов занимаемых одной FAT
          0x0E 2 количество резервных секторов
          0x10 2 число таблиц FAT
          0x0D 1 секторов в кластере
          0x2C 4 номер первого кластера корневого каталога

          Есть некоторые принципиальные изменения. Имя файловой системы перекочевало по адресу 0x52, размер корневого теперь игнорируется. Область данных находится сразу за таблицами FAT, корневой каталог находится внутри области данных. Кроме того корневой каталог не имеет фиксированного размера.

          Адрес области данных вычисляется:
          размер загрузочного сектора + таблицы FAT, в моем случае получилось:
          746496 + (3821056 * 2) = 0x800000

          fat32_table

          Таблица FAT ищется как и в предыдущем случае, только теперь элементы занимают 4 байта, отсюда и название FAT32. Идеология расположения элементов в точности как в предыдущем случае.

          Надеюсь в общих чертах стало понятно, вроде как ничего сверхестественного нет. Кто прочитал и повторил может скушать печеньку 🙂

          6 комментариев: Файловая система FAT

          Да похоже на то, просто этот момент как то вскользь везде упоминается, поэтому я решил тоже его не затрагивать

          Почему в программе по адресу 0х0Е написано значение 04, по адресу 0х0F 00 соответственно 0400, а вы пишите 0х0004? Здесь запутался как располагаются байтики по адресам в памяти?

          если число двухбайтное то справа налево, поэтому 0x04 младший байт, а 00 старший байт

          Читайте также: