Назовите основные архитектуры компьютерных систем и кратко определите в чем суть каждой из них

Обновлено: 05.07.2024

4. Функции некоторых узлов компьютера

5. Магистрально-модульный принцип

Рекомендованная литература:

1.Е.В. Михеева// Информационные технологии в профессиональной деятельности: Учебник для студентов учреждений среднего профессионального образования /Е.В. Михеева, О.И. Титова. М.: Издательский центр «Академия», 2019.-416с.

1. Принципы фон Неймана

Архитектура компьютера – это его устройство и принципы взаимодействия его основных элементов – логических узлов, среди которых основными являются процессор, внутренняя память (основная и оперативная), внешняя память и устройства ввода-вывода информации (периферийные) (Рис. 1).

https://static-interneturok.cdnvideo.ru/content/konspekt_image/292280/2bc83380_aafd_0133_15c1_12313c0dade2.jpg

https://static-interneturok.cdnvideo.ru/content/konspekt_image/292281/2caa76d0_aafd_0133_15c2_12313c0dade2.jpg

Рис. 1. Условная модель структуры архитектуры ЭВМ

Принципы, лежащие в основе архитектуры ЭВМ, были сформулированы в 1945 году Джоном фон Нейманом, который развил идеи Чарльза Беббиджа, представлявшего работу компьютера как работу совокупности устройств: обработки, управления, памяти, ввода-вывода.

Принципы фон Неймана.

1. Принцип однородности памяти. Над командами можно выполнять такие же действия, как и над данными.

2. Принцип адресуемости памяти. Основная память структурно состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так чтобы к хранящимся в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен.

3. Принцип последовательного программного управления. Предполагает, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

4. Принцип жесткости архитектуры. Неизменяемость в процессе работы топологии, архитектуры, списка команд.

2. Гарвардская архитектура

Компьютеры, построенные на принципах фон Неймана, имеют классическую архитектуру, но, кроме нее, существуют другие типы архитектуры. Например, Гарвардская. Ее отличительными признаками являются:

· хранилище инструкций и хранилище данных представляют собой разные физические устройства;

· канал инструкций и канал данных также физически разделены.

3. Этапы развития ЭВМ

В истории развития вычислительной техники качественный скачок происходил примерно каждые 10 лет. Такой скачок связывает с появлением нового поколения ЭВМ. Идея делить машины появилась по причине того, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения ее структуры, появления новых возможностей, расширения областей применения и характера использования. Более подробно все этапы развития ЭВМ показаны на Рис. 2. Для того чтобы понять, как и почему одно поколение сменялось другим, необходимо знать смысл таких понятий, как память, быстродействие, степень интеграции и т. д.

https://static-interneturok.cdnvideo.ru/content/konspekt_image/292282/2d926d90_aafd_0133_15c3_12313c0dade2.jpg

Рис. 2. Поколения ЭВМ

Среди компьютеров не классической, не фон Неймановской архитектуры, можно выделить так называемые нейрокомпьютеры. В них моделируется работа клеток головного мозга человека, нейронов, а также некоторых отделов нервной системы, способных к обмену сигналами.

4. Функции некоторых узлов компьютера

Каждый логический узел компьютера выполняет свои функции. Функции процессора (Рис. 3):

- обработка данных (выполнение над ними арифметических и логических операций);

- управление всеми остальными устройствами компьютера.

https://static-interneturok.cdnvideo.ru/content/konspekt_image/292283/2e6d8870_aafd_0133_15c4_12313c0dade2.jpg

Рис. 3. Центральный процессор компьютера

Программа состоит из отдельных команд. Команда включает в себя код операции, адреса операндов (величин, которые участвуют в операции) и адрес результата.

Выполнение команды делится на следующие этапы:

формирование адреса следующей команды;

вычисление адресов операндов;

формирование признака результата;

Не все из этапов присутствуют при выполнении любой команды (зависит от типа команды), однако этапы выборки, декодирования, формирования адреса следующей команды и исполнения операции имеют место всегда. В определенных ситуациях возможны еще два этапа:

· реакция на прерывание.

Оперативная память (Рис. 4) устроена следующим образом:

· прием информации от других устройств;

· передача информации по запросу в другие устройства компьютера

https://static-interneturok.cdnvideo.ru/content/konspekt_image/292284/2f434db0_aafd_0133_15c5_12313c0dade2.jpg

Рис. 4. ОЗУ (Оперативное запоминающее устройство) компьютера

5. Магистрально-модульный принцип

В основе архитектуры современных ЭВМ лежит магистрально-модульный принцип (Рис. 5). Модульный принцип позволяет комплектовать нужную конфигурацию и производить необходимую модернизацию. Он опирается на шинный принцип обмена информацией между модулями. Системная шина или магистраль компьютера включает в себя несколько шин различного назначения. Магистраль включает в себя три многоразрядные шины:

Рис. 5. Магистрально-модульный принцип построения ПК

Шина данных используется для передачи различных данных между устройствами компьютера; шина адреса применяется для адресации пересылаемых данных, то есть для определения их местоположения в памяти или в устройствах ввода/вывода; шина управления включает в себя управляющие сигналы, которые служат для временного согласования работы различных устройств компьютера, для определения направления передачи данных, для определения форматов передаваемых данных и т. д.

Такой принцип справедлив для различных компьютеров, которые можно условно разделить на три группы:

· компактные (ноутбуки, нетбуки и т. д.);

· карманные (смартфоны и пр.).

Контрольное задание: составить опорный конспект лекции.

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Презентацию к данной лекции Вы можете скачать здесь.

Введение

В данной лекции рассмотрим более подробно архитектуру компьютерной системы. Будут рассмотрены следующие вопросы:

  1. функционирование компьютерной системы
  2. архитектура ввода-вывода
  3. структура памяти
  4. иерархия памяти
  5. аппаратная защита памяти
  6. общая архитектура системы.

Архитектура компьютерной системы

Архитектура компьютерной системы.

Компьютерная система имеет модульную структуру. Для каждого устройства ( память , внешние устройства ) в системе имеется специальное устройство управления (иначе говоря, специальный процессор ), называемый контроллером устройства. Все модули ( центральный процессор , память и контроллер памяти, внешние устройства и их контроллеры) соединены между собой системной шиной (system bus),через которую они обмениваются сигналами. Как мы уже знаем, работой каждого контроллера управляет драйвер - специализированная низкоуровневая программа , являющаяся частью ОС.

Вот типичная структура современной настольной или портативной компьютерной системы, с указанием наиболее распространенных типов устройств и их характеристик.

Центральный процессор – устройство, выполняющее команды (instructions) компьютерной системы. В современных компьютерах, как правило, он является многоядерным (см. "Особенности ОС для различных классов компьютерных систем. ОС реального времени. ОС для облачных вычислений" ), т.е. имеет в своем составе от 2 до 32 ядер (копий) процессора, параллельно работающих на общей памяти, либо гибридным (см. "История ОС. Отечественные ОС. Диалекты UNIX. Режимы пакетной обработки, мультипрограммирования, разделения времени" ), состоящим из центрального и графического процессоров. Производительность каждого ядра – 3 – 3.2 GHz . Заметим, что под производительностью понимается в данном случае тактовая частота процессора (ядра) – время выполнения им одной самой простой машинной команды. Однако есть и другие важные факторы, определяющие общую производительность системы, - тактовая частота памяти и системной шины. Фактически итоговую производительность системы можно оценить по самой медленной из этих частей системы (обычно это системная шина ). Эти характеристики необходимо принимать во внимание при выборе и покупке компьютера.

Оперативная (основная) память, или просто память – устройство, хранящее обрабатываемые данные. Объем памяти – 1 – 16 гигабайт и более; меньший объем памяти использовать не рекомендуется, так как это может привести к значительному замедлению системы. Тактовая частота памяти – 667 MHz – 1.5 GHz .

Системная шина – устройство, к которому подсоединены все модули компьютера и через которое они обмениваются сигналами, например, о прерываниях. Тактовая частота шины – 1 – 1.5 GHz (это и есть фактически некая суммарная производительность системы). Обычно используется шина типа PCI (Peripheral Component Interconnect).К ней могут быть подсоединены процессор , память , диски, принтер, модем и другие внешние устройства .

Порты – устройства с разъемами для подключения к компьютеру внешних устройств . Каждый порт имеет свой контроллер (и, соответственно, свой драйвер ).

Чаще всего используется порт USB (Universal Serial Bus),с характерным плоским разъемом, размером порядка 1 см, с изображением трезубца. К портам USB могут подключаться большинство видов устройств, причем для этого не требуется предварительно отключать компьютер и подключаемое устройство, что очень удобно. Имеется несколько стандартов USB с различным быстродействием. Наиболее распространен ныне стандарт USB 2.0, обеспечивающий быстродействие порта 240 – 260 мегабит в секунду. Для сравнения, предыдущий стандарт – USB 1.0 – обеспечивал лишь 10 – 12 мегабит в секунду (как говорится, почувствуйте разницу). Распознать тип USB -порта на Вашем компьютере можно, если вывести информацию об устройствах; в Windows : Мой компьютер / (правая кнопка мыши) Свойства / Оборудование / Диспетчер устройств / Устройства USB. При этом контроллер порта USB 2.0 будет обозначен как расширенный (enhanced).Если это не так, Вам необходимо модернизировать порты USB или сам компьютер , иначе при переписи на флэшку Вам придется ждать в 20 раз дольше (!). Существуют также "переходники" USB 1.0 -> USB 2.0. Новейший стандарт USB 3.0, реализация которого только началась, обеспечит быстродействие не менее 1 гигабита в секунду. К порту USB можно подключать клавиатуру, мышь , принтеры, сканеры, внешние жесткие диски, флэшки и даже TV-тюнеры - устройства для приема телевизионного сигнала с антенны и показа телевизионного изображения на компьютере. Рекомендуется каждое устройство подключать всегда к одному и тому же порту USB , иначе для некоторых устройств (например, того же TV -тюнера) могут возникнуть проблемы.

Порты COM (communication ports) – порты для подключения различных коммуникационных устройств, например, модемов – устройств для выхода в Интернет и передачи информации по аналоговой или цифровой телефонной линии. Более старое название стандарта COM -порта – RS-232. В компьютерах 10-15 – летней давности к COM -порту часто подключалась мышка (сейчас она, разумеется, подключается через USB ). Разъемы COM -портов имеют два формата – "большой" (с 25 контактами - pins ) и "малый" (с 9 контактами). В современных компьютерах часто разъемы COM -порты отсутствуют, но операционная система , по традиции, имитирует наличие в системе виртуальных COM-портов – воображаемых COM -портов, которые ОС как бы инсталлирует в систему при установке, например, драйверов для взаимодействия через Bluetooth или через кабель компьютера с мобильным устройством . При этом физически мобильный телефон или органайзер может быть подключен к порту USB (или соединен с компьютером беспроводной связью), но все равно для взаимодействия с ним ОС использует виртуальный COM - порт , обычно с большим номером (например, 10 или 15). COM - порт иначе называют последовательным портом (serial port),так как, с точки зрения ОС и драйверов, COM - порт – это символьное устройство последовательного действия.

Порт LPT (от line printer ), или параллельный порт – это ныне уже устаревший вид порта для подключения принтера или сканера, с толстым в сечении кабелем и большим разъемом. Все новые модели принтеров и сканеров работают через USB -порты. Однако иногда приходится решать задачу подключения к новому компьютеру старого принтера. Если на компьютере нет LPT-порта , приходится покупать специальный переходник, подключаемый к USB или другим портам. Однако и здесь возможен сюрприз ( по личному опыту автора) – разъем LPT-порта имеет несколько не совместимых друг с другом модификаций. Лучше всего иметь в домашнем "вычислительном центре" один старый компьютер с LPT -портом и через него и подключать старые принтеры, обеспечивая обращение к ним с других компьютеров через домашнюю локальную сеть . Неудобство LPT-порта в том, что он требует предварительно выгрузить ОС и выключить принтер, и только после этого выполнять подсоединение к компьютеру, иначе возможен выход из строя принтера или компьютера. LPT - порт может, как правило, работать и для ввода информации, например, со сканером, но для этого требуется в низкоуровневой утилите Setup , запустив ее при загрузке ОС (обычно – клавишей Del ), установить для LPT-порта специальный режим работы: EPP – Extended Parallel Port.

Порты SCSI и SCSI-устройства. SCSI (Small Computer System Interface ; произносится " скАзи",с ударением на первом слоге) – интерфейс , адаптеры и порты для подключения широкого спектра внешних устройств – жестких дисков, CD-ROM / DVD-ROM , сканеров и др. Стандарт SCSI был предложен в начале 1980-х гг. и получил широкое распространение, благодаря фирме Sun , которая широко использовала его в своих рабочих станциях. Характерной удобной возможностью SCSI является возможность подключения к одному SCSI -порту гирлянды (цепочки) SCSI-устройств (до 10), каждый из которых имеет уникальный для данного соединения SCSI ID – число от 0 до 9, устанавливаемое обычно на задней панели SCSI -устройства. Например, по традиции, SCSI ID сканера обычно равен 4. На одном из концов цепочки – SCSI - порт с контроллером, на другом – терминатор – переключатель на задней панели устройства, устанавливаемый в определенное положение как признак конца SCSI -цепочки. Каждое устройство, кроме последнего, соединено со следующим SCSI -устройством специальным кабелем. SCSI - разъем напоминает разъем порта LPT , однако имеет по бокам специальные металлические захваты ("лапки") для большей надежности подключения. Преимущество SCSI , кроме возможности использования гирлянд устройств, в его быстродействии, а также надежности. Ранние модели SCSI имели скорость обмена информацией до 10-12 мегабит в секунду, сейчас – 240-250 мегабит в секунду. Имеется несколько стандартов SCSI (в том числе – Wide SCSI , Ultra Wide SCSI ), к сожалению, не совместимых по разъемам. Автор до сих пор использует SCSI - сканер 10-летней давности, подключенный к старому компьютеру, и имеет большой положительный опыт использования SCSI -устройств для рабочих станций SPARC .

Порт VGA (Video Graphic Adapter) используется для подключения монитора (дисплея),управляемого графическим контроллером (процессором).

IEEE 1394 (FireWire) – порты для подключения цифровых видеокамер или фотоаппаратов. Характерная особенность – небольшой блестящий плоский разъем шириной 3-5 мм (имеются два его стандарта). Порт работает в дуплексном режиме, т.е. позволяет управлять не только вводом информации с камеры в компьютер , но и установками самой камеры (например, перемоткой ленты) с помощью компьютерной программы (например, Windows Movie Maker). С помощью такого же порта может быть подключен также телевизор , имеющий интерфейс FireWire . Характерной особенностью современных компьютеров является то, что FireWire -порты монтируются прямо на материнской плате (motherboard) – основной печатной плате компьютера, на которой смонтированы процессор и память , - столь большое значение придают производители компьютеров портам для обмена мультимедийной информацией. В таких случаях в технических характеристиках компьютера обычно указывается: "FireWire on board (на борту)".Читателям рекомендуется не путать FireWire с Wi-Fi (см. "История ОС. Отечественные ОС. Диалекты UNIX. Режимы пакетной обработки, мультипрограммирования, разделения времени" ) – стандартом быстрой беспроводной связи; эти сокращения забавно напоминают друг друга из-за привязанности американцев к аббревиатурам в "детском стиле".

HDMI (High Definition Multimedia Interface) – интерфейс и порт . позволяющий подключить к компьютеру телевизор или другое видеооборудование, обеспечивающее наилучшее качество воспроизведения (HD – High Definition ). Разъем HDMI напоминает разъем USB . HDMI - порт входит в комплектацию всех современных портативных компьютеров.

Bluetooth – устройства для беспроводного подключения (с помощью радиосвязи) к компьютеру мобильных телефонов, органайзеров, а также наушников, плейеров и многих других полезных устройств. Удобство Bluetooth в том, что компьютер и телефон остаются соединенными, даже если отойти от компьютера с телефоном на некоторое расстояние (например, в другую комнату), не более 10-15 метров ( Bluetooth 2.0). Новый стандарт Bluetooth 3.0 обеспечивает взаимодействие на расстоянии 200-250 м. Обычно портативные компьютеры комплектуются встроенными адаптерами Bluetooth , либо можно приобрести адаптер Bluetooth , подключаемый через USB . Недостаток Bluetooth – относительно маленькая суммарная скорость передачи информации. Например, при пересылке на компьютер через Bluetooth с мобильного телефона Nokia 3230 цифровой фотографии объемом 500 килобайт требуется ждать порядка 10 – 15 секунд.

Инфракрасный порт (IrDA) – порт для подключения ноутбука к мобильному телефону (или двух ноутбуков друг к другу) через инфракрасную связь . Неудобство портов IrDA – необходимость установки двух соединяемых устройств рядом, на расстоянии 20-30 см друг от друга, без физических препятствий между ними. Скорость передачи информации – 10-12 мегабит в секунду. Современные ноутбуки уже не комплектуются портами IrDA .

Имеются также сетевые устройства – порты и адаптеры – для подключения компьютера к локальной сети.

Архитектура системы–совокупность свойств системы, существенных для пользования.

Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Наиболее распространены следующие архитектурные решения.

Классическая архитектура (архитектура фон Неймана) — одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд — программа. Это однопроцессорный компьютер.


К этому типу архитектуры относится и архитектура персонального компьютера с общей шиной. Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью.

Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления.

Периферийные устройства (принтер и др.) подключаются к аппаратуре компьютера через специальные контроллеры — устройства управления периферийными устройствами.

Контроллер — устройство, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования.

Многопроцессорная архитектура. Наличие в компьютере нескольких процессоров означает, что параллельно может быть организовано много потоков данных и много потоков команд. Таким образом, параллельно могут выполняться несколько фрагментов одной задачи.

Многомашинная вычислительная система. Здесь несколько процессоров, входящих в вычислительную систему, не имеют общей оперативной памяти, а имеют каждый свою (локальную). Каждый компьютер в многомашинной системе имеет классическую архитектуру, и такая система применяется достаточно широко. Однако эффект от применения такой вычислительной системы может быть получен только при решении задач, имеющих очень специальную структуру: она должна разбиваться на столько слабо связанных подзадач, сколько компьютеров в системе.

Преимущество в быстродействии многопроцессорных и многомашинных вычислительных систем перед однопроцессорными очевидно.

Архитектура с параллельными процессорами. Здесь несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе — то есть по одному потоку команд. Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычислительные операции выполняются одновременно на различных однотипных наборах данных.

Самой ранней и наиболее известной является классификация архитектур вычислительных систем, предложенная в 1966 году М.Флинном. Классификация базируется на понятии потока, под которым понимается последовательность элементов, команд или данных, обрабатываемая процессором. На основе числа потоков команд и потоков данных Флинн выделяет четыре класса архитектур: SISD,MISD,SIMD,MIMD.

SISD (single instruction stream / single data stream) – одиночный поток команд и одиночный поток данных. К этому классу относятся последовательные компьютерные системы, которые имеют один центральный процессор, способный обрабатывать только один поток последовательно исполняемых инструкций. В настоящее время практически все высокопроизводительные системы имеют более одного центрального процессора, однако каждый из них выполняет несвязанные потоки инструкций, что делает такие системы комплексами SISD-систем, действующих на разных пространствах данных. Для увеличения скорости обработки команд и скорости выполнения арифметических операций может применяться конвейерная обработка. В случае векторных систем векторный поток данных следует рассматривать как поток из одиночных неделимых векторов. Примерами компьютеров с архитектурой SISD могут служить большинство рабочих станций Compaq, Hewlett-Packard и Sun Microsystems.

MISD (multiple instruction stream / single data stream) – множественный поток команд и одиночный поток данных. Теоретически в этом типе машин множество инструкций должно выполняться над единственным потоком данных. До сих пор ни одной реальной машины, попадающей в данный класс, создано не было. В качестве аналога работы такой системы, по-видимому, можно рассматривать работу банка. С любого терминала можно подать команду и что-то сделать с имеющимся банком данных. Посколькубаза данных одна, а команд много, мы имеем дело с множественным потоком команд и одиночным потоком данных.

SIMD (single instruction stream / multiple data stream) – одиночный поток команд и множественный поток данных. Эти системы обычно имеют большое количество процессоров, от 1024 до 16384, которые могут выполнять одну и ту же инструкцию относительно разных данных в жесткой конфигурации. Единственная инструкция параллельно выполняется над многими элементами данных. Примерами SIMD-машин являются системы CPP DAP, Gamma II и Quadrics Apemille. Другим подклассом SIMD-систем являются векторные компьютеры. Векторные компьютеры манипулируют массивами сходных данных подобно тому, как скалярные машины обрабатывают отдельные элементы таких массивов. Это делается за счет использования специально сконструированных векторных центральных процессоров. Когда данные обрабатываются посредством векторных модулей, результаты могут быть выданы на один, два или три такта частотогенератора (такт частотогенератора является основным временным параметром системы). При работе в векторном режиме векторные процессоры обрабатывают данные практически параллельно, что делает их в несколько раз более быстрыми, чем при работе в скалярном режиме. Примерами систем подобного типа являются, например, компьютеры Hitachi S3600.

MIMD (multiple instruction stream / multiple data stream) – множественный поток команд и множественный поток данных. Эти машины параллельно выполняют несколько потоков инструкций над различными потоками данных. В отличие от упомянутых выше многопроцессорных SISD-машин, команды и данные связаны, потому что они представляют различные части одной и той же задачи. Например, MIMD-системы могут параллельно выполнять множество подзадач с целью сокращения времени выполнения основной задачи. Большое разнообразие попадающих в данный класссистем делает классификацию Флинна не полностью адекватной, поэтому существуют дополненные и расширенные классификации, именованные фамилиями разработчиков.

Классификация архитектур вычислительных систем нужна для того, чтобы понять особенности работы той или иной архитектуры, но она не является достаточно детальной, чтобы на нее можно было опираться при создании МВС, поэтому следует вводить более детальную классификацию, которая связана с различными архитектурами ЭВМ и с используемым оборудованием.

Архитектурой современного компьютера является схематическое изображение его структуры строения с указанием принципов работы комплектующих, входящих в его состав.


Понятие архитектуры компьютера

Архитектура компьютера - это ряд неких правил производства электронной системы вычисления, а также базовые способности и отличительные черты ее технологий.

Архитектурой персонального компьютера обычно пользуются в качестве инструмента для отработки стандартов. Другими словами, компьютерную систему по такому стандарту реально воплотить на основе сформированных схематических решений и технологий.

Под термином «архитектура компьютера» также понимают методологию сборки компьютеров и их составляющих. Таким образом, архитектура, разработанная определённой компанией, является её интеллектуальной собственностью и может быть применена только ею, являясь инструментом её конкурентоспособности. Но, невзирая на это, различными брендами используется общая концепция, объединяющая основные базовые характеристики разных моделей компьютеров, что делает их комплектующие универсальными.

Применение единой архитектуры персональных компьютеров дает возможность фирмам по производству компьютеров тесно взаимодействовать друг с другом для создания и совершенствования различных компонентов и используемых технологий. Совмещение разных концепций в одно архитектурное решение дает возможность распространяться определенным моделям персональных компьютеров на рынке, позволяет различным компаниям спроектировать пакеты программ, которые в любом случае подойдут для персонального компьютера.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Классический вариант архитектуры компьютера

Первоначальный состав архитектуры компьютера был предложен ученым Нейманом, который был известным математиком. Он изложил основные принципы конструирования персональных компьютеров, учитывая их логическую структуру. Эта методология, которую предложил Нейман, взята за основу классической архитектуры персонального компьютера. В его состав должны входить следующие основные элементы:

  • логико-арифметический блок;
  • управленческий блок;
  • блок устройства внешней памяти;
  • блок оперативной памяти;
  • блок ввода-вывода данных.

В соответствии с этой структурой, должен быть соблюден определенный порядок работы элементов компьютера. Изначально производится загрузка информации в память компьютера из программы, что выполняется. Для ввода данных используются внешние устройства компьютера. После этого блок управления переносит эти данные из блока памяти в блок обработки информации. Обработка происходит с помощью различных элементов компьютера.

Современный вариант архитектуры компьютера

Архитектура современного компьютера, хоть и отличается от классического, но основана на его базе. Определяющей отличительной чертой современного персонального компьютера является наличие у него центрального процессора, который по сути есть соединением блока управления и логико-арифметического блога в единую систему.

Ранее такое соединение было практически невозможным из-за массивного размера микросхем. На сегодняшний день развитие позволило повысить степень интеграции микросхем. Стало возможным ранее невозможное, то есть помещение широкого набора функций в небольшую по размеру деталь. Архитектурой сегодняшнего персонального компьютера также предусматривается использование контроллеров. Необходимость их использования вызвана тем, что роль процессора, как основного устройства, что выполняет функцию обмена информацией с внешними устройствами, изменилась. Функция ввода-вывода информации была убрана из процессора, благодаря новым микросхемам. Была произведена разработка различных каналов обмена информацией, а также наборов микросхем, получивших позже название контроллеров.

Не нашли что искали?

Просто напиши и мы поможем

Архитектура IBM

Архитектура персонального компьютера, спроектированная фирмой IBM, по сути являет собой мировой стандарт. Главная её отличительная особенность - это открытая структура. Другими словами, персональные компьютеры, в соответствии с этим стандартом, перестали быть окончательными завершенными брендовыми продуктами.

IBM - это фирма, которая является одной из первых на рынке производства компьютеров, кто выработал общепризнанную архитектуру.

Но она не монополист при этом, то есть фирмы и компании, производящие компьютеры и их составляющие элементы, сами определяют состав сборки персональных компьютеров. В то же время, всегда остается возможным осовременить свой персональный компьютер, заменив комплектующие на более продвинутые. Реализация технологии открытой архитектуры современных компьютеров стала возможной благодаря быстрым темпам прогресса.

Программное обеспечение и его структура в компьютерах на базе архитектуры IBM

Основной особенностью, по которой можно определить, что персональный компьютер относятся к платформе IBM, есть его возможность работать на различных операционных системах. Это является возможным за счет открытой структуры данной архитектуры. В компьютерах с архитектурой IBM используются операционные системы Linux, Windows в различных конфигурациях, а также, помимо того, разные операционные системы, совместимые с аппаратным оснащением персонального компьютера с такой архитектурой.

Платформа IBM позволяет устанавливать не только программы от известных брендов, но и программы малоизвестных составителей, и при этом система не требует согласования этих программ с производителями аппаратных компонентов.

На платформе IBM используется стандартная система ввода-вывода данных, именуемая BIOS, которая входит состав всех персональных компьютеров. Её задачей является обеспечение исполнения основных операций персональных компьютеров, вне зависимости от типа операционной системы, установленной на них. Этот момент также является свойством открытости архитектуры на платформе IBM, авторы системы BIOS являются толерантными к производителям других операционных систем и продуктов. Само явление выпуска системы BIOS в составе различных брендов является свойством открытости платформы IBM.

Читайте также: