Подключение приборов к компьютеру

Обновлено: 05.07.2024

В системе «Орион» интерфейс RS-232 используется для подключения пульта контроля и управления «С2000»/«С2000М» к СОМ-порту компьютера с установленным на нем АРМ «Орион»/«Орион Про».

В системе «Орион» интерфейс RS-232 используется для подключения пульта контроля и управления «С2000М» к СОМ-порту компьютера с установленным на нем АРМ «Орион»/«Орион Про».

В системах, допускающих работу под управлением АРМ «Орион»/«Орион Про» без резервирования пультом «С2000»/«С2000М» (например, в системах охранной сигнализации или контроля доступа), интерфейс RS-232 используется для подключения преобразователя интерфейса «С2000-ПИ» или «ПИ-ГР» к СОМ-порту компьютера. К преобразователю, в свою очередь, подключаются приборы системы «Орион» по интерфейсу RS-485.

RS-232 имеет следующие ограничения: максимальная длина – 15 м и соединение только типа «точка-точка», т.е. непосредственно подключить несколько пультов к одному СОМ-порту нельзя.

В простейшем случае к компьютеру подключается только один пульт. Эта схема приведена на рис.

Схема подключения пульта «С2000»/ «С2000М» к персональному компьютеру с АРМ «Орион Про»

Недостатком такой схемы является отсутствие гальванической изоляции между приборами и компьютером. Схема подключения пульта к компьютеру с использованием повторителя интерфейсов «С2000-ПИ», обеспечивающего гальваническую изоляцию, приведена на рис.

Схема подключения пультов «С2000»/ «С2000М» к персональному компьютеру с АРМ «Орион Про» с гальванической изоляцией интерфейса RS-485

ВНИМАНИЕ! Во избежание гальванической связи между компьютером и приборами пульт, повторитель и приборы нельзя подключать к одному источнику питания. Питание на пульт и «С2000-ПИ» должно подаваться от отдельного источника. Пульту должен быть присвоен сетевой адрес, и установлен режим «КОМПЬЮТЕР» для работы по интерфейсу RS-232.

С помощью преобразователей интерфейсов RS-232/RS-485 с автоматическим переключением приема/передачи (например, «С2000-ПИ») можно подключить несколько пультов к одному СОМ-порту компьютера. Один преобразователь следует подключить к СОМ-порту компьютера, остальные - к пультам по интерфейсу RS-232, а затем объединить преобразователи по интерфейсу RS-485 (см. схему на рис. ниже). Кроме того, преобразователи обеспечат гальваническую изоляцию компьютера от пультов и приборов.

Схема подключения нескольких пультов к персональному компьютеру с АРМ «Орион Про»

Для работы по интерфейсу RS-232 каждому пульту нужно задать уникальный сетевой адрес и режим «КОМПЬЮТЕР».

При использовании АРМ «Орион» к одному СОМ-порту можно подключить до 127 устройств. Либо это будет один пульт «С2000»/ «С2000М» и до 126 приборов, схема как на рис. выше. Либо это будет несколько пультов с подключёнными приборами, как на рис. При этом общее количество и пультов, и приборов не должно превышать 127. В такой системе все приборы и пульты должны иметь уникальные сетевые адреса от 1 до 127, т.е. адреса приборов, подключенных к разным пультам, не должны пересекаться.

При использовании АРМ «Орион Про» к каждому COM-порту можно подключить либо до 127 приборов (приборы подключаются через преобразователи интерфейсов «ПИ-ГР», «С2000-ПИ» или «C2000 USB»), либо до 127 пультов «С2000» или «С2000М». К каждому пульту при этом можно подключить до 127 приборов. При организации системы по второму варианту компьютер опрашивает не приборы, а пульты. Пульты, в свою очередь, опрашивают подключённые к ним приборы. Каждому пульту должен быть задан сетевой адрес (от 1 до 127). Адресация приборов в системе имеет 3 уровня (номер COM-порта, адрес пульта, адрес прибора), поэтому адреса приборов, подключённых к разным пультам, могут пересекаться, как и адреса пультов, подключённых к разным COM-портам компьютера. Максимальное количество устройств, подключаемых к одному компьютеру с «Оперативной задачей Орион Про», на сегодняшний день составляет 1024.

Как уже было сказано, такая схема (рис. выше) применяется в случае, если к COM-порту нужно подключить несколько устройств. На текущий момент АРМ «Орион» поддерживает только один СОМ-порт. АРМ «Орион Про» поддерживает до 20 физических СОМ-портов и до 127 виртуальных СОМ-портов. При использовании АРМ «Орион Про» каждый пульт можно подключать к своему COM-порту (используя схему с гальванической изоляцией или без).

В настоящее время не все компьютеры имеют СОМ-порт. Для решения задачи подключения приборов системы «Орион» к компьютеру с АРМ можно применить USB-COM преобразователи, например, «USB-RS485», а также PCI-плату расширения портов. Основные достоинства данных PCI-плат:

  • возможность использовать до 8 COM-портов;
  • высокая скорость передачи данных;
  • поддержка интерфейса RS-232/RS-485.

Специалистами компании «Болид» была протестирована плата расширения COM-портов MOXA CP 118U (см. рис.).

Плата расширения COM-портов MOXA CP 118U

Она позволяет подключать приборы по интерфейсу RS-485 напрямую к ПК с АРМ «Орион Про» (без использования преобразователя интерфейса), а также подключать несколько пультов (каждый к своему СОМ-порту).

Допустим, в системе используется несколько приборов «С2000-КДЛ», релейных блоков «С2000-СП1», клавиатур «С2000-К» и блоков индикации «С2000-БИ». Причём из-за ограниченного размера базы данных пульта требуется использовать несколько пультов «С2000»/«С2000М». Каждый пульт организует взаимодействие только подключённых к нему приборов. В частности, он позволит отображать на блоках индикации состояния своих разделов, управлять этими разделами с клавиатур и с самого пульта, автоматически управлять релейными выходами своих блоков «С2000-СП1» от своих разделов. Взаимодействие приборов, подключённых к разным пультам, возможно только через АРМ. При отключении компьютера с работающим на нем АРМ эта связь нарушается. Поэтому если требуется, например, организовать релейный выход, который должен отрабатывать состояние всех шлейфов сигнализации системы, и этот выход должен работать при отключении компьютера, лучше его организовать путём монтажного объединения выходов каждой подсистемы (параллельного или последовательного, в зависимости от требуемой тактики работы выхода).

При подключении к АРМ нескольких подсистем следует использовать пульты «С2000М», так как при использовании пультов «С2000» будут следующие ограничения:

  1. Невозможно организовать централизованный контроль доступа;
  2. Управлять взятием/снятием с охраны разделов с клавиатур «С2000-К» и блока «С2000-4», прибора «С2000-КДЛ» и т.п. можно только в рамках одной подсистемы на пульте «С2000». Это означает, что с какой-либо клавиатуры «С2000-К» можно управлять взятием/снятием с охраны разделов того пульта, к которому подключена клавиатура. Управление с этой клавиатуры приборами, подключёнными к другим пультам, невозможно. Из оперативной задачи АРМ можно управлять взятием/снятием с охраны разделов всех подсистем. При использовании пульта «С2000М» первое ограничение снимается. Что касается второго, то можно управлять взятием/снятием с охраны разделов одной подсистемы с помощью всех приборов другой подсистемы, за исключением клавиатур «С2000-К». Например, используя считыватели устройств «С2000-4», «С2000-2», «С2000-КДЛ». Также можно управлять взятием/снятием с охраны разделов одной подсистемы с пульта «С2000М» другой подсистемы. Клавиатуры «С2000-К» так же, как и в первом случае, работают только в рамках своей подсистемы.

Типовая схема работы «С2000-Ethernet» по протоколу «Орион Про»

Помимо схемы, представленной на рис. выше, подключить несколько пультов «С2000М» к компьютеру с АРМ можно при помощи ЛВС и преобразователей «С2000-Ethernet» (см. рис.).

Пример использования «С2000-Ethernet» в глобальных сетях

Основными достоинствами ЛВС являются:

  • повсеместное использование сетей Ethernet;
  • высокая помехозащищенность;
  • высокая скорость передачи данных.

Также при использовании «С2000-Ethernet» возможно объединение приборов ИСО «Орион» через глобальную сеть Internet используя VPN туннель (см. рис.).

Пример построения системы с использованием «С2000-Ethernet» на 900 объектах

Для трансляции по указной схеме необходима устойчивая связь между VPN шлюзами (зависит от характеристик выделенных каналов Internet). В «С2000-Ethernet» имеется поддержка прямой передачи данных по ЛВС, т.е. на стороне ПК с АРМ используется только сеть Ethernet, а ПО формирует один виртуальный COM-порт для группы удаленных «C2000-Ethernet» (см. рис.). При этом повышается быстродействие и упрощается монтаж системы, т.к. на стороне АРМ нет необходимости использовать COM-порт.

Типовая схема работы преобразователей RS-FX по протоколу «Орион Про»

Ещё одним вариантом подключения пульта «С2000М» к компьютеру с АРМ является использование волоконно-оптической линии связи и преобразователей «RS-FX-MM» (для многомодовых ВОЛС), «RS-FX-SM40» (для одномодовых ВОЛС).

Основные достоинства ВОЛС:

  • высокая помехозащищенность;
  • искро-взрывобезопасность;
  • высокая степень защиты передаваемой информации;
  • высокая скорость передачи данных.

Максимальная длина передачи данных для преобразователя «RS-FX-MM» составляет 2 км, для преобразователя «RS-FX-SM40» - 40 км.

Организовать связь сетевого контроллера (компьютера с установленным АРМ «Орион»/ «Орион Про» или пульта «С2000»/«С2000М») с удаленными приборами ИСО «Орион» можно также с помощью стандартного цифрового канала связи в потоке Е1.

Основными достоинствами цифровых каналов связи являются:

  • высокая помехоустойчивость;
  • высокая степень защиты передаваемой информации;
  • высокая скорость передачи данных;
  • слабая зависимость качества передачи от длины линии связи.

Современная измерительная аппаратура давно срослась с цифровыми и процессорными средствами управления и обработки информации. Стрелочные указатели уже становятся нонсенсом даже в дешевых бытовых приборах. Аналитическое оборудование все чаще подключается к обычным ПК через специальные платы-адаптеры. Таким образом, используются интерфейсы и возможности программ приложений, которые можно модернизировать и наращивать без замены основных измерительных блоков, плюс вычислительная мощь настольного компьютера.

Кроме того, и расширение возможностей обычного компьютера возможно за счет разнообразных программно-аппаратных средств, — специальных плат расширения, содержащих измерительные АЦП (аналого-цифровой преобразователь) и ЦАП (цифро-аналоговый преобразователь). И компьютер очень легко превращается в аналитический прибор, к примеру, — спектроанализатор, осциллограф, частотомер… , как и во многое другое. Подобные средства для модернизации компьютеров выпускаются многими фирмами. Однако цена и узконаправленная специфика не делают это оборудование распространенным в наших условиях.

Но зачем далеко ходить? Оказывается, простой ПК в своей конструкции уже содержит средства, которые с некоторыми ограничениями способны превратить его в тот же осциллограф, спектроанализатор, частотомер или генератор импульсов. Согласитесь, уже немало. К тому же делаются все эти превращения только с помощью специальных программ, которые к тому же совершенно бесплатны и каждый желающий может их скачать в Интернете.

Вы, наверное, зададитесь логичным вопросом — как же в измерениях можно обойтись без АЦП и ЦАП? Никак нельзя. Но ведь и то и другое присутствует почти в каждом компьютере, правда, называется по другому — звуковая карта. А чем не АЦП/ЦАП, скажите, пожалуйста? Это уже давно поняли те, кто написал для нее массу программ, не имеющих никакого отношения к воспроизведению музыки. Ведь обычная звуковая плата ПК способна воспринимать и преобразовывать сигнал сложной формы в пределах звуковой частоты и амплитудой до 2В в цифровую форму со входа LINE-IN или же с микрофона. Возможно и обратное преобразование, — на выход LINE-OUT (Speakers). Таким образом, вы можете работать с любым сигналом до 20 кГц, а то и выше, в зависимости от звуковой платы. Максимальный предел уровня входного напряжения 0,5-2 В тоже не составляет проблемы, — примитивный делитель напряжения на резисторах собирается и калибруется за 15 минут. Вот на таких-то нехитрых принципах и строятся программное обеспечение: осциллографы, осциллоскопы, спектроанализаторы, частотомеры и, наконец, генераторы импульсов всевозможной формы. Такие программы эмулируют на экране компьютера работу привычных для нас приборов, естественно со своей спецификой и в пределах частотного диапазона вашей звуковой платы.

Как это работает? Для пользователя все выглядит очень просто. Запускаем программу, в большинстве случаев такое ПО не нужно даже инсталлировать. На экране монитора появляется изображение осциллографа: с характерным для этих приборов экраном с координатной сеткой, тут же и панель управления с кнопками, движками и регуляторами, тоже часто копирующими вид и форму таковых с настоящих — аппаратных осциллографов. Кроме того, в программных осциллографах могут присутствовать дополнительные возможности, как, например, возможность сохранения исследуемого спектра в памяти, плавное и автоматическое масштабирование изображения сигнала и т.д. Но, конечно же, есть и свои недостатки.

Как подключиться к звуковой карте? Здесь нет ничего сложного — к гнезду LINE-IN, с помощью соответствующего штекера. Типичная звуковая плата имеет на панельке всего три гнезда: LINE-IN, MIC, LINE-OUT (Speakers), соответственно линейный вход, микрофон, выход для колонок или наушников. Конструкция всех гнезд одинакова, соответственно и штекеры для всех идут одни и те же. Программа осциллограф будет работать и отображать спектр и в том случае если снимается звуковой сигнал с помощью микрофона, подключенного к своему входу. Более того, большинство программных осциллографов, спектроанализаторов и частотомеров нормально функционируют, если в это же время на выход звуковой платы LINE-OUT выводится какой-то другой сигнал с помощью другой программы, пусть даже музыка. Таким образом, на одном и том же компьютере можно задавать сигнал, скажем с помощью программы генератора, и тут же его контролировать осциллографом или анализатором спектра.

При подключении сигнала к звуковой плате следует соблюдать некоторые предосторожности, не допуская превышения амплитуды выше 2 В, что чревато последствиями, такими как выходом устройства из строя. Хотя для корректных измерений уровень сигнала должен быть гораздо ниже от максимально допустимого значения, что так же определяется типом звуковой карты. Например, при использовании популярной недорогой платы на чипе Yamaha 724 нормально воспринимается сигнал с амплитудой не выше 0,5 В, при превышении этого значения пики сигнала на осциллографе ПК выглядят обрезанными (рис.1). Поэтому для согласования подаваемого сигнала со входом звуковой карты потребуется собрать простой делитель напряжения (рис.2).

В статье приведены основные способы сопряжения внешних устройств с компьютером. Дано краткое описание каждого интерфейса, указаны его сильные и слабые стороны.

Для многих проектов необходимо подключать периферийное устройство к ноутбуку или компьютеру (ПК). Раньше это реализовывалось с помощью последовательного или параллельного интерфейса, однако они на многих современных ПК заменены портом USB.
Если присмотреться внимательнее, то окажется, что USB — не единственный вариант для подключения устройств к ПК. Есть множество других разъемов, например S/PDIF, аудиовходы, Ethernet, сокет для модема, FireWire, а также беспроводные интерфейсы Wi-Fi, Bluetooth, IrDA.
Каждый их них имеет свои преимущества и недостатки. От выбора порта зависит сложность не только аппаратной, но и программной части устройства сопряжения. Также важна желаемая скорость передачи данных — чем она выше, тем более продуманной должна быть схема подключения устройства к ПК.
Рассмотрим основные особенности наиболее распространенных интерфейсов.

Асинхронный последовательный порт
Вероятно, наиболее простой способ подключить внешнее устройство к ПК — это использовать последовательный порт. Он хорош тем, что полностью интегрирован в операционную систему (ОС) и для подключения устройства обычно требуется всего лишь подсоединить три провода. Кроме того, протокол обмена довольно прост для понимания. Немаловажным фактом является то, что существует множество документации и программных средств, облегчающих работу с последовательным портом.
Следует заметить, что многие микроконтроллеры имеют один или более встроенный последовательный интерфейс (UART), совместимый с интерфейсом ПК.
К сожалению, на многих современных ПК последовательного порта как такового нет. Однако при необходимости можно воспользоваться переходниками с последовательного порта на Ethernet или USB, изображенными на рисунках 1 и 2. Эти небольшие схемы просты в использовании и не требуют дополнительных драйверов. Переходники с последовательного порта на Ethernet (последовательный сервер) более сложные и дорогие, однако обладают более широким функционалом. Например, последовательные серверы обеспечивают электрическую изоляцию сигналов, поэтому на одной схеме можно реализовать несколько разных интерфейсов, в т.ч. беспроводных.



Рис. 1. Переходник UM232R с последовательного порта на USB (производитель — FTDI) Рис. 2. Переходник NE-4110 с последовательного порта на Ethernet (производитель — Moxa)

Еще один вариант реализации последовательного порта — через Bluetooth. Этот способ немного сложнее предыдущих, однако поскольку сигнал передается по беспроводному каналу, его защищенность повышается.
Если ПК не оснащен встроенным передатчиком Bluetooth, то можно использовать внешний USB-адаптер. Заметим, что при этом на подключаемом устройстве необходимо разместить только модуль Bluetooth на последовательном выходе МК. В программную часть придется внести дополнения, реализующие соединение по протоколу Bluetooth.
Итак, последовательный порт — самый легкий в использовании, даже в случае подключения через переходник. Тем не менее у последовательных портов есть большой недостаток — невысокая скорость работы.
Если в проекте не требуется пересылки большого объема данных или команд, то на это можно не обращать внимание. При больших скоростях обмена лучше воспользоваться альтернативными портами.

Как и последовательный, параллельный порт сейчас не существует в чистом виде. Не получили широкого распространения и переходники с параллельного порта на USB. На ПК обычно есть порты расширения, которые позволяют реализовать параллельную передачу данных, однако она будет отличаться от двустороннего обмена по классическому параллельному интерфейсу. Кроме того, существует не так много руководств для работы с этим портом, что создает дополнительные сложности.
Для передачи большого количества данных лучше использовать USB, Ethernet FireWire, звуковую карту или плату расширения. Преимущество FireWire и USB заключается в том, что драйверы для их работы уже установлены на ПК. Например, для USB-устройств необходимо только правильно назначить класс. Однако в некоторых случаях это не так легко сделать, поскольку требуется внесение изменений в программную часть.
Хорошая альтернатива — Ethernet. Подключить устройство к порту легко, нужен лишь простой контроллер (от Realtek, National Semiconductor, Microchip и др.).
Для работы через интерфейс Ethernet требуется микроконтроллер с большим набором ресурсов, особенно ОЗУ. Программирование также несколько усложняется. Однако все эти проблемы подробно описаны во многих доступных источниках, что сводит к минимуму усилия разработчика.

Синхронный двунаправленный порт PS/2 может использоваться как для управления внешним устройством, так и для считывания данных с него. Протокол обмена предельно прост, однако его гораздо удобнее реализовывать аппаратно через выход SPI МК, а не программно.
По умолчанию компьютер распознает данные с порта PS/2 как сигнал с клавиатуры или мыши. Следовательно, для работы с устройством необходимо пользоваться мышью или клавиатурой либо, наоборот, отсылая соответствующие команды с внешнего устройства, можно управлять курсором или печатать. Эта особенность позволяет сделать довольно много оригинальных устройств.

Мы рассмотрели основные способы подключения внешнего устройства к ПК, однако не упомянули главного. Зачастую устройство можно сделать автономным, то есть избавиться от необходимости сопряжения с ПК. В настоящее время выпущено множество миниатюрных процессорных карт (или SBC — одноплатный компьютер) со встроенными портами ввода-вывода и поддерживающих работу с Windows CE или Linux. На рисунке 3 приведен внешний вид одноплатного компьютера. Основное назначение этих карт — управление небольшими устройствами. Таким образом, в большинстве случаев проще и выгоднее воспользоваться подобной картой, настройка которой не займет более 5 мин, чем долго разбираться в программировании того или иного порта.

Подключаем переднюю панель корпуса — все о разъемах

Зачастую пользователи оставляют подключение передней панели при сборке напоследок, уделяя больше внимания основным компонентам ПК. Такой подход резонен, но в свою очередь один неправильно подключенный коннектор панели не позволит включить устройство даже при правильной сборке всех остальных комплектующих. Как этого избежать, рассмотрим в данном материале.

Какие бывают разъемы на передней панели корпуса

Дизайн компьютерных корпусов менялся на протяжении многих лет, эта участь не обошла стороной и панель с разъемами. Различные кард-ридеры и встроенные реобасы уже не так актуальны, как раньше, а спикеры используются далеко не каждым рядовым пользователем. Неизменными остаются органы управления в виде кнопок включения/отключения и перезагрузки, индикации, аудио- и USB-порты.


Кроме этих основных групп разъемов в некоторых современных корпусах можно встретить кнопки управления подсветкой. Подключение подсветки корпуса может быть реализовано разнообразными вариантами в зависимости от производителя. Зачастую это трехпиновый 5В кабель, подключаемый в материнскую плату, и SATA-кабель для подсоединения к блоку питания. Еще один часто встречающийся вариант — подключение к встроенному контроллеру.


При подключении проводов от передней панели желательно следовать общему кабель-менеджменту корпуса. А именно заранее спланировать и подвести кабели до установки материнской платы. Подключение проводов панели является предпоследним шагом перед готовой сборкой ПК. Заключительный шаг — установка видеокарты, так как ее размеры могут создавать неудобства.

Типичное расположение разъемов на примере ASRock B450M-HDV R4.0

Три основные категории разъемов имеют соответствующие коннекторы на материнских платах в специально отведенных местах, которые незначительно меняются в зависимости от конкретного устройства.

Аудио-разъемы


На передних панелях современных корпусов можно встретить два вида реализации аудио0-разъемов:

  • Раздельный — отдельные разъемы для микрофона и аудиовыхода.
  • Комбинированный — один разъем, совмещающий в себе оба интерфейса.


Вне зависимости от типа реализации, аудио-разъем подключается к плате при помощи одного стандартизированного коннектора. Аудио-разъем представляет собой коннектор в 9-pin, десятая колодка отсутствует, создавая тем самым специфичную структуру, не позволяющую подключить коннектор неправильно. Как правило, соответствующий разъем на материнской плате находится в ее нижней левой части и обозначен маркировкой HD_Audio. В компактных платах он может быть расположен не в самых удобных местах, а использование процессорных кулеров с горизонтальным расположением может сильно затруднить свободный доступ к разъему.

USB-порты

Разнообразие версий USB-портов не обошло стороной и компьютерные корпуса. В продаже можно встретить корпуса со стандартными USB-портами разных версий, двусторонними Type-C, а также с различными их сочетаниями.

USB 2.0


Этот тип разъема имеет схожий с аудио-разъемом коннектор в 9-pin, но с иным расположением отверстий — отсутствующая колодка находится с краю. Как правило, найти соответствующий разъем на плате можно неподалеку от массивной площадки для подключения кабеля питания в правой части материнской платы. Маркируется он обозначением USB. Зачастую на плате присутствует несколько таких разъемов.

USB 3.0


В отличие от более старой версии 2.0, порты USB 3.0 подключаются массивным кабелем и штекером. Для коннектора с 19-pin имеется отдельная фиксирующая рамка. Для предотвращения неправильного подключения у штекера предусмотрен специальный ключ и вставить его в разъем неправильной стороной попросту не получится. Располагается он также в группе с остальными USB-портами. Массивность коннектора в ряде случаев не позволяет аккуратно скрыть его, и этот фактор напрямую зависит от конкретной платы и корпуса.

USB Type-C

Современный и компактный разъем USB Type-C встречается далеко не во всех материнских платах, и, чтобы пользоваться соответствующим портом в корпусе, стоит заранее предусмотреть этот нюанс. Этот разъем имеет направляющую для плотного соединения коннекторов. Его коннектор кардинально отличается от рассмотренных ранее версий USB. Вместо колодок используются «дорожки» — по десять штук с каждой стороны. Как правило, его можно найти в группе с остальными USB-разъемами под маркировкой USB 3*.

Управление и индикация ПК

Если с подключением раннее рассмотренных коннекторов не должно возникнуть особых проблем, то подключение коннекторов управления и индикации ПК может доставить неопытному пользователю ряд проблем. Виной тому множество отдельных проводов, у которыз нет ни физических направляющих, ни защиты от неправильного подключения.


Как правило, необходимые разъемы находятся в правой нижней части материнской платы и обозначены надписью PANEL или F_PANEL. Коннекторы кнопок и индикаторов разделены на группы и располагаются друг за другом. В зависимости от конкретной платы колодки для подключения могут располагаться в разной последовательности. Поэтому важно иметь под рукой краткое руководство пользователя, где подробно указана распиновка платы. Если же его нет, можно воспользоваться подсказками производителя платы, а именно нанесенными маркировкой обозначениями рядом с колодками. Но стоит учесть, что они не во всех случаях могут быть читаемы.


Стандартная колодка представляет собой 9-pin коннектор, а коннекторы подключаются надписью вниз. Как правило, кнопка включения/выключения Power SW имеет сдвоенный провод и подключается в верхний крайний справа разъем.


Следующий шаг — подключение индикаторов, отображающих включение ПК Power LED. Нужные пины находятся в этом же ряду. Плюс — крайний слева, а минус, соответственно, правее.


На очереди кнопка перезагрузки Reset SW. В данном случае она располагается крайней справа, также, как и кнопка включения/выключения, но в нижнем ряду.


Остается лишь подключить индикацию работы жестких дисков HDD LED. Необходимый коннектор можно найти в нижнем ряду панели F_PANEL. Как и в случае с индикаторами питания ПК, плюсовой разъем находится левее, минусовой правее. В комплекте с материнской платой или корпусом пользователь может обнаружить переходник для подключения озвученных раннее коннекторов. Переходник значительно облегчает частое подключение/отсоединение миниатюрных разъемов.

Читайте также: