На всех устройствах памяти информация хранится в двоично кодированном виде

Обновлено: 07.07.2024

Дискретизация информации – процесс преобразования информации из непрерывной формы представления в дискретную. Чтобы представить информацию в дискретной форме, её следует выразить с помощью символов какого-нибудь естественного или формального языка.

Алфавит языка – конечный набор отличных друг от друга символов, используемых для представления информации. Мощность алфавита – это количество входящих в него символов.

Алфавит, содержащий два символа, называется двоичным алфавитом. Представление информации с помощью двоичного алфавита называют двоичным кодированием. Двоичное кодирование универсально, так как с его помощью может быть представлена любая информация.

Основная литература:

1. Босова Л. Л. Информатика: 7 класс. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2017. – 226 с.

Дополнительная литература:

  1. Босова Л. Л. Информатика: 7–9 классы. Методическое пособие. // Босова Л. Л., Босова А. Ю., Анатольев А. В., Аквилянов Н.А. – М.: БИНОМ, 2019. – 512 с.
  2. Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 1. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
  3. Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 2. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
  4. Гейн А. Г. Информатика: 7 класс. // Гейн А. Г., Юнерман Н. А., Гейн А.А. – М.: Просвещение, 2012. – 198 с.

Теоретический материал для самостоятельного изучения

Кодирование информации

Для решения своих задач человеку часто приходится преобразовывать имеющуюся информацию из одной формы представления в другую. Например, при чтении вслух происходит преобразование информации из дискретной (текстовой) формы в непрерывную (звук). Во время диктанта на уроке русского языка, наоборот, происходит преобразование информации из непрерывной формы (голос учителя) в дискретную (записи учеников).

Информация, представленная в дискретной форме, значительно проще для передачи, хранения или автоматической обработки. Поэтому в компьютерной технике большое внимание уделяется методам преобразования информации из непрерывной формы в дискретную.

Дискретизация информации – процесс преобразования информации из непрерывной формы представления в дискретную.

Рассмотрим суть процесса дискретизации информации на примере.

На метеорологических станциях имеются самопишущие приборы для непрерывной записи атмосферного давления. Результатом их работы являются барограммы – кривые, показывающие, как изменялось давление в течение длительных промежутков времени. Одна из таких кривых, вычерченная прибором в течение семи часов проведения наблюдений, показана на рисунке 1.

На основании полученной информации можно построить таблицу, содержащую показания прибора в начале измерений и на конец каждого часа наблюдений.


Полученная таблица даёт не совсем полную картину того, как изменялось давление за время наблюдений: например, не указано самое большое значение давления, имевшее место в течение четвёртого часа наблюдений. Но если занести в таблицу значения давления, наблюдаемые каждые полчаса или 15 минут, то новая таблица будет давать более полное представление о том, как изменялось давление.

Таким образом, информацию, представленную в непрерывной форме (барограмму, кривую), мы с некоторой потерей точности преобразовали в дискретную форму (таблицу).

В дальнейшем вы познакомитесь со способами дискретного представления звуковой и графической информации.

Двоичное кодирование

В общем случае, чтобы представить информацию в дискретной форме, её следует выразить с помощью символов какого-нибудь естественного или формального языка. Таких языков тысячи. Каждый язык имеет свой алфавит.

Алфавит – конечный набор отличных друг от друга символов (знаков), используемых для представления информации. Мощность алфавита – это количество входящих в него символов (знаков).

Алфавит, содержащий два символа, называется двоичным алфавитом (рис. 3). Представление информации с помощью двоичного алфавита называют двоичным кодированием. Закодировав таким способом информацию, мы получим её двоичный код.

Рассмотрим в качестве символов двоичного алфавита цифры 0 и 1. Покажем, что любой алфавит можно заменить двоичным алфавитом. Прежде всего, присвоим каждому символу рассматриваемого алфавита порядковый номер. Номер представим с помощью двоичного алфавита. Полученный двоичный код будем считать кодом исходного символа.


Если мощность исходного алфавита больше двух, то для кодирования символа этого алфавита потребуется не один, а несколько двоичных символов. Другими словами, порядковому номеру каждого символа исходного алфавита будет поставлена в соответствие цепочка (последовательность) из нескольких двоичных символов. Правило получения двоичных кодов для символов алфавита мощностью больше двух можно представить схемой на рисунке.


Двоичные символы (0,1) здесь берутся в заданном алфавитном порядке и размещаются слева направо. Двоичные коды (цепочки символов) читаются сверху вниз. Все цепочки (кодовые комбинации) из двух двоичных символов позволяют представить четыре различных символа произвольного алфавита:


Цепочки из трёх двоичных символов получаются дополнением двухразрядных двоичных кодов справа символом 0 или 1. В итоге кодовых комбинаций из трёх двоичных символов получается 8 – вдвое больше, чем из двух двоичных символов:


Соответственно, четырёхразрядный двоичный код позволяет получить 16 кодовых комбинаций, пятиразрядный – 32, шестиразрядный – 64 и т. д.

Длину двоичной цепочки – количество символов в двоичном коде – называют разрядностью двоичного кода.

Обратите внимание, что:

32 = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 и т. д.

Здесь количество кодовых комбинаций представляет собой произведение некоторого количества одинаковых множителей, равного разрядности двоичного кода.

Если количество кодовых комбинаций обозначить буквой N, а разрядность двоичного кода – буквой i, то выявленная закономерность в общем виде будет записана так:


В математике такие произведения записывают в виде:

Запись 2 i читают так: «2 в i-й степени».

Задача. Вождь племени Мульти поручил своему министру разработать двоичный код и перевести в него всю важную информацию. Двоичный код какой разрядности потребуется, если алфавит, используемый племенем Мульти, содержит 16 символов? Выпишите все кодовые комбинации.

Решение. Так как алфавит племени Мульти состоит из 16 символов, то и кодовых комбинаций им нужно 16. В этом случае длина (разрядность) двоичного кода определяется из соотношения: 16 = 2 i . Отсюда i = 4.

Чтобы выписать все кодовые комбинации из четырёх 0 и 1, воспользуемся схемой на рис. 1.13: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

Универсальность двоичного кодирования

В начале нашей беседы вы узнали, что информация, представленная в непрерывной форме, может быть выражена с помощью символов некоторого естественного или формального языка. В свою очередь, символы произвольного алфавита могут быть преобразованы в двоичный код. Таким образом, с помощью двоичного кода может быть представлена любая информация на естественных и формальных языках, а также изображения и звуки (рис. 6). Это и означает универсальность двоичного кодирования.


Двоичные коды широко используются в компьютерной технике, требуя только двух состояний электронной схемы – «включено» (это соответствует цифре 1) и «выключено» (это соответствует цифре 0).

Простота технической реализации – главное достоинство двоичного кодирования. Недостаток двоичного кодирования – большая длина получаемого кода.

Равномерные и неравномерные коды

Различают равномерные и неравномерные коды. Равномерные коды в кодовых комбинациях содержат одинаковое число символов, неравномерные – разное.

Выше мы рассмотрели равномерные двоичные коды.

Разбор решения заданий тренировочного модуля

№1.Тип задания: ввод с клавиатуры пропущенных элементов в тексте

Переведите десятичное число 273 в двоичную систему счисления.

Воспользуемся алгоритмом перевода целых чисел из системы с основанием p в систему с основанием q:

1. Основание новой системы счисления выразить цифрами исходной системы счисления и все последующие действия производить в исходной системе счисления.

2. Последовательно выполнять деление данного числа и получаемых целых частных на основание новой системы счисления до тех пор, пока не получим частное, меньшее делителя.

3. Полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления.

4. Составить число в новой системе счисления, записывая его, начиная с последнего остатка.

А как просмотреть двоичный код абсолютно любого файла?
Есть готовые программки?

Или как средствами Delphi это сделать?

Я как то проводил эксперимент.

Я разбирал винт на 20 гигов, когда он работал, он работал от силы пять минут, а потом файловая система слетела, почитав в инете - я узнал, что там должны быть стерильные условия и хоть маленько пыли испортят всю информацию, потому что на скорости 7200 оборотов в минут маленькая частица пыли вроде бы даже создаёт царапины на поверхности.

Я тогда еще подумал, что было бы не плохо придумать такую же поверхность считывания, которая просто ложилась бы сверху, тогда не нужно было бы что то вообще вращать.

В дальнейшем я вынул трёхфазный двигатель и придумал ему схему управления на attiny 2313 и трёх транзисторах открывающемся около пяти вольт.

Правда так и не доделал это всё, потому что нужно было еще спаять программатор avr.

Ну а в каком еще то! посмотреть ты их можешь и в 16ном

Для
долговременного хранения информации используется долговременная
(внешняя) память. Устройство, которое обеспечивает запись и считывание
информации, называется накопителем, или дисководом, а хранится информация на носителях
информации. Информация на носителях хранится в двоичном компьютерном коде, т. е. в форме последовательностей нулей и единиц.
Дискеты. Внутри пластмассового корпуса дискеты размещается гибкий магнитный диск.
Информация на диске хранится на концентрических дорожках, на которых
чередуются намагниченные и ненамагниченные участки. Намагниченный
участок хранит компьютерную единицу «1», а ненамагниченный –
компьютерный нуль «0».

Для
записи или считывания информации дискета вставляется в дисковод,
который вращает диск внутри пластмассового корпуса дискеты. Магнитная
головка дисковода устанавливается на определенную концентрическую
дорожку диска и производится запись или считывание информации. В оптических
дисководах используется оптический принцип записи и считывания
информации. Информация на оптическом диске хранится на одной
спиралевидной дорожке, идущей от центра диска к периферии и содержащей
чередующиеся участки с хорошей и плохой отражающей способностью.
В
процессе считывания информации с оптического диска луч лазера,
установленного в дисководе, падает на поверхность вращающегося диска и
отражается. Так как поверхность оптического диска имеет участки с
различной отражающей способностью, отраженный луч также меняет свою
интенсивность и преобразуется в цифровой компьютерный код.
Существует два типа оптических дисков:
· CD- диски (CD- Compact
Disk, компакт-диск) , на которые может быть записано до 700 Мбайт информации.
· DVD-диски (DVD- Digital
Versatile
Disk, цифровой универсальный диск) , которые имеют
значительно большую информационную емкость (4,7 Гбайт и более) , так как
оптические дорожки на них имеют меньшую толщину и размещены более
плотно. Энергозависимая
память применяется для долговременного хранения информации и не требует,
в отличии от оперативной памяти, подключения источника электрического
напряжения. Такая память не имеет движущихся частей и поэтому
обеспечивает высокую сохранность данных при использовании в мобильных
устройствах (портативных компьютерах, цифровых камерах и т. д. ) .
информационная емкость flash – памяти может достигать 1 Гбайт и более.
Карта энергозависимой памяти представляет собой БИС памяти,
помещенную в миниатюрный плоский корпус. Существуют различные типы
карт, которые различаются между собой формой и размером.
Для
записи и считывания информации с карт памяти используются специальные
адаптеры. Адаптеры встраиваются в мобильные устройства (портативные
компьютеры, цифровые камеры и др. ) или подключаются к настольным
компьютерам с помощью USB разъема.

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

§ 7. Основополагающие принципы устройства ЭВМ

Информатика. 10 класса. Босова Л.Л. Оглавление

7.1. Принципы Неймана-Лебедева

В каждой области науки и техники существуют фундаментальные идеи или принципы, определяющие на многие годы вперёд её содержание и направление развития. В компьютерных науках роль таких фундаментальных идей сыграли принципы, сформулированные независимо друг от друга двумя крупнейшими учёными XX века — Джоном фон Нейманом и Сергеем Алексеевичем Лебедевым.

Принцип — основное, исходное положение какой-нибудь теории, учения, науки и пр.

Принципы Неймана-Лебедева — базовые принципы построения ЭВМ, сформулированные в середине прошлого века, не утратили свою актуальность и в наши дни.


Джон фон Нейман (1903-1957) — американский учёный, сделавший важный вклад в развитие целого ряда областей математики и физики. В 1946 г., анализируя сильные и слабые стороны ЭНИАКа, совместно с коллегами пришёл к идее нового типа организации ЭВМ.


Сергей Алексеевич Лебедев (1902-1974) — академик, основоположник вычислительной техники в СССР, главный конструктор первой отечественной электронной вычислительной машины МЭСМ, автор проектов компьютеров серии БЭСМ (Большая Электронная Счётная Машина), разработчик принципиальных положений суперкомпьютера «Эльбрус». В 1996 году посмертно награждён медалью «Пионер компьютерной техники» — самой престижной наградой международного компьютерного сообщества.

Рассмотрим сущность основных принципов Неймана-Лебедева:

1) состав основных компонентов вычислительной машины;
2) принцип двоичного кодирования;
3) принцип однородности памяти;
4) принцип адресности памяти;
5) принцип иерархической организации памяти;
6) принцип программного управления.

Первый принцип определяет состав основных компонентов вычислительной машины.

Любое устройство, способное производить автоматические вычисления, должно иметь определённый набор компонентов: блок обработки данных, блок управления, блок памяти и блоки ввода/вывода информации.

Функциональная схема такого компьютера, отражающая программное управление работой и взаимодействием его основных узлов, представлена на рисунке 2.5.


Рис. 2.5. Функциональная схема компьютеров первых поколений

Его информационным центром является процессор:

• все информационные потоки (тонкие стрелки на рисунке) проходят через процессор;
• управление всеми процессами (толстые стрелки на рисунке) также осуществляется процессором.

Такие блоки есть и у современных компьютеров. Это:

• процессор, состоящий из арифметико-логического устройства (АЛУ), выполняющего обработку данных, и устройства управления (УУ), обеспечивающего выполнение программы и организующего согласованное взаимодействие всех узлов компьютера;
• память, предназначенная для хранения исходных данных, промежуточных величин и результатов обработки информации, а также самой программы обработки информации. Различают память внутреннюю и внешнюю. Основная часть внутренней памяти используется для временного хранения программ и данных в процессе обработки. Такой вид памяти принято называть оперативным запоминающим устройством (ОЗУ). Ещё одним видом внутренней памяти является постоянное запоминающее устройство (ПЗУ), содержащее программу начальной загрузки компьютера. Внешняя или долговременная память предназначена для длительного хранения программ и данных в периоды между сеансами обработки;
• устройства ввода, преобразующие входную информацию в форму, доступную компьютеру;
• устройства вывода, преобразующие результаты работы компьютера в форму, доступную для восприятия человеком.

Вместе с тем в архитектуре современных компьютеров и компьютеров первых поколений есть существенные отличия. О них будет сказано чуть ниже.

Рассмотрим суть принципа двоичного кодирования информации.

Вся информация, предназначенная для обработки на компьютере (числа, тексты, звуки, графика, видео), а также программы её обработки представляются в виде двоичного кода — последовательностей 0 и 1.

Все современные компьютеры хранят и обрабатывают информацию в двоичном коде. Выбор двоичной системы счисления обусловлен рядом важных обстоятельств: простотой выполнения арифметических операций в двоичной системе счисления, её «согласованностью» с булевой логикой, простотой технической реализации двоичного элемента памяти (триггера).

Несмотря на всеобщее признание, использование в компьютерной технике классической двоичной системы счисления не лишено недостатков. В первую очередь это проблема представления отрицательных чисел, а также нулевая избыточность (т. е. отсутствие избыточности) двоичного представления. Пути преодоления указанных проблем были найдены уже на этапе зарождения компьютерной техники.

В 1958 г. в Московском государственном университете им. М. В. Ломоносова под руководством И. П. Брусенцова был создан троичный компьютер «Сетунь» (рис. 2.6). В нём применялась уравновешенная троичная система счисления, использование которой впервые в истории позволило представлять одинаково просто как положительные, так и отрицательные числа.

Итак, благодаря двоичному кодированию, данные и программы по форме представления становятся одинаковыми, а следовательно, их можно хранить в единой памяти.


Рис. 2.6. ЭВМ «Сетунь»

Команды программ и данные хранятся в одной и той же памяти, и внешне в памяти они неразличимы. Распознать команды и данные можно только по способу использования. Это утверждение называют принципом однородности памяти.

Так как представленные в памяти команды и данные внешне неразличимы, то одно и то же значение в ячейке памяти может использоваться и как данные, и как команда в зависимости лишь от способа обращения к нему. Так, если к двоичной последовательности обращаются как к числу, то в ней выделяют поле (область) знака и поле значащих разрядов. Если к двоичной последовательности обращаются как к команде, то в ней выделяют поле кода операции и поле адресов операндов.

Однородность памяти позволяет производить операции не только над данными, но и над командами. Взяв в качестве данных для некоторой программы команды другой программы, в результате её исполнения можно получить команды третьей программы. Данная возможность лежит в основе трансляции — перевода текста программы с языка высокого уровня на язык конкретной вычислительной машины.

Структурно оперативная память компьютера состоит из отдельных битов — однородных элементов, обладающих двумя устойчивыми состояниями, одно из которых соответствует нулю, а другое — единице. Для записи или считывания группы соседних битов объединяются в ячейки памяти, каждая из которых имеет свой номер (адрес).

Команды и данные размещаются в единой памяти, состоящей из ячеек, имеющих свои номера (адреса). Это принцип адресности памяти.

Очень важно, что информация может считываться из ячеек и записываться в них в произвольном порядке, т. е. процессору в произвольный момент доступна любая ячейка памяти. Организованную таким образом память принято называть памятью с произвольным доступом.

Разрядность ячеек памяти (количество битов в ячейке) у компьютеров разных поколений была различной. Основой оперативной памяти современных компьютеров является восьмибитная ячейка. Ячейка такой разрядности может быть использована для работы с одним символом. Для хранения чисел используется несколько последовательных ячеек (четыре — в случае 32-битного числа).

На современных компьютерах может одновременно извлекаться из памяти и одновременно обрабатываться до 64 разрядов (т. е. до восьми байтовых (восьмибитных) ячеек). Это возможно благодаря реализации на них принципа параллельной обработки данных — одновременного (параллельного) выполнения нескольких действий.

Можно выделить два основных требования, предъявляемых к памяти компьютера:
1) объём памяти должен быть как можно больше;
2) время доступа к памяти должно быть как можно меньше.

Создать запоминающее устройство, одновременно удовлетворяющее двум этим требованиям, затруднительно. Действительно, в памяти большого объёма требуемые данные искать сложнее, в результате чего их чтение замедляется. Для ускорения чтения нужно использовать более сложные технические решения, что неизбежно приводит к повышению стоимости всего компьютера. Решение проблемы — использование нескольких различных видов памяти, связанных друг с другом. В этом и состоит суть принципа иерархической организации памяти.

Трудности физической реализации запоминающего устройства высокого быстродействия и большого объёма требуют иерархической организации памяти.

В современных компьютерах используются устройства памяти нескольких уровней, различающиеся по своим основным характеристикам: времени доступа, сложности, объёму и стоимости. При этом более высокий уровень памяти меньше по объёму, быстрее и имеет большую стоимость в пересчёте на байт, чем более низкий уровень. Уровни иерархии взаимосвязаны: все данные на одном уровне могут быть также найдены на более низком уровне.

Большинство алгоритмов обращаются в каждый промежуток времени к небольшому набору данных, который может быть помещён в более быструю, но дорогостоящую и поэтому небольшую память. Использование более быстрой памяти увеличивает производительность вычислительного комплекса.

Главное отличие компьютеров от всех других технических устройств — это программное управление их работой.

Принцип программного управления определяет общий механизм автоматического выполнения программы.

Все вычисления, предусмотренные алгоритмом решения задачи, должны быть представлены в виде программы, состоящей из последовательности команд. Команды представляют собой закодированные управляющие слова, в которых указывается:

• какое выполнить действие;
• из каких ячеек считать операнды (данные, участвующие в операции);
• в какую ячейку записать результат операции.

Команды, входящие в программу, выполняются процессором автоматически в определённой последовательности. При этом выполняется следующий цикл действий:

1) чтение команды из памяти и её расшифровка;
2) формирование адреса очередной команды;
3) выполнение команды.

Этот цикл повторяется до достижения команды, означающей окончание выполнения программы, решающей некоторую конкретную задачу. В современных компьютерах по завершении работы программы управление передаётся операционной системе.

7.2. Архитектура персонального компьютера

Современные персональные компьютеры различаются по своим размерам, конструкции, разновидностям используемых микросхем и модулей памяти, другим характеристикам. В то же время все они имеют единое функциональное устройство, единую архитектуру — основные узлы и способы взаимодействия между ними (рис. 2.7).

Архитектура — это наиболее общие принципы построения компьютера, отражающие программное управление работой и взаимодействием его основных функциональных узлов.

На рисунке 2.7 изображены хорошо известные вам узлы современного компьютера:
процессор,
внутренняя память,
устройства ввода,
устройства вывода и внешняя память.


Рис. 2.7. Функциональная схема компьютера (К — контроллер)

Обмен данными между устройствами компьютера осуществляется с помощью магистрали.

Магистраль (шина) — устройство для обмена данными между устройствами компьютера.Магистраль состоит из трёх линий связи:

• шины адреса, используемой для указания физического адреса, к которому устройство может обратиться для проведения операции чтения или записи;
• шины данных, предназначенной для передачи данных между узлами компьютера;
• шины управления, по которой передаются сигналы, управляющие обменом информацией между устройствами и синхронизирующие этот обмен.

В компьютерах, имевших классическую фон-неймановскую архитектуру, процессор контролировал все процессы ввода/вывода. При этом быстродействующий процессор затрачивал много времени на ожидание результатов работы от значительно более медленных внешних устройств. Для повышения эффективности работы процессора были созданы специальные электронные схемы, предназначенные для обслуживания устройств ввода/вывода или внешней памяти.

Контроллер — это специальный микропроцессор, предназначенный для управления внешними устройствами: накопителями, мониторами, принтерами и т. д.

Благодаря контроллерам данные по магистрали могут передаваться между внешними устройствами и внутренней памятью напрямую, минуя процессор. Это приводит к существенному снижению нагрузки на центральный процессор и повышает эффективность работы всей вычислительной системы.

Современные компьютеры обладают магистрально-модульной архитектурой, главное достоинство которой заключается в возможности легко изменить конфигурацию компьютера путём подключения к шине новых или замены старых внешних устройств.

Если спецификация на шину (детальное описание всех её параметров) является открытой (опубликованной), то производители могут разработать и предложить пользователям разнообразные дополнительные устройства для компьютеров с такой шиной. Подобный подход называют принципом открытой архитектуры. Благодаря ему пользователь может собрать именно такую компьютерную систему, которая ему нужна.

7.3. Перспективные направления развития компьютеров

Мир современных компьютеров необычайно разнообразен. Кроме микропроцессоров, встраиваемых во всевозможные устройства, и разных типов персональных компьютеров существуют значительно более мощные вычислительные системы.

Это серверы в глобальной компьютерной сети, управляющие её работой и хранящие огромные объёмы информации.

Это многопроцессорные системы параллельной обработки данных, обеспечивающие:

• сокращение времени решения вычислительно сложных задач;
• сокращение времени обработки больших объёмов данных;
• решение задач реального времени;
• создание систем высокой надёжности.

Время однопроцессорных вычислительных систем прошло. Не только суперкомпьютеры, но и современные персональные компьютеры, ноутбуки, игровые приставки основаны на многопроцессорных, многоядерных и других технологиях, предполагающих одновременное выполнение множества инструкций.

В наши дни электронная техника уже подошла к предельным значениям своих технических характеристик, которые определяются физическими законами. Поэтому идёт поиск неэлектронных средств хранения и обработки данных, ведутся работы по созданию квантовых и биологических компьютеров, проводятся исследования в области нанотехнологий.

САМОЕ ГЛАВНОЕ

В каждой области науки и техники существуют фундаментальные идеи или принципы, определяющие на многие годы вперёд её содержание и направление развития. В компьютерных науках роль таких фундаментальных идей сыграли принципы, сформулированные независимо друг от друга двумя крупнейшими учёными XX века — Джоном фон Нейманом и Сергеем Алексеевичем Лебедевым.

К основополагающим принципам построения компьютеров (принципам Неймана-Лебедева) можно отнести следующие:

1) состав основных компонентов вычислительной машины;
2) принцип двоичного кодирования;
3) принцип однородности памяти;
4) принцип адресности памяти;
5) принцип иерархической организации памяти;
6) принцип программного управления.

Архитектура — это наиболее общие принципы построения компьютера, отражающие программное управление работой и взаимодействием его основных функциональных узлов.

Классическая архитектура компьютеров первых поколений предполагала осуществление взаимодействия всех устройств через процессор и наличие неизменного набора внешних устройств.

Современные персональные компьютеры обладают открытой магистрально-модульной архитектурой — устройства взаимодействуют через шину, что способствует оптимизации процессов обмена информацией внутри компьютера. Второе преимущество современной архитектуры — возможность легко изменить конфигурацию компьютера путём подключения к шине новых или замены старых внешних устройств.

Вопросы и задания

1. Перечислите основные фундаментальные идеи, лежащие в основе построения компьютеров.

2. Какие устройства принято выделять в компьютерах классической архитектуры? Сравните их с устройством машины Беббиджа.

3. Чем обусловлен выбор двоичного кодирования для представления информации в компьютере?

4. Как вы понимаете утверждение «Одно и то же значение ячейки памяти в зависимости от способа обращения к нему может использоваться и как данные, и как команда»?

5. В чём состоит суть принципа адресности памяти?

6. Почему в современных компьютерах используются устройства памяти нескольких уровней, различающиеся по времени доступа, сложности, объёму и стоимости?

7. В чём состоит суть принципа программного управления?

9. Для чего предназначена магистраль (шина)? Из каких частей она состоит?

10. Что такое магистрально-модульная архитектура? В чём её главное достоинство?

Процессор берёт команды программ и данные для обработки из памяти. Память является электронным устройством и состоит из микросхем, которые, в свою очередь, состоят из тысяч более мелких электронных компонентов. Подобные электронные компоненты могут находиться только в двух состояниях — «включено» или «выключено», что соответствует двум цифрам двоичной системы счисления 1 или 0 или одному биту.

Таким образом, любая информация в памяти компьютера представляется в виде последовательности битов, каждый из которых находится в одном из допустимых состояний.

При использовании одного бита можно представить в памяти компьютера только два различных символа. Одному из них будет сопоставлен двоичный код — ноль, а второму — единица.

Если мы увеличим длину кодовой комбинации символа до двух цифр, то получим следующие коды: 00, 01, 10, 11. Таким образом, в памяти компьютера можно будет представить четыре различных символа. При последовательном наращивании длины двоичной кодовой комбинации увеличивается количество символов, которые могут быть закодированы. Кодом длиной в три символа представляются 8 различных символов (000, 001, 010, 011, 100, 101, 110, 111) и т. д.

При длине кодовой комбинации L количество кодовых комбинаций K определяется по формуле:
K = 2 L ,

Текстовая информация состоит из букв, цифр, знаков препинания, специальных символов, таких, как пробел, символ перевода строки и др. Для кодирования текстовой информации в компьютере используются равномерные коды. В случае, когда код каждого символа занимает в памяти компьютера 1 байт, или 8 бит, общее количество символов, которые можно закодировать, равно 2 8 = 256. Если кодовое слово состоит из двух байтов, можно закодировать 2 16 = 65 536 символов.

Существуют стандартные таблицы кодов. Они могут использовать один или два байта для кодирования одного символа.

Широко используется таблица кодов, известная как стандарт ASCII (American Standart Code for Information Interchange — Американский стандартный код для обмена информацией), использующая один байт для кодирования одного символа. ASCII представляет собой кодировку для представления десятичных цифр, символов латинского и национального алфавитов, знаков препинания, символов арифметических операций и управляющих символов. Управляющие символы называют непечатаемыми символами, к ним относятся такие, как «перевод строки» (код символа 10), «возврат каретки» (код 13) и др.

Первая половина кодовой таблицы содержит стандартные символы ASCII (символы с кодами 0 — 127), они одинаковые во всех странах.

Коды в таблице записаны в шестнадцатеричной системе счисления, как принято в информатике. Код символа А, например, 4116 = 6510. Таблицу кодов не надо запоминать, но следует помнить последовательность символов:

  1. знаки препинания и арифметических операций;
  2. цифры от 0 до 9;
  3. прописные символы латинского алфавита;
  4. строчные символы латинского алфавита.

Вторая часть кодовой таблицы (символы с кодами 128 — 255) называют расширенными кодами ASCII. В расширенные коды ASCII включают символы национальных алфавитов, например символы кириллицы. Но даже с учётом этих дополнительных знаков алфавиты многих языков не удаётся охватить при помощи 256 знаков. По этой причине существуют различные варианты кодировки ASCII, включающие символы разных языков.

Отсутствие согласованных стандартов привело к появлению различных кодовых таблиц (вернее, различных вторых частей кодовых таблиц) для кодирования символов кириллицы, среди которых

  • международный стандарт ISO 8859;
  • кодовая таблица фирмы Microsoft CP-1251 (кодировка Windows);
  • кодовая таблица, применяемая в ОС Unix KOI8R и др.

По этой причине тексты на русском языке, набранные с использованием одной кодовой таблицы, невозможно прочитать при использовании другой кодовой таблицы.

В настоящее время в компьютерах широко применяется стандарт кодирования Unicode (Юникод), в котором для кодирования одного символа отводятся один байт, два байта или четыре байта. Первые 128 символов Юникода совпадают с символами ASCII. Остальная часть кодовой таблицы включает символы, используемые в основных языках мира.

Изображение на экране монитора формируется набором экранных точек —пикселей. Каждая экранная точка имеет свой цвет. Картинка на экране — это отображение информации из памяти компьютера.

Первые мониторы были монохромными. Точка на экране монохромного монитора может быть только светлой (белой) или тёмной (чёрной). Для кодирования цвета пикселя используется один бит памяти, значение 1 соответствует белому цвету, 0 — чёрному. Подобные экраны используются в недорогих сотовых телефонах, системах видеонаблюдения и других устройствах.

Каждый пиксель современного дисплея определяется компонентами трёх основных цветов: красного (Red, R), зелёного (Green, G) и синего (Blue, B). В памяти необходимо сохранять информацию о состоянии каждой точки изображения, т. е. о состоянии каждой из её трёх составляющих. Управление яркостью каждой составляющей позволяет влиять на цвет экранной точки.

Цветовой моделью называется правило представления цвета в виде наборов чисел (обычно трёх-четырёх). В компьютерной графике используется несколько видов цветовых моделей.

Рассмотрим цветовую модель, связанную с представлением пикселя составляющими красного, зелёного и синего цветов. Она называется RGB(Red-Green-Blue)-моделью.

В RGB-модели происходит сложение цветов и добавление их к чёрному цвету экрана, поэтому она называется аддитивной (additive). Разные цвета образуются смешиванием трёх основных цветов в разных пропорциях, т. е. с разными яркостями.

Глубина цвета (color depth) — это число бит, используемых для представления каждого пикселя изображения.

В модели RGB каждый цвет может кодироваться тремя байтами (режимTrueColor). Каждый байт отвечает за яркость красной, зеленой и синей составляющей пикселя соответственно. Таким образом, глубина цвета в режиме TrueColor составляет 24 бита. Изображения, пиксели которых закодированы таким способом, называются 24-битными изображениями.

Чтобы указать цвет пикселя в модели RGB, достаточно перечислить разделённые точками яркости каждой составляющей, например: 255.255.0 — код жёлтой точки, записанный при помощи десятичных кодов яркостей. Значения яркости варьируются от 0 («выключено») до 255 («включено на максимум»). Если значения яркостей всех трёх составляющих равны, получим оттенки серого цвета.

Если изменять интенсивность каждого цвета для смешанных цветов, например задать цвет 127.127.0, то мы получим на экране болотный цвет, а не более тёмный оттенок жёлтого цвета, как можно было ожидать. Это связано с тем, что человеческий глаз более чувствителен к зелёному цвету. Чем ниже интенсивности составляющих, тем темнее цвет на экране. И наоборот — чем выше интенсивности цветов, тем светлее оттенки.

Модель CMY использует также три основных цвета: голубой (Cyan), фуксин (Magenta, иногда его называют «пурпурный» или «малиновый») и жёлтый (Yellow). Эти цвета описывают отражённый от белой бумаги свет трёх основных цветов RGB-модели.

Модель CMY является субтрактивной (основанной на вычитании) цветовой моделью. Краситель, нанесённый на белую бумагу, вычитает часть спектра из падающего белого света. Например, на поверхность бумаги нанесли жёлтый (Yellow) краситель. Теперь синий свет, падающий на бумагу, полностью поглощается. Таким образом, жёлтый носитель вычитает синий свет из падающего белого.

При смешении двух субтрактивных составляющих результирующий цвет затемняется, а при смешении всех трёх должен получиться чёрный цвет. Но при использовании реальных полиграфических красок получается не чёрный, а неопределённый тёмный цвет. Поэтому к трём основным цветам CMY-модели добавляют чёрный (Black) и получают новую цветовую модель CMYK.

Цветовая модель CMYK используется в основном в полиграфии при выводе изображения на печать.

Количество различных цветов K и количество битов для их кодирования (глубина цвета) L связаны формулой K = 2 L . При L = 24 бита можно закодировать 2 24 = 16 777 216 различных цветов.

Если известно разрешение экрана (количество точек по горизонтали и вертикали) и глубина цвета, можно определить объём видеопамяти для хранения одного кадра (одной страницы) изображения. Например, при разрешении экрана 640 × 480 и использовании 24 бит на точку объём видеопамяти равен 640 ∙ 480 ∙ 24 = 7 372 800 бит = 900 Кбайт.

Все компьютерные изображения делятся на два больших класса — растровые и векторные. Различие между ними определяет способ хранения изображений в памяти компьютера.

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем громче звук; чем больше частота сигнала (число колебаний в секунду), тем выше тон.

В настоящее время существует два основных способа записи звука —аналоговый (непрерывный) и цифровой (дискретный). Виниловая пластинка является примером аналогового хранения звуковой информации, так как звуковая дорожка изменяет свою форму непрерывно. Компакт-диски являются примером цифрового хранения звуковой информации, так как звуковая дорожка компакт-диска содержит участки с различной отражающей способностью.

Для того чтобы записать звук на какой-нибудь носитель, его нужно преобразовать в электрический сигнал. Это делается с помощью микрофона. Микрофоны имеют мембрану, которая колеблется под воздействием звуковых волн. К мембране присоединена катушка, перемещающаяся синхронно с мембраной в магнитном поле. В катушке возникает переменный электрический ток. Так звуковые волны преобразуются микрофоном в электрический ток переменного напряжения, который представляет собой аналоговый сигнал. Применительно к электрическому сигналу термин «аналоговый» обозначает, что этот сигнал непрерывен по времени и амплитуде (см. рис. 11а).

Для того чтобы компьютер мог обрабатывать звук, непрерывный сигнал должен быть превращён в последовательность электрических импульсов (двоичных нулей и единиц). В процессе кодирования непрерывного звукового сигнала производится его дискретизация по времени. Дискретизация — это преобразование непрерывных сигналов в набор дискретных значений, каждому из которых присваивается число — кодовое слово.

Для дискретизации надо несколько раз в секунду измерять величину аналогового сигнала и кодировать её, например, с помощью 256 значений.

Фактически плоскость, на которой изображён непрерывный сигнал, разбивается вертикальными и горизонтальными линиями (см. рис. 11б), и считается, что график проходит строго через узлы полученной сетки, непрерывная плавная линия заменяется ломаной.


Дискретизация по времени соответствует разбиению вертикальными линиями. Она характеризуется частотой дискретизации. Частота дискретизации звукового компакт-диска 44,1 кГц, DVD — примерно 96 кГц. Это значит, что величина аналогового сигнала измеряется 44 100 и 96 000 раз в секунду соответственно. Если кодируется стереозвук, отдельно кодируются два канала.

Горизонтальное разбиение также важно: чем меньше расстояние между горизонтальными линиями сетки, тем качественнее будет цифровой звук. Количество линий сетки определяет количество уровней звука, поэтому горизонтальное разбиение называется квантованием по уровню. Для кодирования полученных значений уровней используют двоичные числа. Количество используемых для кодирования бит называется глубиной звука. Если глубина звука 8 бит или 16 бит, можно закодировать соответственно 2 8 = 256 уровней или 2 16 = 65 536 уровней сигналов. Это значит, что интервал от нулевого до максимального напряжения аналогового сигнала разбивается на 256 или 65 536 уровней, что соответствует количеству высот звука (тонов).

Преобразование непрерывной звуковой волны в последовательность звуковых импульсов различной амплитуды производится с помощью аналого-цифрового преобразователя (АЦП), размещённого на звуковой плате.

С помощью специальных программных средств (редакторов звукозаписей) открываются широкие возможности по созданию, редактированию и прослушиванию звуковых файлов. Но, как видно из примера, звуковые файлы занимают очень много места в памяти. Поэтому используются методы сжатия звуковых файлов. Качество музыки после сжатия несколько ухудшается, но это практически незаметно, так как при разработке алгоритмов сжатия учитываются законы восприятия музыки человеком.

Ну хорошо. Получили мы какую-то информацию. И что дальше? Что нам с ней делать? Так вот, оказывается, что по своей природе человек старается каким-то образом сохранить значимую для него информацию, передать её своим близким и друзьям, при необходимости как-то её модифицировать или на основании информации из нескольких источников создать новую информацию.

Office workers organizing data storage.jpg

Таким образом, мы получаем несколько основных информационных процессов: хранение, передача и обработка. Далее мы подробно рассмотрим каждый из них.

У нас с тобой информация хранится в головном мозге. До сих пор достоверно, во всех подробностях неизвестно, каким образом функционирует память человека. Совсем по-другому обстоят дела с памятью компьютера.


Информация, как мы с тобой уже говорили, бывает разная. В компьютере может находиться текстовая информация, информация в виде изображений, звука или видео. Для того чтобы такое стало возможным, нужно привести всё разнообразие информации к единой форме, «понятной» компьютеру, то есть закодировать.

Кодирование — это процесс перевода, преобразования информации в необходимую, наиболее подходящую форму для её хранения или передачи.

В памяти компьютера вся информация представлена в виде последовательностей \(0\) и \(1\). Это называется двоичным кодом.

Двоичный код — код, в котором используются только \(0\) и \(1\).

Рассмотрим в качестве примера кодирование цифр от \(0\) до \(9\) в двоичном коде или, как принято говорить, их представление в двоичной системе счисления. В «Большой политехнической энциклопедии» даётся такое определение.

Система счисления² — совокупность приёмов обозначения (записи) чисел и соответствующих правил, применяемых для представления и обработки чисел в ЭВМ.

Допустим, у нас есть \(8\) разрядов для представления цифр. Изобразить их можно в виде такой полоски.

Читайте также: