Самую высокую скорость передачи данных в компьютерных сетях обеспечивает

Обновлено: 07.07.2024

Для полного понимания сути обсуждаемого вопроса вначале следует определиться с терминологией. Прежде всего под локальной сетью будем понимать такую совокупность оборудования, которая объединяется в единое целое без привлечения телекоммуникационных средств, таких как каналы ISDN, T1, E1 и т.п., и охватывает ограниченную площадь. Не следует путать локальные и корпоративные сети, поскольку, с одной стороны, корпоративная сеть может представлять собой несколько локальных, расположенных в разных местах (и даже на разных континентах) и объединенных при помощи телекоммуникационных каналов, а с другой стороны, в одной локальной сети может работать сразу несколько фирм (возможно, родственных, тому есть примеры). Под высокоскоростными же будем понимать технологии, которые обеспечивают обмен данными со скоростью значительно (в два и более раза) большей, чем ставшая ныне стандартной 100 Мбит/с.

Однако высокоскоростные технологии передачи данных применяются в локальных сетях не только для привычных соединений рабочих станций и серверов. Периферийные устройства также подключаются по технологиям, близким к сетевым, но имеющим особенности, обусловленные сферой применения.

Все решения, направленные на повышение скорости обмена данными, можно грубо разделить на два направления — эволюционное, консервативное, и революционное, инновационное.

Нельзя сказать, что какое-то из направлений не имеет права на существование. Первое способствует решению некоторых проблем, сохраняя ранее вложенные инвестиции. То есть нечто вроде припарок — если пациент еще жив, то лекарство способно помочь. Второе улучшает параметры радикальным образом, но требует больших вложений. Радует то, что оба направления не исключают, а дополняют друг друга и зачастую могут применяться совместно. Поэтому рассмотрим оба подхода по порядку.

Консервативные решения: распределение нагрузки

Технология Advanced Load Balancing (ALB), или Link Aggregation (реже Port Aggregation; встречаются все термины, второй — самый правильный) является хорошим примером сбережения инвестиций при сравнительно скромном увеличении скорости обмена. Если сервер подключен к сети через коммутатор, то увеличить производительность в N раз можно за цену N-1 сетевых карт. Есть, правда, несколько «но»: карты не из дешевых, поскольку режим разделения нагрузки поддерживают далеко не все производители сетевого оборудования. Наиболее известные из них — 3Com, Adaptec, Bay Networks, Intel. Коммутатор тоже должен поддерживать ALB.

Суть метода заключается в том, что сетевой трафик распределяется между картами, которые при этом работают «параллельно». Отличие от простой установки нескольких карт заключается в том, что все карты под управлением ALB имеют один общий IP-адрес (физические адреса, конечно, не изменяются). То есть с точки зрения протокола IP на сервере установлена одна сетевая карта, но с повышенной пропускной способностью. Следует отметить, что основной выигрыш по сравнению с несколькими асинхронно работающими картами лежит не в производительности, а в области администрирования (у сервера всегда один адрес). Кроме того, ALB поддерживает резервирование, то есть при неисправности одной из карт нагрузка перераспределяется по остальным, в отличие от схемы «одна карта — один концентратор» (или коммутатор), при которой сегмент сети, подключенный к серверу через неисправную сетевую карту, просто теряет с ним связь. То есть помимо увеличения скорости имеет место и повышение надежности, что очень важно. В настоящее время сетевые платы для серверов, поддерживающие эту технологию, выпускают уже несколько фирм, например 3Com, Adaptec, Compaq, Intel, Matrox, SMC и другие.

Консервативные решения: 1000Base-T — Gigabit для бедных

Изначально технология Gigabit Ethernet разрабатывалась, исходя из применения в качестве передающей среды оптоволоконного кабеля. Работа по этому стандарту началась еще в 1995 году. Однако наряду с несомненным преимуществом по ширине полосы пропускания оптический кабель, по сравнению с витой парой, имеет существенные недостатки (не технического, правда, а скорее, экономического плана). Для установки концевых разъемов требуется специальное оборудование и обученный персонал; сама установка занимает, по сравнению с витой парой, достаточно много времени; кабель и разъемы дорогие. Но стоимость монтажа — это пустяки по сравнению с тем, что многие тысячи, а может быть, и миллионы километров кабеля с витой парой уже замурованы в стены и перекрытия зданий и для перехода на новую технологию их надо: а) извлечь; б) заменить на оптоволоконные. Поэтому в 1997 году была образована рабочая группа по разработке стандарта и прототипа Gigabit Ethernet, работающей на кабеле категории 5. Разработчики, применяя изощренные методы кодирования и коррекции ошибок, ухитрились загнать 1000 Мбит/с (а точнее, 125 Мбайт/с) в восемь медных проводов, из которых, собственно, и состоит кабель категории 5 (Cat 5). То есть теперь, после окончательного утверждения стандарта, вся масса замурованного медного кабеля получает, в терминах компьютерных игр, еще одну жизнь. Утверждается, что 1000Base-T работает на любом кабеле, отвечающем требованиям, предъявляемым к категории 5, вот только вопрос, какая часть существующего в России кабеля проложена, а затем протестирована надлежащим образом. Считается, что если по кабелю работает 100Base-T, то он и есть категории 5. Однако кабель категории 3, вполне работоспособный при использовании 100Base-T4, для 1000Base-T непригоден. Повышенное контактное сопротивление в опрессованном китайскими клещами китайском разъеме или плохая запрессовка в розетке — то есть те мелочи, которые стерпит 100Base-T, для Gigabit Ethernet неприемлемы, поскольку в технологию изначально заложены предельные для категории 5 параметры кабельной системы, что объясняется применением схемы кодирования, включающей элементы аналоговой техники, всегда предъявляющей повышенные требования к качеству и помехоустойчивости канала передачи.

Оба эти параметра не оказывают никакого влияния на работу при использовании протокола 10Base-T, могут оказать некоторое влияние при работе по протоколу 100Base-TX и весьма существенны при 1000Base-T. Поэтому рекомендации по их измерению будут опубликованы в рекомендации ANSI/TIA/EIA TSB-95, которая ужесточает требования к кабельной системе по отношению к категории 5. То есть элементарный здравый смысл требует вначале протестировать канал, по которому планируется использовать 1000Base-T.

Дополнительные (по отношению к категории 5) требования к кабельной системе, способной работать по протоколу 1000Base-T, изложены в проекте стандарта ANSI/TIA/EIA-TSB 95. В некоторых из уже имеющихся автоматических тестеров заложены возможности по измерению параметров, критичных для 1000Base-T. Такие тестеры автоматически проводят измерение всех необходимых параметров кабельной линии, в зависимости от стандарта (Cat5, TSB-95, Cat5e) или конкретного приложения (1000Base-T). Для проведения тестирования достаточно указать стандарт или приложение, результат выдается в виде Годен/Негоден (PASS or FAIL).

GEA указывает пять фирм-производителей переносных кабельных тестеров, хотя список может быть и неполным: Datacom/Textron, Hewlett-Packard/Scope, Fluke, Microtest и Wavetek. Каждый из приборов может осуществлять как полный набор тестов, так и отдельные тесты. Некоторые из них имеют дополнительные возможности, помогающие отыскать причину при получении отрицательного ответа:

На вопрос, какова вероятность того, что уже проложенный кабель окажется непригодным для использования, рабочая группа по 1000Base-T дает ответ — менее 10%, указывая, что эта величина является, скорее, экспертной оценкой, а не статистически проверенным результатом.

Если тестирование все же показывает непригодность кабеля для 1000Base-T, можно тем не менее при помощи ряда мер попытаться спасти положение (вернее, уже проложенный кабель). Во-первых, можно попробовать заменить кабели, соединяющие оборудование с розеткой (patch cord). Естественно, новые кабели должны иметь гарантированное качество, то есть отвечать всем требованиям согласно расширенной спецификации категории 5 (Enhanced Category 5, Cat5e).

Затем можно попытаться заменить как розетки (и настенные, и кроссовую панель), так и наконечники на новые, отвечающие требованиям Cat5e. В качестве последнего шага можно уменьшить до предела количество разъемов в цепи, вплоть до исключения всех розеток вообще, что бывает возможно при наличии запаса кабеля в канале.

Необходимость тестирования можно проиллюстрировать случаем из жизни. Apple Mac, подключенный к сети через коаксиальный кабель, постоянно капризничал. После замены одного из отрезков кабеля (не примыкавшего, кстати, к злополучному «яблоку») капризы, связанные с сетью, прекратились. А изъятый отрезок еще долго и успешно трудился в другом сегменте сети, где были подключены только PC.

Что касается прокладки новых соединений, то следует руководствоваться требованиями к Cat5e, то есть все составные части должны иметь соответствующую маркировку или сертификат, а количество разъемных соединений должно быть минимальным. Люди обстоятельные, привыкшие иметь запас, могут использовать кабель и разъемы категории 6 (пока не утвержденной официально). Максимальная длина сегмента та же — 100 м. Единственное различие — в сегменте может быть только один повторитель (концентратор или коммутатор).

Нужно отметить, что 1000Base-T является не альтернативой, а дополнением Gigabit на оптоволокне. То есть не следует забывать о том, что почти для всех сетевых технологий существуют решения, основанные как на оптоволоконном кабеле в качестве передающей среды, так и на медном проводе. Даже для FDDI, ассоциирующейся прежде всего с оптоволокном, существует стандарт Copper FDDI (CDDI, Медный FDDI), обеспечивающий те же параметры канала передачи (кроме дальности), но с использованием медного кабеля с применением витой пары. Просто дело в том, что оптоволоконный кабель при равной скорости передачи обеспечивает значительно большую дальность, в десятки или сотни раз большую, в зависимости от типа кабеля (одномодовый или многомодовый), однако, соответственно, и за большую цену. Это и дает им возможность существовать совместно, но в разных сегментах рынка — проводные технологии применимы на коротких дистанциях, например для организации информационной магистрали при топологии, близкой к магистрали, свернутой в точку. При организации же сетей, которые принято называть «кампусными» (от слова «кампус», то есть совокупность зданий и сооружений, относящихся к университету; ныне имеет более широкое толкование — локальная сеть, объединяющая комплекс зданий, расположенных на расстоянии примерно до 10 км друг от друга), оптоволоконная технология, легко перекрывающая расстояния до 10 км и более, просто незаменима.

В обозримом будущем не просматривается необходимость подключения конечных пользователей с помощью оборудования, поддерживающего скорость обмена 1000 Мбит/с. При правильной организации локальной сети скорости 100 Мбит/с (или 12,5 Мбайт/с, что выше, чем скорость обмена SCSI-дисков с частотой вращения 10 000 об./мин) вполне достаточно. Таким образом, на ближайшее время технологиям Gigabit Ethernet уготована участь поддержки высокоскоростных магистралей, лежащих в основе информационных инфраструктур предприятий. А это означает, что небольшое снижение стоимости монтажа не будет решающим фактором в распространении технологии, основанной на стандарте 1000Base-T.

Итак, 1000Base-T наконец легализована стандартом. Что же нам с ней делать? Попробуем просто использовать по назначению, как рассматривалось выше, то есть прежде всего для увеличения пропускной способности центральных частей сетевой инфраструктуры на небольших расстояниях. С учетом того, что формат кадра остался тем же самым (незначительные изменения коснулись не самого формата и минимальной длины кадра, а лишь длины промежутков времени, используемых в алгоритме доступа к среде, что обусловлено большей скоростью передачи), Gigabit Ethernet осталась той же технологией Ethernet, только еще в десять раз быстрее. Поэтому подключение к уже имеющимся сетям происходит столь же просто, как и использование одновременно уже существующих устройств 10/100 Мбит.

Аппаратные (технические) средства глобальной сети

Узлы компьютерной сети – это компьютеры, объединенные в сеть.

Среди них есть постоянно работающие в сети, выполняющие системные услуги и поддерживающие информационные сервисы. Они называются хост-компьютерами.

Персональный компьютер пользователя также становится узлом сети, но только на время подключения.

Каналы передачи данных по физическому принципу своего устройства делятся на:

  • Проводные
  • Оптические
  • Беспроводные

К проводным каналам относятся телефонные линии и различные виды электрических кабелей. Данные по проводным каналам передаются в виде электрических сигналов.

Использование телефонных каналов (коммутируемых линий) удобно и дешево, поскольку система телефонной связи уже давно организована, налажена и охватывает весь мир. Каждый раз для организации связи между абонентом и узлом сети с помощью коммутируемых линий нужно «дозваниваться» по соответствующему номеру. В другое время эта же линия используется для обычных телефонных разговоров. Для связи между постоянно действующими узлами сети могут применяться специально выделенные телефонные каналы. В этом случае связь действует постоянно и не требуется набирать телефонный номер.

Телефонные сети постепенно переходят на цифровую связь, но значительная часть телефонных каналов все еще использует передачу непрерывного (аналогового) электрического сигнала. Для того, чтобы соединить компьютер с такой сетью, необходимо специальное устройство, которое называется «модем» (МОдулятор – ДЕМодулятор).

Модуляция – это преобразование информации из дискретной цифровой формы в аналоговую, которое производится при передаче информации в сеть.

Иногда такое преобразование называют цифро-аналоговым преобразованием – ЦАП.

Демодуляция – это обратное, аналого-цифровое преобразование (АЦП), происходящее во время приема информации.

Модем может быть выполнен в виде отдельного устройства, подключаемого к компьютеру через стандартный последовательный порт связи, который имеется у каждого компьютера. Бывают также встроенные модемы в виде электронной платы, устанавливаемой внутри компьютера.

Схема связи между пользователем сети и хост-компьютером с помощью модема и телефонной линии показана на рисунке:


Одной из важнейших характеристик модема является скорость передачи данных, измеряемая в битах в секунду (килобитах в секунду, байтах в секунду, килобайтах в секунду и так далее).

Скорость передачи данных по проводным каналам находится в диапазоне от 14 Кбит/с до 56 Кбайт/с

Передача цифровых данных по электрическому кабелю может происходить со скоростями в десятки и сотни Мбит/с.

Примером проводного канала в виде электрического кабеля служат каналы связи кабельного телевидения, которые используются, в том числе, и для компьютерных сетей.

Самую высококачественную связь поддерживают оптоволоконные каналы цифровой связи. Скорость передачи данных по таким каналам измеряется десятками Гбит/с.

Спутниковые радиоканалы применяются для связи между узлами сети, удаленными на большие расстояния. Они могут поддерживать передачу данных со скоростями до 5 Мбит/с.

Для организации беспроводного подключения пользователей к сети используется также технология Wi-Fi (от Wireless Fidelity, дословно: беспроводная точность воспроизведения). В ней используется радиосвязь в определенном диапазоне частот. Wi-Fi дает возможность пользователю поддерживать связь с узлом Wi-Fi-сети на расстояниях от нескольких десятков метров в помещении до нескольких сотен метров на открытом пространстве.

Пропускная способность канала связи

Любой канал связи имеет ограниченную пропускную способность, то есть скорость передачи информации.

Единицы измерения, комментарий:

  • Бит / с – означает, сколько бит будет передаваться за 1 секунду.
  • 1 Кбит (килобит, Kbit) = 1024 бит = 2 10 бит
  • 1 Мбит (мегабит, Mbit) = 1024 Кбит = 2 10 Кбит
  • 1 Гбит (гигабит, Gbit) = 1024 Мбит = 2 10 Мбит
  • 1 Кбайт (килобайт) = 8 Кбит (килобит), так как 1 байт = 8 бит.
  • 1 Мбайт (мегабайт) = 8 Мбит (мегабит), так как 1 байт = 8 бит.

Если нужно измерить объем переданной информации, то используют формулу: Q = q • t , где

Q – Объем переданной информации.

q – Пропускная способность канала (в битах в секунду или подобных единицах). То есть скорость передачи информации.

t – Время передачи.

Формула Q = q • t похожа на формулу Скорость (V ) – Время ( t ) – Расстояние ( S ): S = V • t

В компьютерных сетях пользователи могут использовать различные марки компьютеров, типы модемов, линии связи, коммуникационные программы. Чтобы все это оборудование работало согласованно, работа сетей подчиняется специальным техническим соглашениям, которые называются протоколами.

Решение задач

Скорость передачи данных через ADSL-соединение равна 128000 бит/c. Через данное соединение передают файл размером 625 Кбайт. Определите время передачи файла в секундах.

Согласуем единицы измерения.

  1. Скорость q = 128 000 бит/с = 128 • 1000 бит/с = 2 7 • (125 • 8) бит/с = 2 7 • 5 3 • 2 3 бит/с = 2 7+3 • 5 3 бит/с =2 10 • 5 3 бит/с
  2. Объем передаваемого файла Q = 625 Кбайт = 625 • 1024 байт (так как в 1 килобайте 1024 байт) = 625 • 1024 • 8 бит (так как в 1 байте 8 бит) = 625 • 2 10 • 2 3 бит = 54 • 2 10+3 бит = 5 4 • 2 13 бит

Тогда по формуле Q = q • t выразим



Ответ : 40 секунд

Скорость передачи данных через ADSL-соединение равна 512 000 бит/c. Передача файла через это соединение заняла 1 минуту. Определить размер файла в килобайтах.


Ответ : 3750 Кбайт

У Васи есть доступ к Интернет по высокоскоростному одностороннему радиоканалу, обеспечивающему скорость получения им информации 256 Кбит в секунду. У Пети нет скоростного доступа в Интернет, но есть возможность получать информацию от Васи по низкоскоростному телефонному каналу со средней скоростью 32 Кбит в секунду. Петя договорился с Васей, что тот будет скачивать для него данные объемом 5 Мбайт по высокоскоростному каналу и ретранслировать их Пете по низкоскоростному каналу. Компьютер Васи может начать ретрансляцию данных не раньше, чем им будут получены первые 512 Кбайт этих данных. Каков минимально возможный промежуток времени (в секундах), с момента начала скачивания Васей данных, до полного их получения Петей?

а. Петя может начать получать информацию только тогда, когда Вася скачает для него первые 512 Кбайт. При этом известно, что Вася будет скачивать эти 512 Кбайт со скоростью 256 Кбит/с. Значит, во-первых, надо найти время, с которым будет передаваться этот объем информации (512 Кбайт) с заданной скоростью(256 Кбит/с) из Интернета к Васе. Таким образом, будет найдено время задержки файла у Васи. Примечание: после скачивания 512 Кбайт Вася продолжит скачивать весь файл, но уже начнет передавать файл Пете.

б. Практически Вася должен получить 5 Мбайт со скоростью 32 Кбит/с. То есть, во-вторых, надо найти время, с которым будет передаваться этот объем информации (5 Мбайт) с заданной скоростью(32 Кбит/с) от Васи к Пете.

в. Затем, в-третьих, надо сложить два найденных времени.

Данные рассуждения можно представить в виде диаграммы Ганта:



Ответ: 1296 с

Каково время (в минутах) передачи полного объема данных по каналу связи, если известно, что передано 150 Мбайт данных, причем первую половину времени передача шла со скоростью 2 Мбит в секунду, а остальное время – со скоростью 6 Мбит в секунду?


Ответ: 5 минут

Задача 5. Скорость передачи данных через ADSL-соединение равна 128000 бит/с. Сколько времени (в секундах) займет передача файла объемом 500 Кбайт по этому каналу?

Задача 6. Скорость передачи данных через ADSL-соединение равна 64000 бит/с. Сколько времени (в секундах) займет передача файла объемом 375 Кбайт по этому каналу?

Задача 7. Скорость передачи данных через ADSL-соединение равна 512000 бит/с. Передача файла по этому каналу занимает 16 сек. Определите объем файла в килобайтах.

Задача 8. Скорость передачи данных через ADSL-соединение равна 128000 бит/с. Передача файла через данное соединение заняла 120 с. Каков объем файла в Кбайтах?

Задача 9. У Васи есть доступ к Интернет по высокоскоростному одностороннему радиоканалу, обеспечивающему скорость получения им информации 2 17 бит в секунду. У Пети нет скоростного доступа в Интернет, но есть возможность получать информацию от Васи по низкоскоростному телефонному каналу со средней скоростью 2 16 бит в секунду. Петя договорился с Васей, что тот будет скачивать для него данные объемом 8 Мбайт по высокоскоростному каналу и ретранслировать их Пете по низкоскоростному каналу. Компьютер Васи может начать ретрансляцию данных не раньше, чем им будут получены первые 1024 Кбайт этих данных. Каков минимально возможный промежуток времени (в секундах), с момента начала скачивания Васей данных, до полного их получения Петей?

Задача 10. У Толи есть доступ к сети Интернет по высокоскоростному одностороннему радиоканалу, обеспечивающему скорость получения информации 2 19 бит в секунду. У Миши нет скоростного доступа в Интернет, но есть возможность получать информацию от Толи по низкоскоростному телефонному каналу со средней скоростью 2 15 бит в секунду. Миша договорился с Толей, что тот будет скачивать для него данные объемом 5 Мбайт по высокоскоростному каналу и ретранслировать их Мише по низкоскоростному каналу. Компьютер Толи может начать ретрансляцию данных не раньше, чем им будут получены первые 512 Кбайт этих данных. Каков минимально возможный промежуток времени (в секундах) с момента начала скачивания Толей данных до полного их получения Мишей?

Задача 11. Саша скачивает из сети файл размером 60 Мбайт. Скорость передачи первой половины данных составляет 256 Кбит в секунду, а второй – в два раза меньше. Сколько минут будет скачиваться файл?

Задача 12. Каково время (в минутах) передачи полного объема данных по каналу связи, если известно, что передано 9000 Мбайт данных, причем треть времени передача шла со скоростью 60 Мбит в секунду, а остальное время – со скоростью 90 Мбит в секунду?

Задача 13. По каналу связи непрерывно в течение 4 минут передаются данные. Скорость передачи данных в первой половине всего времени работы канала связи составляет 117 Кбит в секунду, а во второй половине – в три раза меньше. Сколько Кбайт данных было передано за время работы канала?

Задача 14. Какова должна быть минимальная пропускная способность канала (в битах в секунду), чтобы за 2 минуты можно было передать файл размером 30 Кбайт?

Персональные компьютеры, ноутбуки, смартфоны и другие гаджеты обмениваются информацией, используя кабельные, оптоволоконные и другие каналы связи.

Передача информации в общем виде выглядит следующим образом.

Скорость передачи информации — это скорость, с которой передаются данные через канал связи, показывающая, какое количество бит информации передаётся за единицу времени.

Базовой единицей измерения скорости передачи информации является бит в секунду и обозначается бит/с .

Пропускная способность канала — одна из важных характеристик каналов передачи информации, которая показывает, какова максимальная скорость передачи информации по каналу связи в единицу времени.

С другой стороны, пропускная способность канала — это количество информации, передаваемое в единицу времени.

V = I t , где \(V\) — пропускная способность канала; \(I\) — объём переданной информации; \(t\) — время передачи информации.

Основные единицы измерения пропускной способности канала: бит/с; Кбит/с; Мбит/с.

Дополнительные единицы измерения: байт/с; Кбайт/с; Мбайт/с.

\(1\) байт/с\(8\) бит/с
\(1\) Кбит/с\(1024\) бит/с
\(1\) Мбит/с\(1024\) Кбит/с
\(1\) Гбит/с\(1024\) Мбит/с

При решении задач используется формула I = V · t , где \(V\) — пропускная способность канала; \(I\) — объём переданной информации; \(t\) — время передачи информации.

Если скорость передачи информации задана в бит/с, а размер файла — в мегабайтах, то следует привести все единицы в один формат и только после этого делать вычисления.

Приветствуем вас на страницах блога iCover! Стремительно растущие потребности в передаче больших объемов данных – знаковая тенденция нашего времени и мощный стимул для развития инфраструктуры информационных сетей. Одновременно с расширением географии коммуникаций растет и пропускная способность основных каналов связи: 10 – гигабитные сетевые каналы заменяются на 100 – гигабитные. И здесь вопрос эффективности использования резко возросшего потенциала пропускной способности канала сталкивается с ограничениями существующей технологии передачи данных TCP (Transmission Control Protocol), верхняя скоростная планка которой до недавнего времени ограничивалась рекордным значением 29 Гбит/с. Группа специалистов из Японии сумела разработать дополнение к существующему протоколу, которое позволило повысить существующее значение почти втрое. Прошедшие в ноябре этого года успешные испытания технологии подтвердили возможность ее применения с использованием существующего стандартного абонентского оборудования.

image



Технология TCP – одного из основных протоколов на основе которого работала и продолжает работать глобальная сеть Интернет была разработана еще в 1974 году. Популярность технологии TCP специалисты объяснили технической возможностью гарантированной доставки данных с уведомлением отправителя об их получении, чего не могла обеспечить передача по протоколу UDP. Продемонстрировав достаточно высокий “запас прочности”, протокол TCP прекрасно справлялся со своими базовыми задачами на скоростях, исчисляемых в килобитах, несколько позже – в мегабитах и десятках мегабит. Вполне удовлетворительные результаты протокол продемонстрировал и при пересечении отметки пропускной способности в 100 и 1000 Мбит/с.

Сегодня, когда передовые провайдеры уже осуществляют переход на скорости с 10 на 100 Гбит/с возможностей протокола TCP, изначально не рассчитанного на такие показатели пропускной способности уже оказывается недостаточно. Рекордное значение скорости передачи данных по протоколу TCP/IP, зафиксированное до последнего момента при избыточности кодирования не более 50% составляло 29 Гбит/с (97,7% от теоретически обоснованной). Ясно, что в сетях, способных ежесекундно транслировать до 100 Гбит такие показатели выглядят достаточно скромно.

Группа исследователей Токийского университета сумела разрешить существующее противоречие, предложив своеобразную модификацию протокола TCP, названную ими LFTCP (Long Fat pipe TCP). Использование новой технологии позволило передать данные по существующим 100 – гигабитным каналам сети TransPAC американской компании Pacific Wave со скоростью 73 Гбит/с, использовав таким образом пропускную способность сети почти на ¾. При этом “дух и буква” самого протокола TCP на стороне конечного пользователя практически не изменились.

image

ПК, участвовавшие в проекте (слева) и экспериментальный маршрутизатор

В ходе эксперимента, прошедшего 16-17 ноября этого года данные были переданы из Остина (в центральной части штата Техас) в Токио, отстоящих друг от друга на расстоянии 21 153 км с задержкой в 296 миллисекунд.

image

Маршрут рекордной передачи

image

Конфигурация аппаратного и программного обеспечения

Стоит отметить, что конфигурация систем оконечного оборудования, расположенного в точках приема-передачи была самой обычной. Данные в них обрабатывали процессоры Core i7-6770K, в качестве сетевого адаптера использовалась карта Mellanox Ко ConnectX®-4, а в качестве операционной системы — CentOS Linux 7.1. Пропускную способность специалисты замеряли при помощи пакета iperf3. Важно, что передающая система, как отмечают разработчики в своем пресс-релизе, использовала протокол LFTCP, принимающая — стандартный TCP.

image

Оборудование, использованное в эксперименте и схема роутинга

Подтверждение работоспособности принципов предложенной технологии на уровне конкретного результата имеет важнейшее практическое значение, поскольку позволяет значительно расширить пределы объемов и скоростей транслируемых данных, определив тем самым направление развития сети Интернет, как минимум, на несколько лет вперед. Очень важно, что новый протокол LFTCP доступен с открытым программным кодом.

Одно из направлений, где такие скорости и объемы передачи информации могут оказаться востребованы – наука. Так один из проектов Токийского университета, связанный с биологией по оценкам специалистов потребует для полноценной обработки полезной информации пропускной способности в 50 Гбит/с. И это всего лишь один из примеров процесса, требующего обработки колоссальных массивов данных и их трансляции на скоростях в десятки гигабит, где технология LFTCP уже вскоре может оказаться очень востребованной. И, судя по прогнозам специалистов Токийского университета, потребность в возможностях Long Fat pipe TCP будет расти пропорционально развитию набирающего обороты процесса интернационализации научных разработок.

Читайте также: