Основными элементами сетей wi fi являются

Обновлено: 04.07.2024

Для построения беспроводной сети используются Wi-Fi – wifi адаптеры и wifi маршрутизаторы.
WiFi адаптер представляет собой устройство, подключающееся через слот расширения PCI, USB 2.0. Wi-Fi адаптер выполняет ту же функцию, что и сетевая карта в проводной сети. Он служит для подключения компьютера пользователя к беспроводной сети. Благодаря платформе Centrino все современные ноутбуки имеют встроенные адаптеры Wi-Fi, которые совместимы со многими современными стандартами. Wi-Fi-адаптерами, как правило, снабжены и КПК, смартфоны, что также позволяет подключать их к беспроводным сетям.
Для доступа к беспроводной сети WiFi адаптер может устанавливать связь непосредственно с другими адаптерам. Такая сеть называется беспроводной одноранговой сетью или Ad Hoc (точка-точка). Адаптер может также устанавливать связь через специальное устройство – wifi роутер. Такой режим называется инфраструктурой.
Для выбора способа подключения wifi адаптер должен быть настроен либо на использование Ad Hoc, либо инфраструктурного режима.

WiFi маршрутизатор представляет собой автономный модуль со встроенным микрокомпьютером и приемно-передающим устройством. Через маршрутизатор осуществляется взаимодействие и обмен информацией между беспроводными адаптерами, а также связь с проводным сегментом сети. Таким образом, маршрутизатор играет роль коммутатора.
маршрутизатор имеет сетевой интерфейс (uplink port), при помощи которого эта точка может быть подключена к обычной проводной сети. Через этот же интерфейс может осуществляться и настройка маршрутизатора. Маршрутизатор может использоваться как для подключения к ней клиентов, так и для взаимодействия с другими маршрутизаторами для построения распределенной сети (Wireless Distributed System, WDS). Это режимы беспроводного моста «точка-точка» и «точка-много точек», беспроводный клиент и повторитель.
Доступ к сети обеспечивается путем передачи широковещательных сигналов через эфир. Принимающая станция может получать сигналы в диапазоне работы нескольких передающих станций. Станция-приемник использует идентификатор зоны обслуживания для фильтрации получаемых сигналов и выделения того, который ей нужен.
Зоной обслуживания называются логически сгруппированные устройства, обеспечивающие подключение к беспроводной сети.
Базовая зона обслуживания – это группа станций, связывающихся одна с другой по беспроводной связи. Технология BSS предполагает наличие особой станции, которая называется точкой доступа (access point).

В данной статье в лабораторных работах изучается технология беспроводных локальных сетей по стандарту IEEE 802.11. Стандарт IEEE был разработан институтом инженеров по электротехнике и электронике (Institute of Electrical and Electronic Engineers). Отсюда он и получил своё название. Данный стандарт определяет локальные сети Ethernet; поэтому модель TCP/IP не определяет сети Ethernet в своих запросах на комментарии, а ссылается на документы IEEE Ethernet. Все работы будут выполняться в программе Cisco Packet Tracer.


Концепция беспроводных сетей

Многие пользователи регулярно пользуются услугами и устройствами беспроводных локальных сетей (Wireless LAN — WLAN). На текущий момент времени растёт тенденция использования портативных устройств, таких как ноутбуки, планшеты, смартфоны. Также сейчас активно развиваются концепции «умного дома», большинство устройств которого подключаются «по воздуху». В связи с этим возникла потребность беспроводного подключения во всех людных местах: на работе, дома, в гостинице, в кафе или книжном магазине. С ростом количества беспроводных устройств, которые подключаются через сеть WLAN, выросла популярность беспроводных сетей.
Ниже представлена упрощённая схема работы сети в «Доме книги» на Невском проспекте в Санкт-Петербурге.


Портативные компьютеры посетителей взаимодействуют с устройством WLAN, называемым беспроводной точкой доступа (Access Point). Точка доступа использует радиоканал для отправки и получения фреймов (отдельных, законченных HTML-документов, которые вместе с другими HTML-документами могут быть отображены в окне браузера) от клиентского устройства, например, компьютера. Кроме того, точка доступа подключена к той же сети Ethernet, что и устройства, обеспечивающие работу магазина, следовательно, и покупатели, и сотрудники могут искать информацию на дистанционных веб-сайтах.

Сравнение беспроводных локальных сетей с локальными сетями

Беспроводные локальные сети во многом похожи с локальными сетями, например, оба типа сетей позволяют устройствам взаимодействовать между собой. Для обеих разновидностей сетей работает стандарт IEEE (IEEE 802.3 для сетей Ethernet и 802.11 — для беспроводных сетей). В обоих стандартах описан формат фреймов сети (заголовок и концевик), указано, что заголовок должен иметь длину 6 байтов и содержать МАС-адреса отправителя и получателя. Оба стандарта указывают, как именно устройства в сети должны определять, когда можно передавать фрейм в среду, а когда нельзя.
Основное отличие двух типов сетей состоит в том, что для передачи данных в беспроводных сетях используется технология излучения энергии (или технология излучения радиоволн), а в сетях Ethernet используется передача электрических импульсов по медному кабелю (или импульсов света в оптическом волокне). Для передачи радиоволн не нужна специальная среда работы, обычно говорят, что «связь происходит по воздуху», чтобы подчеркнуть, что никакой физической сети не надо. В действительности любые физические объекты на пути радиосигнала (стены, металлические конструкции и т.п.) являются препятствием, ухудшающим качество радиосигнала.

Стандарты беспроводных локальных сетей

IEEE определяет четыре основных стандарта WLAN 802.11: 802.11a, 802.11b, 802.11g и 802.11n.
Наибольшее влияние на стандарты беспроводных сетей оказали следующие четыре организации (см. таблицу ниже)



Сравнение стандартов WLAN

— DSSS (Direct sequence spread spectrum — Метод прямой последовательности для расширения спектра)
— OFDM (Orthogonal frequency-division multiplexing — мультиплексирование с ортогональным частотным разделением каналов)

Помимо основных стандартов из таблицы существуют дополнительные стандарты, которые указаны ниже.

• 802.11 — изначальный 1 Мбит/с и 2 Мбит/c, 2,4 ГГц и ИК стандарт (1997).
• 802.11c — процедуры операций с мостами; включен в стандарт IEEE 802.1D (2001).
• 802.11d — интернациональные роуминговые расширения (2001).
• 802.11e — улучшения: QoS, пакетный режим (packet bursting) (2005).
• 802.11h — распределённый по спектру 802.11a (5 GHz) для совместимости в Европе (2004).
• 802.11i — улучшенная безопасность (2004).
• 802.11j — расширения для Японии (2004).
• 802.11k — улучшения измерения радиоресурсов.
• 802.11l — зарезервирован.
• 802.11m — поправки и исправления для всей группы стандартов 802.11.
• 802.11o — зарезервирован.
• 802.11p — WAVE — Wireless Access for the Vehicular Environment (беспроводной доступ для среды транспортного средства).
• 802.11q — зарезервирован, иногда его путают с 802.1Q.
• 802.11r — быстрый роуминг.
• 802.11s — ESS Wireless mesh network[en] (Extended Service Set — расширенный набор служб; Mesh Network — многосвязная сеть).
• 802.11u — взаимодействие с не-802 сетями (например, сотовыми).
• 802.11v — управление беспроводными сетями.
• 802.11w — Protected Management Frames (защищенные управляющие фреймы).
• 802.11x — зарезервирован и не будет использоваться. Не нужно путать со стандартом контроля доступа IEEE 802.1X.
• 802.11y — дополнительный стандарт связи, работающий на частотах 3,65-3,70 ГГц. Обеспечивает скорость до 54 Мбит/с на расстоянии до 5000 м на открытом пространстве.
• 802.11ac — новый стандарт IEEE. Скорость передачи данных — до 6,77 Гбит/с для устройств, имеющих 8 антенн. Утверждён в январе 2014 года.
• 802.11ad — новый стандарт с дополнительным диапазоном 60 ГГц (частота не требует лицензирования). Скорость передачи данных — до 7 Гбит/с

Также присутствуют две рекомендации. Буквы при них заглавные.

• 802.11F — Inter-Access Point Protocol (протокол обмена служебной информацией для передачи данных между точками доступа. Данный протокол является рекомендацией, которая описывает необязательное расширение IEEE 802.11, обеспечивающее беспроводную точку доступа для коммуникации между системами разных производителей).
• 802.11T — Wireless Performance Prediction (WPP, предсказание производительности беспроводного оборудования) — методы тестов и измерений (метод представляет собой набор методик, рекомендованных IEEE для тестирования сетей 802.11: способы измерений и обработки результатов, требования, предъявляемые к испытательному оборудованию).

Основные устройства и условные знаки в работе с Wi-Fi

1. Точка доступа – это беспроводной «удлинитель» проводной сети


2. Роутер – это более «умное» устройство, которое не просто принимает и передает данные, но и перераспределяет их согласно различным установленным правилам и выполняет заданные команды.


3. Облако – настроенная часть сети


4. Wi-Fi соединение


5. Прямая линия — кабель (витая пара)

Основные способы использования Wi-Fi

1. Wi-Fi мост – соединение двух точек доступа по Wi-Fi


2. Wi-Fi роутер – подключение всех устройств к роутеру по Wi-Fi (вся сеть подключена беспроводным способом).


3. Wi-Fi точка доступа – подключение части сети для беспроводной работы


Задания лабораторной работы.

1. Создать и настроить второй и третий вариант использования Wi-Fi в Cisco Packet Tracer.
2. Настроить мост между двумя точками доступа (первый вариант использования Wi-Fi) на реальном оборудовании.

Выполнение лабораторной работы.

Задание №1 (вариант сети №2)

1. Создадим на рабочем поле Packet Tracer Wi-Fi маршрутизатор (он же Wi-Fi роутер)


2. Создадим маршрутизатор от провайдера (допустим, название провайдера – «Miry-Mir»). Я выбрал маршрутизатор Cisco 1841.


3. Соединяем их кросс-кабелем (пунктирная линия), так как устройства однотипные (роутеры). Соединяем так: один конец в Router1 в FastEthernet 0/0, а другой конец в Wireless Router0 в разъём Internet, так как Router1 раздаёт нам Интернет.


4. Настроим Интернет роутер (Router1) для работы с сетью. Для этого перейдём в настройки роутера дважды кликнув по нему и перейдём во вкладку CLI (Command Line Interface).

В диалоге «Would you like to enter the initial configuration dialog? [yes/no]:» (Вы хотите войти в начальное диалоговое окно конфигурации) пишем «no».

Пишем следующую последовательность команд:

По традиции, рассмотрим их по порядку.

1) En – enable. Расширенный доступ к конфигурации
2) Conf t – Configuration terminal. Открывает терминал настройки
3) int fa0/0 – interface fastEthernet0/0. Переходим к настройки указанного порта (в нашем случае к fastEthernet0/0)
4) ip address 120.120.0.1 255.255.255.0 – задаётся IP адрес и его маска. Адрес – 120.120.0.1 (допустим, это адрес нам дал провайдер), маска – /24.
5) no shut – no shutdown. Включить, настроенный нами, интерфейс
6) End – завершения настройки.
7) wr mem – write memory. Сохранение конфигураций.


5. Настроим беспроводной роутер (Wireless Router0) для работы с сетью. Для этого, как и в случае с предыдущим роутером, перейдём в настройки роутера дважды кликнув по нему. Во вкладках выберем графический интерфейс пользователя (GUI — graphical user interface). Такой режим будет отображён при вводе в любом браузере адреса роутера.


Выставим следующие настройки:

Internet Connection Type – Static IP
Internet IP Address – 120.120.0.2
Subnet Mask – 255.255.255.0
Default Gateway – 120.120.0.1
Router IP – 192.168.0.1
Subnet Mask (Router IP) – 255.255.255.0
Start IP Address – 192.168.0.100
Maximum numbers of Users – 50

И внизу страницы нажимаем кнопку «Save settings»

Разбор настроек:
Мы выбрали статический IP, так как провайдер выдал нам белый IP адрес (120.120.0.1/24). Путь по умолчанию (Default Gateway) – это адрес роутера от провайдера. Адрес роутера со стороны беспроводных устройств – 192.168.0.1/24. Роутер будет раздавать IP с 100 по 150.

6. Переходим во вкладку Wireless, то есть беспроводное подключение.

Выставляем следующие настройки:

Network Mode – Mixed
Network Name (SSID) – Habr
Radio Band – Auto
Wide Channel – Auto
Standard Channel – 1 – 2.412GHz
SSID Broadcast – Disabled

И внизу страницы нажимаем кнопку «Save settings»

Режим работы роутера мы выбрали смешанный, то есть к нему может подключиться любое устройство, поддерживающее типы роутера (в эмуляторе Cisco Packer Tracer – это g, b и n). Имя сети мы выставили Habr. Ширину канала роутер выберет сам (есть возможность выбрать либо 20, либо 40 мегагерц). Частота в эмуляторе доступна только 2,4GHz её и оставим. Имя сети мы скрыли, то есть устройства не увидят нашей сети Wi-Fi, пока не введут её название.


7. Настроим защиту нашего роутера. Для этого перейдём во вкладку Security и в пункте «Security Mode» выберем WPA2 Personal, так как WPA – уязвимая защита. Выбирать WPA2 Enterprise, тоже, не стоит, так как для ей работы нам потребуется радиус сервер, которым мы не занимались. Алгоритм шифрования оставляем AES и вводим кодовое слово. Я выставил Habrahabr.

8. Добавим 3 устройства, как на схеме (смартфон, ноутбук и компьютер). Затем заменим разъёмы под rj-45 на Wi-Fi антенну (в смартфоне по умолчанию антенна).

9. Во вкладке Config выстави настройки, которые выставлялись на роутере. Данную операцию необходимо проделать на всех устройствах.


10. Переходим на рабочий стол любого компьютера и открываем командную строку.


11. Проверим какие адреса роутер выдал устройствам. Для этого введём команду ipconfig.


Как видно на скриншоте, роутер выдаёт адреса от 192.168.0.100 до 192.168.0.150.

12. Проверяем работоспособность сети из любого устройства командой ping. Пинговать будем 2 адреса – адрес роутера (192.168.0.1) и белый адрес (120.120.0.1), то есть проверим сможет ли устройство выйти в Интернет.


Снова, всё работает.

В итоге у нас получилась Wi-Fi сеть, которая изображена во втором варианте использования


Задание №1 (вариант сети №3)


2. Создадим точку доступа на рабочем поле программы и соединим её со свитчем. При желании точку доступа можно настроить (Port 0 – это физический порт, а Port 1 – беспроводной)


3. Создадим ещё один VLAN для беспроводной точки доступа.

4. Добавим в настройках роутера 0 VLAN 4, а также добавим его в access лист для выхода в интернет.

Так как это мы проделывали в предыдущих лабораторных работах (по VLAN и PAT), подробно останавливаться не буду, но пропишу все команды на устройствах

Роутер (DHCP (Dynamic Host Configuration Protocol — протокол динамической настройки узла). Сетевой протокол, позволяющий компьютерам автоматически получать IP-адрес и другие параметры, необходимые для работы в сети TCP/IP)

Здесь остановлюсь поподробнее, так как ранее мы не встречались с данным параметром.

Роутер (access лист)

Добавим смартфон на рабочую область Packet Tracer и пропингуем ПК, сервер и Интернет, то есть 192.168.2.2, 192.168.3.2, 120.120.53.1.


Как видно, всё работает.

Задание №2 (вариант сети №1)

К сожалению, в Packet Tracer нет возможности создать Wi-Fi мост (он же репитер или повторитель), но мы сделаем это простое действие на реальном оборудовании в графической среде.

Оборудование, на котором будут проводиться настройки – роутер ASUS RT-N10 и, так называемый, репитер TP-LINK TL-WA850RE.

Перейдём к настройке роутера Asus. Для этого откроем браузер и введём адрес роутера (по умолчанию он сам откроется)


Переходим во вкладку «Беспроводная сеть» и выставим настройка как на скринжоте ниже.


Переходим во вкладку «ЛВС» (локальная вычислительная сеть) и выставляем следующие настройки.


Переходим в главную вкладку. Там мы можем посмотреть наш MAC-адрес


Переходим к настройке репитора TP-LINK


Нам автоматически устройство выдаст главное меню и режим быстрой настройки. Нажмём «Выход» и выполним настройку сами.


Переходим во вкладку «Сеть» и выставим следующие настройки.


Переходим во вкладку «Беспроводной режим» и настраиваем входной и выходной поток.


Во вкладке «Профиль» мы видим все созданные нами профили. Нажмём кнопку «Изменить»


Настроим безопасность выходной сети добавлением ключа WPA2.


Переходим в главное меню и выбираем пункт «Подключить» в «Беспроводном соединении». Далее последует настройка моста. Возможно потребуется ввод пароля от роутера Asus.


После нажатия кнопки будет загрузка конфигураций


И вуаля! Всё готово!


Для того, чтобы не путаться к какому устройству подключаться, можно скрыть SSID на роутере Asus


Wi-Fi — это стандарт беспроводного подключения LAN для коммуникации разных устройств, относящийся к набору стандартов IEEE 802.11. Wi-Fi использует радиоволны (так же, как Bluetooth и сотовые сети) для коммуникации устройств в малом масштабе, например: в домах, торговых центрах, на площадях и т. д. Wi-Fi — это самый недорогой и быстрый способ передачи данных на короткие расстояния, включая просмотр веб-страниц, онлайн-игры, видеостриминг и VoIP-вызовы. В 2019 году количество поставленных Wi-Fi устройств превысило 310 млн.

Пользовательский опыт: высокая скорость, низкая задержка, использование в разных условиях на разных типах устройств.

  • Самая используемая технология беспроводной коммуникации.
  • Основное средство доступа к мировому интернет-трафику.
  • Сфера экономики объёмом почти 2 трлн долларов США.
  • Рост: в 2019 году общее количество поставленных устройств достигло 4 млрд, а используемых устройств — 13 млрд [1] .

Но всегда ли нужно покупать новый роутер с новейшими технологиями?

Количество устройств

Рекомендуемый стандарт

Просмотр веб-страниц, работа с почтой, общение по видео или телефонные звонки через интернет

Всё вышеперечисленное + загрузка больших файлов и видеостриминг в прямом эфире

Wi-Fi 5 или Wi-Fi 6

Далее, определите нужную площадь охвата. Окружающая обстановка довольно сильно влияет на покрытие и производительность беспроводных устройств.

В разных домах из-за радиопомех (также известных как затухание сигнала) и разной чувствительности приёма клиентов один и тот же роутер будет работать по-разному. В целом, подключение будет хорошим, если использовать диапазон 2,4 ГГц в пределах 20 метров, а 5 ГГц — в пределах 15 метров. Увеличить охват помогают антенны с коэффициентом высокого усиления, технология Beamforming и другие факторы.

Если скорости или покрытия роутера недостаточно, можно призадуматься об использовании OneMesh или Deco Mesh Wi-Fi.

1) OneMesh TM : недорогая Mesh-сеть с имеющимися устройствами TP-Link
Подробнее об устройствах OneMesh

Если роутер поддерживает функцию Speedtest®, можете запустить тест прямо из веб-интерфейса управления или приложения Tether.

Ниже представлено несколько способов повышения скорости Wi-Fi.

1) Подойдите ближе к Wi-Fi роутеру
От расстояния между роутером и вашим устройством зависит скорость Wi-Fi — чем ближе устройство к роутеру, тем лучше подключение.

2) Найдите хорошее место для Wi-Fi роутера
Для максимального покрытия размещайте Wi-Fi роутер посередине открытого пространства и подальше от электроники, от которой могут быть помехи, такой как микроволновые печи, холодильники и беспроводные телефоны.

3) Обновите прошивку Wi-Fi роутера
В новых прошивках могут быть исправлены надоедливые ошибки, оптимизирована производительность, а иногда даже добавлена поддержка более высокой скорости. Обновить прошивку роутера TP-Link можно в веб-интерфейсе управления роутера или в приложении Tether. Новые прошивки также доступны на официальном сайте TP-Link, откуда их можно бесплатно загрузить.

4) Смените диапазон и канал Wi-Fi
Если роутер двухдиапазонный (например, TP-Link Archer C7), для увеличения скорости и уменьшения помех можно сменить диапазон с 2,4 ГГц на 5 ГГц. Если у роутера только один диапазон 2,4 ГГц, попробуйте выбрать статический канал 1, 6 или 11.

5) Приоритизируйте сетевой трафик при помощи QoS
Онлайн-игры, видеозвонки и онлайн-фильмы сильно нагружают пропускную способность. Если на роутере (например, TP-Link Archer C4000) есть функция QoS (приоритизация), можно приоритизировать интернет‑трафик для конкретных онлайн-задач, таких как онлайн‑игры или стримы. Задачам с высоким приоритетом будет выделена дополнительная пропускная способность, поэтому они будут работать плавно даже при большой загруженности сети.


Усилители сигнала (RE)

Усилители сигнала это отличное решение при недостаточном Wi-Fi покрытии. Разместите усилитель примерно посередине между роутером и зоной Wi-Fi со слабым сигналом. Усилитель будет получать и повторять Wi-Fi сигнал роутера вокруг себя, таким образом расширяя покрытие беспроводной сети.

Для выбора подходящего усилителя для домашней сети перейдите в раздел усилителей сигнала.


Оборудование Powerline (PLC)

Адаптеры Powerline используют электропроводку для передачи данных и создания интернет-подключения там, где есть розетка. Это удобно, потому что для увеличения покрытия не нужно прокладывать по всему дому кучу кабелей Ethernet — просто подключите адаптеры Powerline в розетку, а затем подключите их к роутеру. Это создаст высокоскоростную сеть (почти такую же, как проводную), поскольку стены и другие преграды не смогут помешать, как это происходит с усилителями сигнала.

Для выбора подходящего оборудования Powerline для домашней сети перейдите в раздел оборудования Powerline.

Однако надо не забывать, что при этом оба адаптера Powerline должны находиться в одной электрической цепи. Если в доме несколько электрических цепей, нужно убедиться, что обе розетки, в которые вы подключаете адаптеры Powerline, относятся к одной и той же электрической цепи.


Mesh Wi-Fi

Mesh Wi-Fi это Wi-Fi система, созданная для устранения зон со слабым сигналом и обеспечения непрерывного Wi-Fi на каждом квадратном сантиметре дома. Одно из главных преимуществ заключается в том, что у всех устройств общее имя сети, поэтому не надо вручную переподключать свои устройства в поисках более мощного сигнала, как это происходит с точками доступа или адаптерами Powerline. При перемещении по дому телефон или планшет автоматически подключится к устройству Deco с самой высокой скоростью, благодаря чему образуется по-настоящему бесшовная сеть Wi-Fi.

Для выбора подходящего оборудования Mesh Wi-Fi перейдите в раздел оборудования Mesh Wi-Fi.

Wi-Fi (вай-фай) – это самая популярная, доступная и востребованная технология передачи данных в беспроводных компьютерных сетях. При наличии подключения к интернету технология Wi-Fi позволяет распределить интернет-трафик между максимально возможным числом пользователей и/или устройств. В нашей статье мы рассмотрим самые частые вопросы о вай-фай, интернете и беспроводной связи.

Wifi описание

Для чего нужен вайфай

Начнем с определения. Wi-Fi – это технология беспроводной передачи данных в рамках локальной сети, осуществляемой устройствами на основе стандарта IEEE 802.11. В текущем современном мире технология передачи данных окутывает всё большее число устройств: ТВ, телефон, пылесос, холодильник и даже чайник может уже использовать технологию Wi-Fi.


Диапазон 2.4 ГГц

В этот диапазон входят 13 частот, от 2401 МГц до 2461 МГц, и сравнивать его можно с диапазоном 5 ГГц, на котором работают сети поколения Wi-Fi 5 и Wi-Fi 6. Диапазон 2.4 Ггц:

  • охватывает большую территорию;
  • имеет более низкие скорость и коэффициент затухания;
  • распространяется дальше;
  • более загружен ввиду популярности;
  • имеет меньшее число каналов (13 вместо 17).


Диапазон 5 ГГц

Указанный диапазон используется сетями Wi-Fi 5 и Wi-Fi 6. Его отличают:

Ширина канала Wi-Fi

Говоря о вайфай, часто обсуждают ширину канала. Для Wi-Fi 4 стандартная ширина составляет 20 МГц, но может доходить и до 40 МГц. Простое определение гласит, что ширина – это пропускная способность канала, поэтому логично предположить, что при 40 МГц интернет будет «летать». Однако это верно, только если у нас нет соседей, поскольку при ширине в 20 МГц имеются три независимых канала, благодаря которым можно «развести» различные подключенные устройства. При ширине 40 МГц это невозможно, а значит, будут помехи, которые отрицательно повлияют на итоговую скорость.

Радиус действия

Как и с шириной, радиус действия сети зависит от ее стандарта. Для IEEE 802.11n, при максимальной скорости 600 Мбит/с, максимальный радиус действия в помещении составляет 70 м, а на открытой местности – 250 м.

уровень сигнала

Как подключить устройство к Wi-Fi

Теперь давайте разберемся, как подключить к беспроводной сети различные устройства.

Как подключить беспроводной интернет на компьютере и ноутбуке

Для подключения к Wi-Fi сети с компьютера или ноутбука понадобится роутер. Ноутбуки обычно оснащены встроенной сетевой картой, а вот компьютеру нужно либо обновлять сетевую плату (дорого), либо купить Wi-Fi адаптер.

Порядок подключения:

  • подключите роутер к интернету при помощи Ethernet-кабеля;
  • включите Wi-Fi в настройках роутера;
  • в панели задач Windows кликните на «Беспроводные сети»;
  • выберите сеть, к которой хотите подключиться.
  • введите пароль от сети и дождитесь подключения.
Можно отметить такую сеть галочкой и подключаться в дальнейшем по умолчанию.

Как им пользоваться на смартфоне

Для того чтобы подключиться к Wi-Fi на смартфоне, необходимо:

  • смахнуть экран вниз (Android) или вверх (iOS);
  • нажать на значок «Беспроводные сети», чтобы активировать сохраненное подключение.

Если вы еще ни разу не подключались к такой сети:

  • пройдите в «Настройки» и выберите подключение к Wi-Fi;
  • в списке беспроводных сетей выберите ту, к которой хотите подключиться;
  • при необходимости, если сеть защищена, введите пароль.


Обязательно отметьте возможность подключаться по умолчанию, если вы планируете и дальше пользоваться этой сетью.

От чего зависит скорость

Скорость соединения зависит от ряда факторов, как со стороны провайдера и пользователя, так и со стороны самой технологии. Перечислим некоторые из них.

Со стороны провайдера:

  • загруженность каналов;
  • качество оборудования.

Со стороны пользователя:

  • качество оборудования (роутер, сетевой адаптер) и коммуникаций (интернет-розетки);
  • расстояние от роутера до устройства;
  • параметры подключаемого устройства.

Оптимальное расположение роутера

Интересно!

Если новейшие гаджеты поддерживают «старые» конфигурации сети, то вот старое, хоть и работающее, устройство может и не «подружиться» с продвинутой сетью.
  • программное обеспечение (например, антивирус или торрент)
  • вредоносные программы.

Со стороны беспроводного интернета:

  • Мощность и загруженность серверов;
  • Качество линий связи за пределами сети провайдера;
  • Помехи от других вай фай сетей, бытовых приборов и местоположения роутера относительно беспроводной сети.

Преимущества и недостатки Wi-Fi

Как и любая технология, вайфай имеет плюсы и минусы.

Плюсы:

  • Беспроводная сеть (можно не спотыкаться о провода);
  • Покрытия в пределах 70 м вполне достаточно для домашних нужд;
  • Одна точка доступа – много устройств;
  • Более высокая скорость;
  • Если подключать смартфон к вайфай, батарея телефона прослужит дольше;
  • Безопасные новейшие протоколы.

Минусы:

  • Задержки в сети (актуально для геймеров);
  • Ограничение скорости Wi-Fi – снижение скорости у пользователя;
  • «Естественное» глушение сигнала в домашних условиях;
  • Помехи с другими устройствами на частоте 2.4 МГц;
  • Плохая безопасность устаревших протоколов защиты.

Как настроить сеть вай фай в доме

Роутер, или маршрутизатор – главный способ настроить сеть вай фай у вас дома. Ниже рассмотрим все аспекты выбора роутера и задачи, которые он будет выполнять.


Подключение роутера

Для начала сам роутер необходимо подключить к сети интернет. Это делается при помощи специальных кабелей, которые могут подсоединить роутер не только к компьютеру или ноутбуку, но игровой консоли или ТВ-приставке.


Как зайти в роутер

Зайдя в роутер, можно сменить пароль, название сети, настроить роутер или изменить его настройки. Для этого требуется открыть в браузере компьютера или телефона специальный цифровой IP-адрес и ввести указанные на задней панели роутера логин и пароль. Зачастую это адреса 192.168.1.1, или 192.168.0.1 и совпадающие логин и пароль admin.


Важно!

Логин и пароль роутера – это не данные для подключения к сети Wi-Fi!

Настройка Wi-Fi при первом включении

При первом подключении Wi-Fi необходимо:

  • все так же в настройках роутера установить подключение к интернету при помощи логина и пароля провайдера интернет-услуг, тип нужного подключения – PPPoE;
  • далее, отметить в настройках роутера опцию беспроводного подключения;
  • задать уникальное имя для своей сети.

Интересно!

Можно оставить название сети «MGTS_GPON_5752», можно переименовать в «Home», а можно придумать и свой, экзотичный, вариант.

В дальнейшем именно к этой сети будет подключен роутер и все другие устройства.

Индикаторы роутера полезнейшая информация для настройки и использования

На роутере есть несколько индикаторов, которые передают ценную информацию о состоянии устройства и подключения:


  • PWR (Power) – питание – активен
  • SYS (LOS) – параметры – мигает
  • WLAN – интернет (Wi-Fi) – мигает
  • LAN 1-4 – порты сети – мигает
  • WAN (PON) – интернет – мигает
  • QSS (WPS) – подключение к Wi-Fi сети – активен.

Обобщая, можно сказать, что, если функция работает, то индикатор или горит зеленым светом, или мигает. Если функция не работает, индикатор не мигает, либо, как в случае с WAN, горит оранжевым светом.

Основные настройки сети Wi-Fi

К основным настройкам беспроводной сети относятся:

  • Название (SSID) – упомянутое выше простое или уникальное название;
  • Защита – только WPA/WPA2;
  • ПарольPSK – 8 символов или больше;
  • Канал – также упомянутые выше 20 МГц или 40 МГц, но в большинстве случаев следует указать Auto, а роутер сам выберет подходящий канал.

Алгоритмы защиты сети Wi-Fi

Для защиты сети Wi-Fi от взлома выделяют три основных алгоритма:

  • настройка клиента и точки доступа на использование одного SSID, который не выбирается по умолчанию;
  • разрешение точке доступа связывать только с теми клиентами, чьи MAC-адреса знает точка доступа;
  • настройка клиентов на аутентификацию в точке доступа и шифрование трафика.

Большинство пользователей выбирают первый вариант. Однако стоит заметить, что такие предосторожности не всегда целесообразны и могут создать дополнительные сложности при эксплуатации Wi-Fi сети. Подробнее о защите беспроводных сетей можно прочитать здесь.


Сколько нужно антенн

Обычно у роутера антенны либо встроенные, либо внешние. В зависимости от модели и функционала их может быть одна или четыре. Вид и число антенн улучшает качество беспроводного подключения, но никак не влияет на стандарт Wi-Fi или количество интернет-трафика согласно тарифному плану.

Главное отличие роутеров с точки зрения вида антенн в следующем:

  • Роутер со встроенной антенной более компактный, но и сигнал менее мощный;
  • Роутер с одной или несколькими внешними антеннами передает более стабильный и сильный сигнал, однако требует больше места. Иногда к такому роутеру можно подключать дополнительные антенны.

Роутеры по типу подключения

По типу подключения роутеры делятся на проводные и беспроводные.

  • Проводные роутеры имеют только порты WAN/LAN и не могут использоваться в качестве точки доступа для Wi-Fi сети. Однако именно проводные роутеры оптимально подходят, когда идет большая нагрузка на интернет, например, для игровых консолей и стриминговых платформ.
  • Беспроводные роутеры обладают антенной, которая как раз и раздает интернет по сети Wi-Fi. Порты WAN/LAN также присутствуют. Такие роутеры подходят для рутинных, незатратных действий, как, например, передать фото в интернете.

Роутеры по типам портов и разъемов

По типам портов и разъемов роутеры делятся на 5 типов:

ADSL-роутеры: принимают сигнал по телефонному кабелю. Имеют крайне низкую по современным параметрам скорость приема и передачи данных.

Ethernet-роутеры: имеют порт WAN и различаются по протоколу IEEE. Самый распространенный сегодня тип.

3G/4G роутеры: используют пакетную передачу данных. Качество работы зависит от покрытия, которое предоставляет оператор.

Роутеры с подключением к оптическим сетям PON: в качестве WAN-порта здесь используется оптический пигтейл SC. Их главный недостаток – недостаточная защита от перехвата данных.

Универсальные роутеры: соединяют несколько технологий, обычно ADSL + Ethernet, либо Ethernet + 3G. Также оснащены дополнительными портами и встроенными модулями связи.

Выбор стандарта сети Wi-Fi

Сегодня большинство роутеров рассчитаны на работу со стандартами Wi-Fi 4, Wi-Fi 5 и Wi-Fi 6. При выборе модели роутера следует помнить, что стандарты имеют обратную совместимость. Иначе говоря, роутер с характеристикой более нового стандарта (5 или 6) будет раздавать стандарт Wi-Fi 4, а вот роутер Wi-Fi 4 может и не настроиться на новейший стандарт.

Посмотреть видео, что такое Wi-Fi и как он работает

И напоследок – видео для чайников для пущей наглядности. Теперь вы точно запомните, что такое Wi-Fi и как он работает.

Обзор технологии Wi-Fi

Wi-Fi остается одной из наиболее перспективных технологий беспроводной связи. Она стремительно развивается и принимает в себя новые беспроводные решения, позволяющие увеличить скорость передачи данных. Даже с развитием LTE-сетей, Wi-Fi не остается в стороне, а скорее получает дополнительную ветку развития, разгружая трафик в наиболее востребованных участках сети.

Wi-Fi для применения внутри помещений в рамках установленной законодательством мощности излучения не требует получения разрешения на использование частот. Кроме того, организация Wi-Fi-сети в условиях дома или небольшого офиса довольно проста, благодаря чему, зачастую, можно обойтись своими силами. Тем не менее, при проектировании сети с высокими требованиями к качеству связи, плотности покрытия и пропускной способности, как правило, прибегают к помощи специалистов. Развертывание Wi-Fi-сети занимает на порядок меньше времени по сравнению с прокладкой СКС до рабочих мест. Именно за простоту настройки, развертывания, относительную дешевизну и удобство, Wi-Fi по праву считают одной из перспективных и активно развивающихся технологий.

Требования к Wi-Fi-оборудованию описаны в наборе стандартов IEEE 802.11. С выпуском каждого нового стандарта, к 802.11 добавлялась буква, например, 802.11a/b/n и т.д. На сегодняшний день насчитывается несколько десятков разновидностей стандартов Wi-Fi. Не все стандарты были направлены на увеличение скорости передачи данных, некоторые из них затрагивают вопросы безопасности (например, 802.11i), другие включали описание работы роуминга (802.11r) и т.д.


При этом следует отметить, что не все перечисленные стандарты Wi-Fi служат для организации беспроводных локальных сетей как привычные нам роутеры, работающие в диапазонах 2.4 и 5 ГГц (стандарты 802.11 a/b/g/n/ac). Такие стандарты как 802.11ad и 802.11ay изначально планировалось выпустить для передачи данных на небольшие расстояния – от 1 до 10 метров – и, в перспективе, использовать их для организации высокоскоростных интерфейсов передачи данных, например для подключения мониторов к ПК и передачи изображения в формате 8K. Однако, в результате развития 5G-сетей и переходом в диапазон до 100 ГГц, устройства с поддержкой 802.11ad стали применяться для организации радиодоступа вне помещений (но для таких частот должны быть обеспечены условия прямой видимости).

Таким образом, у Wi-Fi большое будущее, которое позволит использовать данную технологию в совершенно разных приложениях. Несомненно, данная технология найдет свое место как в 5G-сетях, IoT-решениях, так и в VR-приложениях:

Обзор технологии Wi-Fi

Применимость различных стандартов Wi-Fi

Диапазон 2.4 ГГц

Большинство обычных клиентских маршрутизаторов и бытовых Wi-Fi-устройств работает в двух частотных диапазонах: 2,4 ГГц (802.11 b/g/n) и 5 ГГц (802.11 a/n/ac).

В диапазоне 2,4 ГГц стандартами определено 14 каналов. Некоторые из них могут быть недоступны в ряде стран (например, 14 канал разрешен для использования только в Японии). Каналы с номерами 1, 6 и 11 считаются полностью не пересекающимися по частотам и называются, как ни странно, "непересекающимися". Но на деле всегда остается "неучтенка", и если точки доступа расположены достаточно близко друг к другу, то и непересекающиеся каналы становятся пересекающимися:

Обзор технологии Wi-Fi

Каждый канал занимает ширину в 20 МГц. В некоторых случаях, стандартами разрешено использовать ширину канала равную 40 МГц (см. раздел Агрегация каналов). Номера каналов и их центральные частоты приведены на рисунке.

Обзор технологии Wi-Fi

Каналы Wi-Fi в диапазоне 2.4 ГГц

Использование непересекающихся каналов удобно в том случае, когда требуется организовать равномерное радиопокрытие таким образом, чтобы рядом расположенное оборудование не мешало друг другу, увеличивая тем самым стабильность и качество связи:

Обзор технологии Wi-Fi

Одним из недостатков диапазона 2,4 ГГц является его высокая загруженность и малое количество каналов. Помехи для Wi-Fi-сети могут создавать не только другие Wi-Fi-устройства и точки доступа, но и Bluetooth-устройства, работающие в этом же частотном диапазоне. Даже обычная бытовая СВЧ-печь способна очень сильно влиять на качество соединения в диапазоне 2,4 ГГц. Для минимизации взаимных влияний мощность Wi-Fi-передатчиков строго ограничена и регламентирована. Использование мощного передатчика требует получения разрешения в радиочастотном центре.

Более перспективным, с точки зрения меньшей загруженности и наличия большего числа каналов, является частотный диапазон 5 ГГц.

Диапазон 5 ГГц

В частотном диапазоне 5 ГГц доступно 23 неперекрывающихся канала по 20 МГц. Можно даже отметить, что 5-гигагерцовый диапазон состоит только из неперекрывающихся каналов, так как на такой частоте перекрытие создает существенные коллизии. Здесь уже можно использовать не только ширину 20/40 МГц, но и каналы шириной в 80 МГц (основной + вспомогательный). Ниже изображено расположение каналов в диапазоне 5 ГГц:

Обзор технологии Wi-Fi

  • Первый блок (Lower, нижний) каналов UNII-1 лежит в диапазоне частот от 5180 до 5240. При этом доступные непересекающиеся каналы по 20 МГц: 36, 40, 44, 48;
  • Второй блок (Middle, средний) UNII-2 лежит в диапазоне частот от 5260 до 5320. При этом доступные непересекающиеся каналы по 20 МГц: 52 56 60 64;
  • Третий блок (Extended, расширенный) UNII-2 лежит в диапазоне частот от 5500 до 5700. При этом доступные непересекающиеся каналы по 20 МГц: 100 104 108 112 116 120 124 128 132 136 140;
  • Четвертый блок UNII-3 - частота от 5745 до 5805, доступные непересекающиеся каналы по 20 МГц: 149 153 157 161;
  • Отдельно существуют 3 группы каналов: Japan (каналы: 8, 12, 16; диапазон 5040-5080) US Public Safety (каналы: 184, 188, 192, 196; диапазон 4920-4980) ISM (канал 165, частота 5825);
  • Стандартом 802.11ac предусмотрено использование групп UNII-1, UNII-2 (обе) и UNII-3, т.е. суммарно 23 канала. Благодаря чему, при использовании ширины канала в 80 МГц, доступно 5 непересекающихся каналов. Этой же спецификацией предусмотрена возможность объединения 2-х каналов по 80 МГц, что в итоге дает 160 МГц.

Carrier Aggregation - агрегация каналов

Под агрегацией следует понимать логическое объединение нескольких параллельных каналов передачи в один. Стандартами допускается использование полосы пропускания 40 МГц в диапазоне 2,4 ГГц. В диапазоне 5 ГГц ширина каналов может быть увеличена до 40, 80, 160 МГц с занятием частот соседних каналов для увеличения пропускной способности сети:

Обзор технологии Wi-Fi

Это и называется агрегированием. В случае использования широкой полосы пропускания, стабильность соединения может снижаться в силу взаимных влияний различных сетей друг на друга. Однако, несомненно, увеличение ширины канала позволяет многократно увеличить скорость передачи данных.

В этом разделе приводится описание технологий, которые нашли применение в беспроводных сетях стандарта 802.11 и позволили многократно увеличить скорости передачи данных – MIMO и Beamforming.

MIMO - Multiple Input Multiple Output

Технология MIMO оказала большое влияние на развитие Wi-Fi. Буквально несколько лет назад никто не думал о том, что будут существовать беспроводные устройства с пропускной способностью в сотни мегабит в секунду. Возникновение новых скоростных стандартов связи, в том числе 802.11n произошло во многом благодаря MIMO.

Наиболее простое определение, которое можно дать технологии MIMO – это многопотоковая передача данных. Аббревиатура переводится с английского как "несколько входов, несколько выходов". В отличие от своего "родителя" (Single Input / Single Output), в устройствах с поддержкой MIMO сигнал передается на одном радиоканале с помощью нескольких приемников и передатчиков.

Одной из основных характеристик технологии MIMO является количество антенн, работающих на прием и передачу. Обозначается NxM, где N - количество передающих антенн, а M - приемных. Например, MIMO типа 3х2 означает, что радиосистема имеет 3 передающие антенны и 2 принимающие. Кроме того, в MIMO применяется пространственное мультиплексирование. Иначе говоря, технология одновременной передачи данных нескольких пакетов по одному каналу. Благодаря такому "уплотнению" канала, его пропускную способность можно увеличить в два и более раз.

Как только технология беспроводной передачи данных Wi-Fi начала пользоваться большим спросом, быстро стали возрастать и требования к скорости. Впервые технология MIMO появилась в стандарте 802.11n, который дал возможность увеличить канальную скорость беспроводного соединения с 54 Мбит/сек до 600 Мбит/сек. Стандарт 802.11n дает возможность применять как стандартную ширину канала в 20 МГц, так и использовать широкополосную линию в 40 МГц. Таким образом можно получить в несколько раз увеличенную пропускную способность каналов, которые используются в данный момент. С помощью объединения MIMO с более широкой полосой пропускания канала, получается достаточно мощный способ повышения физической скорости передачи.

Типы MIMO

Для различного количества пользователей, между которыми в одно и тоже время идет передача данных, существует два типа технологий:

SU-MIMO – система для одного пользователя (Single User - SU). Используется, когда в определенный промежуток времени потоки данных идут только к одному пользователю. Технология предоставляет многоканальные входные и выходные потоки одному устройству. Пока Wi-Fi-устройство адресата получает или принимает данные, другие пользователи находятся в ожидании.

MU-MIMO – система для нескольких пользователей (Multi User - MU). Позволяет нескольким пользователям принимать одновременно потоки данных. Она опирается на технологии SU-MIMO, но дает одновременную связь точки доступа с несколькими устройствами. MU-MIMO создает до 4 одновременных подключений, передавая по 4 потока данных одновременно. В результате пользователи не делят между собой соединение и улучшается производительность сети.

Обзор технологии Wi-Fi

Разница между технологиями SU и MU-MIMO

Особенности технологии

До появления стандарта 802.11ax, технология MU-MIMO работала только в диапазоне 5 ГГц. С появлением 802.11ax MU-MIMO стала доступной и на 2.4 ГГц. В продаже сетевого оборудования появляется все больше двухдиапазонных маршрутизаторов с поддержкой данной технологии.

MU-MIMO использует технологию Beamforming. Благодаря ей, сигналы распространяются не хаотично, а в направлении беспроводного устройства. Эта направленность позволяет увеличить дальность сигнала и повысить скорость передачи данных.

К сожалению, невозможно обслуживать бесконечное количество пользователей и потоков данных. Например, роутер с поддержкой трех потоков может одновременно работать только с тремя Wi-Fi-устройствами без задержек.

Чтобы пользоваться преимуществами метода, принимающее устройство должно иметь поддержку MU-MIMO. В данном случае, достаточно одной антенны и пользовательское устройство примет поток данных от роутера.

Компании, выпускающие смартфоны, роутеры, точки доступа и другие сетевые устройства уже заложили в них поддержку технологии. Как гарантируют производители, во многих современных устройствах, они учли также аппаратные требования для поддержки MU-MIMO, и теперь достаточно обновить ПО на своем гаджете, и пользователь получит поддержку данной технологии.

Сигнал, который передается с помощью архитектуры MU-MIMO, сложно перехватить, что повышает безопасность беспроводной сети.

На первых этапах развития технологии существовала трудность совмещения устройств, работающих с поддержкой MIMO и без нее. Однако на данный момент это уже не так актуально – практически каждый современный производитель беспроводного оборудования использует ее в своих устройствах. Также, одной из проблем при появлении технологии передачи данных с помощью нескольких приемников и нескольких передатчиков, являлась цена устройства.

Beamforming - автоматическое формирование луча

В последних моделях Wi-Fi-маршрутизаторов все чаще можно увидеть такую "опцию" как Beamforming. Beamforming, согласно техническим спецификациям современных Wi-Fi-устройств, это технология, позволяющая направлять излучаемый сигнал не во все стороны, как это происходит обычно, а "концентрированно" в сторону абонента. Это увеличивает отношение сигнал/шум, и как следствие - скорость передачи данных:

Обзор технологии Wi-Fi

Особенно это актуально в местах, где много различных перекрытий сигналов и множество других источников радиопомех, работающих в нелицензируемом диапазоне частот 2.4 и 5 ГГц.

Следует отметить, что главной сложностью при внедрении beamforming в устройства является сложность настройки антенн в сочетании с грамотным программным обеспечением. В недорогих моделях роутеров зачастую наличие beamforming является лишь маркетинговым ходом. Сильно повысить стабильность приема в отдаленных участках помещения не получится. Beamforming стал частью стандарта, начиная с 802.11ac, во втором поколении этих устройств (wave 2).

MCS в Wi-Fi сетях

  • Тип модуляции. Модуляция - это метод передачи данных. Чем сложнее модуляция, тем выше скорость передачи данных. Более сложные модуляции требуют хороших условий передачи, низкого уровня помех и отсутствия препятствий на пути прохождения сигнала.
  • Скорость кодирования информации. Этот параметр указывает на то, какая часть потока данных фактически используется для передачи "полезной" информации. Это значение выражается в виде дроби, например, 5/6 или 83,3% используемого потока данных.
  • Количество пространственных потоков. Используя технологию MIMO, в настоящее время возможно запускать до 8 пространственных потоков. Фактически это позволяет использовать одну и ту же область частотного пространства для передачи и приема нескольких потоков данных.
  • Ширина канала передачи. Это значение определяет, какая ширина канала будет использована для передачи. Ширина канала может быть максимум 40 МГц для диапазона 2.4 ГГц и 160 МГц для диапазона 5 ГГц. В диапазоне 60 ГГц ширина канала может составлять до 2 ГГц (стандарт 802.11ad/ay).
  • Длительность защитного интервала. Защитный интервал фактически представляет собой очень короткую паузу между передачей пакетов, чтобы можно было игнорировать любую ложную информацию. Более длительные интервалы защиты обеспечивают более надежную беспроводную связь.


Чем выше индекс MCS, тем "сложнее" вышеперечисленные параметры передачи. Значение индексов MCS для различных стандартов Wi-Fi приводится в таблице ниже. В расширенной виде с таблицей MCS можно ознакомиться по ссылке.

Читайте также: