Sata atapi ihas122 что это

Обновлено: 05.07.2024

Частый вопрос пользователей сети, пользующихся своим ПК уже не первый год: «А как можно повысить скорость работы компьютера, да еще и бесплатно?» Для начала разберемся в чем отличие или преимущество режимов IDE и AHCI.

Режимы работы интерфейса SATA:

· Режим IDE – работает преимущественно со старым оборудованием и программным обеспечением. То есть функциональность SATA-устройств в этом режиме идентична устаревшим ATA-устройствам (они же PATA-устройства);

· Режим AHCI – это сравнительно новый режим работы с накопителем(жесткими дисками и твердотельными накопителями), в котором компьютер использует все привилегии SATA, главной среди которых является: более высокая скорость работы жестких и SSD дисков, а также с возможностью замены жестких дисков на “горячую”, то есть при включенном ПК. Активация режима AHCI ускоряет доступ к файлам и данным на жёстких дисках, и положительно влияет на общую производительность ПК.

Продвинутые пользователи сетуют.. «Нужен ли режим IDE для SATA накопителя, если режим AHCI для подобного типа накопителей встроен по умолчанию?»

Важный момент! Зачастую производители компьютеров выставляют в конфигурации накопителей в чипсете на материнской плате - режим IDE. Режим AHCI начали поддерживать операционные системы не сразу, начиная с младшей сестрёнки Windows 7 - Vista. То есть, если к системе работающей с активированным режимом AHCI подключить диск с Windows XP и ниже, то компьютер выдаст ошибку «синего экрана смерти» (BSOD). В свою очередь любой SATA накопитель может свободно работать в режиме IDE, что незаметно для обычных пользователей. Таким образом производители компьютеров защищают пользователей от возможных неполадок в работе и запуска операционных систем.

В работе с SSD дисками режим AHCI работает гораздо продуктивнее. Отметим, что на SSD диск установить операционную систему в режиме IDE невозможно, для этого обязательно потребуется активированный режим AHCI.

Определяем режим работы жесткого диска

Один из самых простых способов проверить это: перейти в “Диспетчер устройств” . Открыть раздел “Контроллеры IDE ATA/ATAPI” . Если в этом разделе есть устройство со словом “AHCI” в названии, как на скриншоте ниже, это значит, что режим AHCI на компьютере активирован.

Активация режима AHCI на компьютере с уже установленной Windows

Не теряя работоспособности ОС Windows режим AHCI можно активировать одним из следующих способов:

1) Запустите редактор реестра (Для этого нажмите комбинацию клавиш «Win + R» и введите «regedit»)

2) Перейдите к разделу реестра HKEY_LOCAL_MACHINE\ SYSTEM\ CurrentControlSet\ Services\ iaStorV

3) Дважды кликните по параметру «Start» и установите его значение равным «0» (нулю).

4) В соседнем разделе ветки реестра HKEY_LOCAL_MACHINE\ SYSTEM\ CurrentControlSet\ Services\ iaStorAV\ StartOverride для параметра с именем «0» установите значение - ноль.

5) В разделе HKEY_LOCAL_MACHINE\ SYSTEM\ CurrentControlSet\ Services\ storahci для параметра «Start» установите значение «0» (ноль).

6) Закройте редактор реестра.

7) Перезагрузите компьютер и войдите в UEFI или БИОС. При этом первый после перезагрузки запуск Windows лучше провести в безопасном режиме.

8) В UEFI или в обычном БИОС найдите в параметрах SATA выбор режима работы накопителей. Установите его в AHCI, после чего сохраните настройки и перезагрузите компьютер.

Сразу после перезагрузки Windows начнет устанавливать драйвера SATA, а по завершении будет предложено перезагрузить компьютер. Перезагрузите. Все! Режим AHCI в Windows включен.

Если у вас возникли какие-либо ошибки при запуске Windows с режимом AHCI, верните режим IDE в БИОСе, сохраните сделанные изменения и выйдите из БИОС.


В прошлой части цикла «Введение в SSD» мы рассказали про историю появления дисков. Вторая часть расскажет про интерфейсы взаимодействия с накопителями.

Общение между процессором и периферийными устройствами происходит в соответствии с заранее определенными соглашениями, называемыми интерфейсами. Эти соглашения регламентируют физический и программный уровень взаимодействия.

Интерфейс — совокупность средств, методов и правил взаимодействия между элементами системы.

Физическая реализация интерфейса влияет на следующие параметры:

  • пропускная способность канала связи;
  • максимальное количество одновременно подключенных устройств;
  • количество возникающих ошибок.

Параллельные и последовательные порты

По способу обмена данными порты ввода-вывода делятся на два типа:

Последовательные порты — противоположность параллельным. Отправка данных происходит по одному биту за раз, что сокращает общее количество сигнальных линий, но усложняет контроллер ввода-вывода. Контроллер передатчика получает машинное слово за раз и должен передавать по одному биту, а контроллер приемника в свою очередь должен получать биты и сохранять в том же порядке.


Small Computer Systems Interface (SCSI) появился в далеком 1978 году и был изначально разработан, чтобы объединять устройства различного профиля в единую систему. Спецификация SCSI-1 предусматривала подключение до 8 устройств (вместе с контроллером), таких как:

  • сканеры;
  • ленточные накопители (стримеры);
  • оптические приводы;
  • дисковые накопители и прочие устройства.
Изначально SCSI имел название Shugart Associates System Interface (SASI), но стандартизирующий комитет не одобрил бы название в честь компании и после дня мозгового штурма появилось название Small Computer Systems Interface (SCSI). «Отец» SCSI, Ларри Баучер (Larry Boucher) подразумевал, что аббревиатура будет произноситься как «sexy», но Дал Аллан (Dal Allan) прочитал «sсuzzy» («скази»). Впоследствии произношение «скази» прочно закрепилось за этим стандартом.

В терминологии SCSI подключаемые устройства делятся на два типа:

Используемая топология «общая шина» накладывает ряд ограничений:

  • на концах шины необходимы специальные устройства — терминаторы;
  • пропускная способность шины делится между всеми устройствами;
  • максимальное количество одновременно подключенных устройств ограничено.


Устройства на шине идентифицируются по уникальному номеру, называемому SCSI Target ID. Каждый SCSI-юнит в системе представлен минимум одним логическим устройством, адресация которого происходит по уникальному в пределах физического устройства номеру Logical Unit Number (LUN).


Команды в SCSI отправляются в виде блоков описания команды (Command Descriptor Block, CDB), состоящих из кода операции и параметров команды. В стандарте описано более 200 команд, разделенных в четыре категории:

  • Mandatory — должны поддерживаться устройством;
  • Optional — могут быть реализованы;
  • Vendor-specific — используются конкретным производителем;
  • Obsolete — устаревшие команды.
  • TEST UNIT READY — проверка готовности устройства;
  • REQUEST SENSE — запрашивает код ошибки предыдущей команды;
  • INQUIRY — запрос основных характеристик устройства.

Дальнейшее усовершенствование SCSI (спецификации SCSI-2 и Ultra SCSI) расширило список используемых команд и увеличило количество подключаемых устройств до 16-ти, а скорость обмена данными по шине до 640 МБ/c. Так как SCSI — параллельный интерфейс, повышение частоты обмена данными было сопряжено с уменьшением максимальной длины кабеля и приводило к неудобству в использовании.

Начиная со стандарта Ultra-3 SCSI появилась поддержка «горячего подключения» — подключение устройств при включенном питании.

Первым известным SSD диском с интерфейсом SCSI можно считать M-Systems FFD-350, выпущенный в 1995 году. Диск имел высокую стоимость и не имел широкой распространенности.

В настоящее время параллельный SCSI не является популярным интерфейсом подключения дисков, но набор команд до сих пор активно используется в интерфейсах USB и SAS.

ATA / PATA


Интерфейс ATA (Advanced Technology Attachment), так же известный как PATA (Parallel ATA) был разработан компанией Western Digital в 1986 году. Маркетинговое название стандарта IDE (англ. Integrated Drive Electronics — «электроника, встроенная в привод») подчеркивало важное нововведение: контроллер привода был встроен в привод, а не на отдельной плате расширения.

Решение разместить контроллер внутри привода решило сразу несколько проблем. Во-первых, уменьшилось расстояние от накопителя до контроллера, что положительным образом повлияло на характеристики накопителя. Во-вторых, встроенный контроллер был «заточен» только под определенный тип привода и, соответственно, был дешевле.


ATA, как и SCSI, использует параллельный способ ввода-вывода, что отражается на используемых кабелях. Для подключения дисков с использованием интерфейса IDE необходимы 40-жильные кабели, также именуемые шлейфами. В более поздних спецификациях используются 80-жильные шлейфы: более половины из которых — заземления для уменьшения интерференции на высоких частотах.

На шлейфе ATA присутствует от двух до четырех разъемов, один из которых подключается в материнскую плату, а остальные — в накопители. При подключении двух устройств одним шлейфом, одно из них должно быть сконфигурировано как Master, а второе — как Slave. Третье устройство может быть подключено исключительно в режиме «только чтение».



Положение перемычки задает роль конкретного устройства. Термины Master и Slave по отношению к устройствам не совсем корректны, так как относительно контроллера все подключенные устройства — Slaves.

Особенным нововведением в ATA-3 считается появление Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.). Пять компаний (IBM, Seagate, Quantum, Conner и Western Digital) объединили усилия и стандартизировали технологию оценки состояния накопителей.

Поддержка твердотельных накопителей появилась с четвертой версии стандарта, выпущенной в 1998 году. Эта версия стандарта обеспечивала скорость обмена данными до 33.3 МБ/с.

Стандарт выдвигает жесткие требования к шлейфам ATA:

  • шлейф обязательно должен быть плоским;
  • максимальная длина шлейфа 18 дюймов (45.7 сантиметров).


Стандарт Serial ATA (SATA) был представлен 7 января 2003 года и решал проблемы своего предшественника следующими изменениями:

  • параллельный порт заменен последовательным;
  • широкий 80-жильный шлейф заменен 7-жильным;
  • топология «общая шина» заменена на подключение «точка-точка».

Шестнадцать сигнальных линий для передачи данных в ATA были заменены на две витые пары: одна для передачи, вторая для приема. Коннекторы SATA спроектированы для большей устойчивости к множественным переподключениям, а спецификация SATA 1.0 сделала возможным «горячее подключение» (Hot Plug).

Некоторые пины на дисках короче, чем все остальные. Это сделано для поддержки «горячей замены» (Hot Swap). В процессе замены устройство «теряет» и «находит» линии в заранее определенном порядке.

Чуть более, чем через год, в апреле 2004-го, вышла вторая версия спецификации SATA. Помимо ускорения до 3 Гбит/с в SATA 2.0 ввели технологию Native Command Queuing (NCQ). Устройства с поддержкой NCQ способны самостоятельно организовывать порядок выполнения поступивших команд для достижения максимальной производительности.



Последующие три года SATA Working Group работала над улучшением существующей спецификации и в версии 2.6 появились компактные коннекторы Slimline и micro SATA (uSATA). Эти коннекторы являются уменьшенной копией оригинального коннектора SATA и разработаны для оптических приводов и маленьких дисков в ноутбуках.

Несмотря на то, что пропускной способности второго поколения SATA хватало для жестких дисков, твердотельные накопители требовали большего. В мае 2009 года вышла третья версия спецификации SATA с увеличенной до 6 Гбит/с пропускной способностью.



Особое внимание твердотельным накопителям уделили в редакции SATA 3.1. Появился коннектор Mini-SATA (mSATA), предназначенный для подключения твердотельных накопителей в ноутбуках. В отличие от Slimline и uSATA новый коннектор был похож на PCIe Mini, хотя и не был электрически совместим с PCIe. Помимо нового коннектора SATA 3.1 мог похвастаться возможностью ставить команды TRIM в очередь с командами чтения и записи.

Команда TRIM уведомляет твердотельный накопитель о блоках данных, которые не несут полезной нагрузки. До SATA 3.1 выполнение этой команды приводило к сбросу кэшей и приостановке операций ввода-вывода с последующим выполнением команды TRIM. Такой подход ухудшал производительность диска при операциях удаления.

Спецификация SATA не успевала за бурным ростом скорости доступа к твердотельным накопителям, что привело к появлению в 2013 году компромисса под названием SATA Express в стандарте SATA 3.2. Вместо того, чтобы снова удвоить пропускную способность SATA, разработчики задействовали широко распространенную шину PCIe, чья скорость превышает 6 Гбит/с. Диски с поддержкой SATA Express приобрели собственный форм-фактор под названием M.2.


«Конкурирующий» с ATA стандарт SCSI тоже не стоял на месте и всего через год после появления Serial ATA, в 2004, переродился в последовательный интерфейс. Имя новому интерфейсу — Serial Attached SCSI (SAS).

Несмотря на то, что SAS унаследовал набор команд SCSI, изменения были значительные:

  • последовательный интерфейс;
  • 29-ти жильный кабель с питанием;
  • подключение «точка-точка»

Максимальное количество одновременно подключенных устройств в SAS-домене по спецификации превышает 16 тысяч, а вместо SCSI ID для адресации используется идентификатор World-Wide Name (WWN).

WWN — уникальный идентификатор длиной 16 байт, аналог MAC-адреса для SAS-устройств.



Несмотря на схожесть разъемов SAS и SATA, эти стандарты не являются полностью совместимыми. Тем не менее, SATA-диск может быть подключен в SAS-коннектор, но не наоборот. Совместимость между SATA-дисками и SAS-доменом обеспечивается при помощи протокола SATA Tunneling Protocol (STP).

Первая версия стандарта SAS-1 имеет пропускную способность 3 Гбит/с, а самая современная, SAS-4, улучшила этот показатель в 7 раз: 22,5 Гбит/с.


Peripheral Component Interconnect Express (PCI Express, PCIe) — последовательный интерфейс для передачи данных, появившийся в 2002 году. Разработка была начата компанией Intel, а впоследствии передана специальной организации — PCI Special Interest Group.

Последовательный интерфейс PCIe не был исключением и стал логическим продолжением параллельного PCI, который предназначен для подключения карт расширения.

PCI Express значительно отличается от SATA и SAS. Интерфейс PCIe имеет переменное количество линий. Количество линий равно степеням двойки и колеблется в диапазоне от 1 до 16.

Термин «линия» в PCIe обозначает не конкретную сигнальную линию, а отдельный полнодуплексный канал связи, состоящий из следующих сигнальных линий:

  • прием+ и прием-;
  • передача+ и передача-;
  • четыре жилы заземления.


«Аппетиты» твердотельных накопителей растут очень быстро. И SATA, и SAS не успевают увеличивать свою пропускную способность, чтобы «угнаться» за SSD, что привело к появлению SSD-дисков с подключением по PCIe.

Хотя PCIe Add-In карты прикручиваются винтом, PCIe поддерживает «горячую замену». Короткие пины PRSNT (англ. present — присутствовать) позволяют удостовериться, что карта полностью установлена в слот.

Твердотельные накопители, подключаемые по PCIe регламентируются отдельным стандартом Non-Volatile Memory Host Controller Interface Specification и воплощены в множестве форм-факторов, но о них мы расскажем в следующей части.

Удаленные накопители

При создании больших хранилищ данных появилась потребность в протоколах, позволяющих подключить накопители, расположенные вне сервера. Первым решением в этой области был Internet SCSI (iSCSI), разработанный компаниями IBM и Cisco в 1998 году.

Идея протокола iSCSI проста: команды SCSI «оборачиваются» в пакеты TCP/IP и передаются в сеть. Несмотря на удаленное подключение, для клиентов создается иллюзия, что накопитель подключен локально. Сеть хранения данных (Storage Area Network, SAN), основанная на iSCSI, может быть построена на существующей сетевой инфраструктуре. Использование iSCSI значительно снижает затраты на организацию SAN.

У iSCSI существует «премиальный» вариант — Fibre Channel Protocol (FCP). SAN с использованием FCP строится на выделенных волоконно-оптических линиях связи. Такой подход требует дополнительного оптического сетевого оборудования, но отличается стабильностью и высокой пропускной способностью.

Существует множество протоколов для отправки команд SCSI по компьютерным сетям. Тем не менее, есть только один стандарт, решающий противоположную задачу и позволяющий отправлять IP-пакеты по шине SCSI — IP-over-SCSI.

Большинство протоколов для организации SAN используют набор команд SCSI для управления накопителями, но есть и исключения, например, простой ATA over Ethernet (AoE). Протокол AoE отправляет ATA-команды в Ethernet-пакетах, но в системе накопители отображаются как SCSI.

С появлением накопителей NVM Express протоколы iSCSI и FCP перестали удовлетворять быстро растущим требованиям твердотельных накопителей. Появилось два решения:

  • вынос шины PCI Express за пределы сервера;
  • создание протокола NVMe over Fabrics.

Протокол NVMe over Fabrics стал хорошей альтернативой iSCSI и FCP. В NVMe-oF используются волоконно-оптическая линии связи и набор команд NVM Express.


Стандарты iSCSI и NVMe-oF решают задачу подключения удаленных дисков как локальные, а компания Intel пошла другой дорогой и максимально приблизила локальный диск к процессору. Выбор пал на DIMM-слоты, в которые подключается оперативная память. Максимальная пропускная способность канала DDR4 составляет 25 ГБ/с, что значительно превышает скорость шины PCIe. Так появился твердотельный накопитель Intel® Optane™ DC Persistent Memory.

Для подключения накопителя в DIMM слоты был изобретен протокол DDR-T, физически и электрически совместимый с DDR4, но требующий специального контроллера, который видит разницу между планкой памяти и накопителем. Скорость доступа к накопителю меньше, чем к оперативной памяти, но больше, чем к NVMe.

Протокол DDR-T доступен только с процессорами Intel® поколения Cascade Lake или новее.

Заключение

Почти все интерфейсы прошли долгий путь развития от последовательного до параллельного способа передачи данных. Скорости твердотельных накопителей стремительно растут, еще вчера твердотельные накопители были в диковинку, а сегодня NVMe уже не вызывает особого удивления.

Приветствую всех наткнувшихся на мою тему.
Проблема такова:
Пытаюсь поставить на новый комп Windows 7 (в первый раз с этим столкнулась, так что строго не судите и если советовать будете, то пожалуйста излагайте советы. более доступным, для обычного юзера, языком). Захожу в BIOS. а там нефига он не стандарный. и называется он "Gigabyte UEF1 DualBIOS", полазив примерно с час по интернету и потыкавшись в нем, решила прочитать инструкцию)) С грехом пополам разобралась где нужно ставить приоритет загрузочного устройства, но вот незадача. выбор меню ограничен всего лишь тремя пунктами:
1) SATA PM: ST50DM002-180142
2) SATA SM: ATAPI iHAS122 C
3) Disabled (незадействованный)

. Короче CD/DVD-ROM нет и в помине.
(впрочем, для эксперимента, поочередно выбирала первые 2 пункта, сохраняла, перезагружала комп, но дисковод молчит как партизан на допросе и даже шума не подает)
да и дальше алгоритма действий по установке ОС в инструкции нет (действий именно в этой версии БИОСа), как и на просторах интернета.

Вопрос: Может кто сталкивался с таким и может описать алгоритм действий или ссылку дать на него?
И ГДЕ тут выставлять приоритет CD-ROMа? А то у меня он даже не оживает когда диск вставляю, даже не пытается его обрабатывать(((

У разных производителей интерфейс UEFI не одинаков,но в принципе, на вкладке BOOT (Hard Drive Priority) должно появиться название привода.Если же,как Вы говорите,не оживает, трэба проверить (в диспетчере он есть?). Это же вроде и есть привод?
При загрузке с CD может потребоваться нажать любую клавишу, возможно нажатия не было - поэтому он и молчал как партизан))) Диск лучше заранее вставить, он может и не выдать предупреждения, если диска в приводе не будет)) Поставила в приоритет ATAPI, сохранила, перезагрузилось, появилась надпись: "Reboot and select proper Boot device or insert boot Media in selected boot device and pres a key", вставила диск (и заранее тоже пробовала вставлять). дисковод даже не ожил((( Выложи фотку биоса, может там еще что-то надо ковырнуть))

К сожалению полноценные ссылки мне на этом форуме пока по статусу отправлять нельзя, так что разбила их "звездочками"


Друзья, запустим тест нашего SSD подключенного к высокоскоростному порту SATA 3.0 (6 Гбит/с) SSD в программе AS SSD Benchmark , затем подключим его к порту SATA 2.0 (3 Гбит/с) и тоже проведём тест, затем сравним результат.

1. Тест последовательного чтения и записи;

2. Тест случайного чтения и записи к 4 Кб блоков;

3. Тест случайного чтения и записи 4 Кб блоков (глубина очереди = 64);

4. Тест измерения времени доступа чтения и записи;

Итоговый результат, запомним его.


В каком режиме будет работать жёсткий диск или твердотельный накопитель SSD новейшего интерфейса SATA III ( 6 Гбит/с), если его подсоединить к разъёму SATA II ( 3 Гбит/с)

Подсоединяем наш SSD Silicon Power V70 интерфейса SATA 3.0 (6 Гбит/с) к менее скоростному порту SATA 2.0 (3 Гбит/с) и запускаем утилиту CrystalDiskInfo. Результат - наш высокоскоростной SSD 6 Гбит/с заработал в низко скоростном режиме SATA 2.0 (3 Гбит/с), всё закономерно. Текущий режим 300 МБ/с и поддерживаемый режим 600 МБ/с.


Но вот ещё интересный вопрос, с какой скоростью работает наш SSD? Запускаем утилиту AS SSD Benchmark и проводим тест случайного и последовательного чтения, результат красноречив, скорость последовательного чтения и записи 265 МБ/с (чтение), 126 МБ/с (запись).

Скорость намного меньше, чем если бы наш твердотельный накопитель был бы подключен к высокоскоростному порту на материнской плате SATA 3.0 (6 Гбит/с)!


Читайте следующие статьи по этой теме:

Рекомендуем другие статьи по данной теме

Комментарии (139)

Рекламный блок

Подпишитесь на рассылку

Навигация

Облако тегов

Архив статей

Сейчас обсуждаем

Гость Олег

Ластик сильно испортился. Раньше можно было аккуратно подтереть что-то. Теперь он стирает кусками,

Иван Романов

Фёдор, Спасибо. Действительно, все так и есть. Только эта утилита и помогла войти в биос. Вот

Иван Романов

Фёдор, Эти рекомендации от ремонткомпа не срабатывают. Строка меню выбора устройств загрузки и

ираклий казанцев

У меня задействована утилита KillUpdate которая отключает обновление (в службах диспетчера, и я

RemontCompa — сайт с огромнейшей базой материалов по работе с компьютером и операционной системой Windows. Наш проект создан в 2010 году, мы стояли у истоков современной истории Windows. У нас на сайте вы найдёте материалы по работе с Windows начиная с XP. Мы держим руку на пульсе событий в эволюции Windows, рассказываем о всех важных моментах в жизни операционной системы. Мы стабильно выпускаем мануалы по работе с Windows, делимся советами и секретами. Также у нас содержится множество материалов по аппаратной части работы с компьютером. И мы регулярно публикуем материалы о комплектации ПК, чтобы каждый смог сам собрать свой идеальный компьютер.

Наш сайт – прекрасная находка для тех, кто хочет основательно разобраться в компьютере и Windows, повысить свой уровень пользователя до опытного или профи.

Хуже другое - существующие оптические приводы нельзя будет установить в будущие системы на базе чипсетов серии i965x (Broadwater). Конечно, совсем скоро на смену DVD придут HD-DVD и Blue-Ray, но некоторая часть пользователей не стала бы гнаться за этими новинками, предпочитая использовать старые добрые оптические приводы предыдущего поколения. Тут очень пригодилась бы возможность использования одновременно интерфейса ATAPI и Serial ATA для работы с оптическими приводами.

реклама

Судя по всему, такие решения будут присутствовать на рынке. Компания I-O Data объявила о доступности оптического привода DVR-ABN16R/S, построенного на шасси NEC ND-4550A. Уникальность этого привода заключается в том, что номинально он оснащён только интерфейсом ATAPI, однако небольшая плата-переходник позволяет подключать его к материнской плате через интерфейс Serial ATA. Все необходимые кабели прилагаются в комплекте.


Достаточно компактная плата адаптера вставляется непосредственно в разъём IDE/ATAPI на задней панели оптического привода, немного увеличивая его габариты в глубину (на 18 мм). На обратной стороне адаптера расположены разъём питания (подключается к блоку питания через разветвитель и разъём для питания FDD) и интерфейсный разъём Serial ATA. Судя по всему, питание самого привода осуществляется через стандартный разъём Molex, а не более современный разъём питания для устройств с интерфейсом Serial ATA.

Очевидно, такой адаптер может быть использован с любым оптическим приводом, оснащённым интерфейсом ATAPI. Это открывает широкие возможности для производителей последних обеспечить свои продукты совместимостью с Serial ATA на время "переходного периода". В Японии описанный оптический привод стоит более $120. Какова в этой цене доля интерфейсного адаптера, мы не знаем - дело в том, что в эту сумму также закладывается стоимость программного обеспечения, прилагаемого с коробочной версией привода. Устройство позволяет работать с множеством оптических дисков:

Читайте также: