Slc кэш ssd что это

Обновлено: 04.07.2024

В современных SSD наиболее распространены четыре типа чипов памяти NAND: QLC, TLC, MLC и SLC.

QLC (Quad-Level Cell) - ячейка памяти, способная хранить 4 бита информации. По состоянию на февраль 2020 года NAND-память типа QLC является самой доступной по стоимости хранения 1 ГБ данных, приближаясь по данному параметру к традиционным жестким дискам. При этом по быстродействию и ресурсу на запись QLC-память лишь немного уступает не только SLC- и MLC-, но и TCL-памяти.

TLC (Triple-Level Cell) – ячейка памяти, способная хранить 3 бита информации. Обладает большей плотностью, но меньшей выносливостью по сравнению с SLC и MLC. TLC также отстает от SLC и MLC по скорости чтения и записи и ресурсу в циклах Program/Erase. До настоящего момента память типа TLC NAND использовалась в основном в flash-накопителях (флешках), однако совершенствование технологий производства сделало возможным использование памяти TLC и в стандартных SSD.

Описанные выше ячейки памяти относятся к планарному, то есть 2D-типу. Их недостатком является необходимость перехода к более тонким техпроцессам для увеличения плотности записи данных в каждом отдельном чипе. Из-за ряда физических ограничений делать это до бесконечности не получится. Поэтому были разработаны 3D-ячейки памяти. Такая ячейка представляет собой цилиндр:

3D Cell

Таким образом, появляется возможность разместить несколько ячеек памяти на одном слое микросхемы. Такие ячейки называются 3D V-NAND, 3D TLC и 3D QLC. Емкость и надежность 3D-памяти сравнимы с емкостью и надежностью памяти TLC.

MLC (Multi-Level Cell) – ячейка памяти, способная хранить несколько бит информации. MLC дешевле SLC, однако обладает меньшей выносливостью и меньшим ресурсом циклов Program/Erase. MLC - хороший выбор для коммерческих и рабочих платформ, т.к. характеризуется хорошим соотношение цена/скорость работы.

eMLC (Enterprise Multi-Level Cell) – ячейка, аналогичная по структуре обычной MLC, но с увеличенным ресурсом по циклам Program/Erase. По надежности eMLC находится между SLC и MLC, а стоит ненамного дороже MLC. Типичное применение eMLC - рабочие станции и серверы среднего класса.

SLC (Single-Level Cells) – ячейка, способная хранить 1 бит информации. Память SLC имеет высокую производительность, низкое энергопотребление, наибольшую скорость записи и количество циклов Program/Erase. Память типа SLC обычно используется в серверах высокого уровня, поскольку стоимость SSD на основе SLC велика.

3D NAND

graph

Количество состояний ячейки в зависимости от типа памяти

Физически все четыре типа ячеек NAND-памяти состоят из одинаковых транзисторов. Единственным отличием является количество хранимого ячейкой памяти заряда. Все четыре типа ячеек работают одинаково: при появлении напряжения ячейка переходит из состояния «выключено» в состояние «включено». SLC использует два отдельных значения напряжения для представления одного бита информации на ячейку и двух логических уровней (0 и 1). MLC использует четыре отдельных значения напряжения для представления четырех логических состояний (00, 01, 10, 11) или двух битов. TLC использует восемь отдельных значений напряжения для представления восьми логических состояний (000, 001, 010, 011, 100, 101, 110, 111) или трех битов информации. QLC использует шестнадцать отдельных значений напряжения для представления шестнадцати логических состояний (от 0000 до 1111).

Поскольку в SLC используется только два значения напряжения, эти значения могут сильно отличаться друг от друга, уменьшая потенциальную возможность некорректно интерпретировать текущее состояние ячейки и позволяя использовать стандартные условия коррекции ошибки NAND. Вероятность ошибок чтения увеличивается при использовании TLC и QLC NAND, поэтому данные типы памяти требуют большего объема ECC (Error Correction Code – код коррекции ошибок) при исчерпании ресурса NAND, поскольку в TLC и QLC приходится корректировать сразу три или четыре бита информации соответственно.

В зависимости от задействованной технологии, микросхемы памяти «NAND» различаются плотностью хранения данных. Читайте о твердотельных накопителях с разными вариантами используемых видов памяти . Какие у них характеристики и чем они отличаются.

Введение

Твердотельные накопители значительно улучшают общую производительность персональных компьютеров, позволяя существенно сократить время загрузки операционной системы, и повышают общее быстродействие, превращая, укомплектованные данным типом хранилища, компьютеры в высокоскоростные. Но когда пользователи непосредственно выбирают для своего устройства конкретную модель накопителя «SSD» , то часто приходится сталкиваться с различными специализированными терминами, такими как «SLC» , «SATA III» , «NVMe» , «M.2» и т.д. Не многие пользователи знают определение данных терминов и далее в нашем руководстве мы подробнее остановимся на некоторых основных понятиях.

Несколько слов о ячейках

В зависимости от задействованной технологии, микросхемы памяти «NAND» различаются плотностью хранения данных, и далее мы рассмотрим твердотельные накопители с разными вариантами используемых видов памяти, выделенными в отдельную характеристику.

Запоминающее устройство «SSD» с одноуровневыми ячейками ( «SLC» )

Основным типом твердотельного накопителя является «SSD» с микросхемой «NAND» , внутренняя организация которой реализована посредством использования одноуровневых ячеек ( «Single-Level Cell» , сокращенно «SLC» ). Технология «SLC» обеспечивает плотность хранения данных один бит на ячейку памяти. Это немного, но у данной организации есть отдельные неоспоримые преимущества. Во-первых, твердотельные накопители, выполненные по технологии «SLC» – это самый быстрый тип запоминающего устройства «SSD» из всех доступных вариантов. Они также более долговечны и менее подвержены развитию ошибок, поэтому считаются наиболее надежными среди всех видов твердотельных дисков.

Твердотельные накопители «SSD» на основе «SLC» в первую очередь популярны в корпоративных средах, где потеря данных неприемлема и может привести к значительным тратам, а надежность запоминающих является ключевым фактором. Технология «SLC» существенно повышает конечную стоимость накопителя, особенно в пересчете цены за единицу дискового пространства, и носители данных на ее основе обычно не доступны для обычных потребителей. Для сравнения, на «Amazon» доступен для приобретения твердотельный накопитель «SSD» , выполненный по технологии «SLC» с емкостью «128 ГБ» , и его конечная цена равна стоимости запоминающего устройства «SSD» с объемом памяти «1 ТБ» , изготовленного по технологии «TLC NAND» .

Поэтому, если пользователям предлагается потребительский твердотельный накопитель «SSD» с технологией плотности хранения данных «SLC» , то, вероятно, он имеет другой тип памяти «NAND» и просто дополнен кэшем «SLC» для повышения производительности.

Твердотельный накопитель «SSD» с многоуровневыми ячейками ( «MLC» )

Конкретное понятие «многоуровневые» , применительно к твердотельным накопителям, выполненным на основе «NAND – памяти» с многоуровневой ячейкой ( «Multi-Level Cell» , сокращенно «MLC» ), не особо точно отображает смысл определения и создает ложное впечатление о доступной плотности данных. Как можно было бы сделать вывод из названия, организация пространства ячейки должна поддерживать много уровней, однако она ограничивается только двумя битами на ячейку, что конечно превышает количество битов ячейки «SLC» в два раза, но не является слишком большим значением. Схема озаглавливания примененной технологии плотности данных не предполагала ориентацию на будущее развитие, поэтому и был выбран данный формат названия.

Скорость взаимодействия с данными у накопителей «MLC» несколько ниже, по сравнению с «SLC» , поскольку для записи двух битов в ячейку требуется больше времени, чем для записи одного. Увеличение количества битов в одной ячейке также снижает долговечность и надежность твердотельных накопителей «MLS» , потому что данные записываются на флэш-память «NAND» чаще, чем в предыдущем одноуровневом варианте «SLC» .

Тем не менее, «MLC» – это прочный и добротный образец твердотельного накопителя. Его емкость не настолько высока, как у других типов твердотельных накопителей, но уровень надежности и долговечности способен удовлетворить самые высокие требования пользователей, и на рынке твердотельных накопителей уже можно найти достойный вариант запоминающего устройства «MLS» емкостью в «1 ТБ» по приемлемой цене, полностью соответствующей его возможностям.

«SSD-накопители» с трехуровневыми ячейками ( «TLC» )

Как напрямую следует из названия «Triple-Level Cell» , твердотельный накопитель «SSD» формата исполнения «TLC» записывает три бита в каждую ячейку. На момент написания данного руководства «TLC» является наиболее распространенным типом накопителя «SSD» .

Накопители с данной технологией плотности данных предлагают пользователям хранилища «SSD» с гораздо большей емкостью, чем диски «SLC» и «MLC» , но вынуждены, по сравнению с ними, жертвовать относительной скоростью, надежностью и долговечностью. Это не значит, что диски «TLC» плохие и пользователям не стоит их рассматривать для применения на своих устройствах. На самом деле, в настоящий момент они, вероятно, являются самым лучшим предложением, сочетающим высокие показатели скорости обработки данных, времени загрузки системы и реакции на системные и пользовательские команды, в сравнении с остальными вариантами дисков, по достаточно низкой цене.

Не позволяйте понятию меньшей прочности заставить вас отказаться от использования твердотельного накопителя «TLS» , ведь, обычно, он гарантированно и безошибочно работает в течение нескольких лет.

Показатель суммарного объема записи данных ( «TBW» )

Разработчики твердотельных накопителей стремятся не только сохранить и преумножить преимущество «SSD» в скорости, но и работают над увеличением продолжительности гарантированного срока службы накопителей . И с целью маркировки значения долговечности к характеристикам «SSD» было добавлено понятие «TBW» ( «Total Bytes Written» ), которое принято исчислять в терабайтах ( «ТБ» ). Числовое значение обычно означает количество терабайт, которое можно гарантированно записать на диск до того момента, как он окончательно выйдет из строя.

Например, модель твердотельного накопителя «Samsung 860 Evo» емкостью «500 ГБ» (очень популярный «SSD» несколько лет назад) имеет рейтинг «TBW 600» , а модель объемом в «1 ТБ» – «1200 TBW» . Это невероятно огромное количество данных, поэтому такой диск непременно прослужит вам долгие годы.

«TBW» также дополнительно является оценкой «уровня безопасности» , и твердотельные накопители «SSD» , по своим технологическим возможностям, обычно превышают установленные предельные значения. Это означает, что диск, как минимум, указанное количество данных сможет гарантированно записать. Однако, чтобы обезопасить себя от непредвиденного выхода из строя накопителя, сделайте его резервную копию, чтобы минимизировать потерю данных, особенно на старых дисках.

Накопители «SSD» с четырьмя уровнями ячеек ( «QLC» )

Твердотельные запоминающие устройства с технологией плотности данных, подразумевающей использование четырехуровневых ячеек ( «Quad-level Cell» , сокращенно «QLC» ), могут записывать четыре бита в каждую ячейку.

«QLC NAND» может упаковать намного больше данных, чем другие типы твердотельных накопителей, но повышение общего количества, доступной для записи, информации напрямую оказывает сильное влияние на диск и уменьшает общую производительность запоминающего устройства «QLC» . Это особенно заметно, когда исчерпан кэш диска, например, во время передачи больших файлов (сорок гигабайт и выше). Производители дисков с технологией «QLC» пытаются оптимизировать работу накопителей, и, с большой долей вероятности, можно утверждать, что в краткосрочной перспективе данной проблемы удастся избежать.

Долговечность твердотельных накопителей «QLC» также является проблемой. Однако с другой стороны, бюджетный накопитель «Crucial P1 QLC NVMe» имеет показатель суммарного объема записи данных на уровне «100 TBW» для модели с емкостью диска «500 ГБ» и «200 TBW» для объема диска в «1 ТБ» , что, хотя и меньше установленных значений дисков «TLC» , но все же вполне достаточно для ежедневного домашнего использования.

Твердотельные накопители «Penta-Level Cell» ( «PLC» )

Запоминающие устройства твердотельного формата «SSD» , выполненные по технологии «PLC» , которые могут записывать пять бит на ячейку, для потребителей в данный момент еще не предлагаются, но процесс их представления уже в пути. Например, компания «Toshiba» уже упоминает приводы формата «PLC» в конце августа 2019 года, а корпорация «Intel» – в сентябре, что означает серьезность намерений в стремлении компаний предложить и завершить готовые разработки. Твердотельные накопители «PLC» должны быть в состоянии вместить гораздо больше данных и могут быть представлены значительными емкостями. Тем не менее, они также будут иметь схожие проблемы, что и диски «TLC» и «QLC» , когда речь заходит об уровнях долговечности и производительности.

Нет необходимости сразу приобретать готовый «SSD» с технологией плотности хранения данных «PLC» , а стоит некоторое время подождать и ознакомиться со специализированными отзывами и готовыми тестами. Кроме того, также необходимо обратить особое внимание на рейтинг «TBW» , чтобы иметь представление о гарантированном сроке службы, указанном производителем, и ознакомиться с результатами работы диска в реальных условиях, получив подтверждение склонности к возникновению поломок (на основе все тех же тестов).

Например, привод «QLC» , о котором мы упоминали в предыдущем разделе, имеет более низкий рейтинг «TBW» , но он гарантированно позволяет записывать до пятидесяти четырех гигабайт информации в день в течение пяти лет. Никто из пользователей не пишет так много данных в домашних условиях, поэтому можно ожидать, что данный диск будет работать довольно длительное время, несмотря на более низкий рейтинг «TBW» .

Другие понятия «SSD»

Ранее мы рассмотрели основные типы флэш-памяти «NAND» , но пользователям встречаются и другие определения, и далее мы дополнительно опишем несколько терминов, которые могут вам помочь полнее понять характеристики «SSD» :

  • «3D NAND» : в какой-то момент производители «NAND» попытались расположить ячейки памяти ближе друг к другу на плоской поверхности, чтобы уменьшить размер дисков и увеличить емкость. Такой подход работал до определенного момента, но флэш-память начинает терять свою надежность, когда ячейки расположены слишком близко друг к другу. Чтобы обойти данное ограничение, разработчики поместили ячейки памяти друг на друга, чтобы увеличить емкость. Такая архитектура обычно называется «3D NAND» , а иногда и вертикальным «NAND» .
  • «Технология выравнивания износа» : ячейки памяти «SSD» начинают разрушаться сразу в момент их первичного использования и процесс продолжается безостановочно при каждой записи. Чтобы избежать неравномерного снижения ресурса отдельных ячеек и помочь накопителям гарантированно прослужить заявленный срок, производители применяют технологию износа, которая пытается записывать данные в ячейки памяти как можно более равномерно. Вместо того, чтобы постоянно записывать определенный блок в один раздел диска, данная технология распределяет данные равномерно, поэтому все ячейки имеют одинаковый или соизмеримый показатель износа.
  • «Кэш» : каждый твердотельный накопитель «SSD» укомплектован кэшем, в котором данные кратковременно хранятся перед их непосредственной записью на диск. Данная специальная выделенная область быстрого доступа для временного хранения информации имеет решающее значение для повышения производительности «SSD» . Кэш-память обычно состоит из ячеек «SLC» или «MLC NAND» . Когда кэш заполнен, производительность имеет тенденцию к значительному снижению – это особенно верно для некоторых накопителей «TLC» и большинства дисков «QLC» .
  • «SATA III» : это наиболее распространенный интерфейс подключения жесткого диска «HDD» и твердотельного накопителя «SSD» в персональном компьютере. В этом контексте понятие «интерфейс» просто означает, каким образом происходит прямое соединение диска с материнской платой. «SATA III» имеет максимальную пропускную способность шестьсот мегабайт в секунду.
  • «NVMe» : данный интерфейс соединяет запоминающее устройство «SSD» с материнской платой. «NVMe» позволяет развивать молниеносную скорость передачи данных. Показатели скорости современных потребительских накопителей с интерфейсом «NVMe» примерно в три раза выше, чем у «SATA III» .
  • «M.2» : это форм-фактор (физический размер, форма и дизайн) накопителей «NVMe» . Их часто называют дисками «gumstick» , потому что они крошечные и прямоугольные. Накопители монтируются в специальные слоты на большинстве современных материнских плат.

Заключение

Стремительный рост объемов разнообразных видов цифровых материалов и существенное увеличение трудоемкости, ежедневно исполняемых пользователями, процессов вынуждает постоянно усовершенствовать существующие персональные компьютерные устройства, и особое внимание уделять применению надежных, обладающих высокой скоростью взаимодействия с данными, и долговечных запоминающих устройств значительной емкости.

Производители современных хранилищ данных, благодаря внедрению продвинутых методик, предлагают пользователям новый вид твердотельных накопителей, выполненных на основе флэш-памяти «NAND» . Доступные варианты различаются между собой технологиями, обеспечивающими плотность хранения данных, которые, в свою очередь, влекут за собой градацию твердотельных накопителей по количеству циклов чтения/записи цифровых материалов, предлагаемой емкости, гарантированном показателе суммарного объема записи данных и окончательной стоимости.

Ознакомившись с представленным руководством, пользователи смогут более осознанно подойти к вопросу комплектации своего персонального компьютера твердотельным накопителем «SSD» и выбрать наиболее лучший вариант , исходя из собственных возможностей и заявленных приоритетов.

Особенности работы SSD — что такое SLC-кэш и как он влияет на скорость

Ты купил современный SSD и довольный устанавливаешь его в свой ПК. Сразу же, на высокой скорости, начинаешь переносить на него данные с других накопителей. И вдруг в какой-то момент скорость записи на SSD падает в несколько раз. Что произошло? Почему падает скорость записи? Все дело в SLC-кэше.

Сегодня существуют твердотельные накопители на четырех типах памяти:

    SLC (Single Level Cell) — один бит на ячейку памяти. Самый первый тип памяти, используемый в SSD. SLC — самый быстрый, самый долговечный тип энергонезависимой NAND памяти. За счет того, что в ячейке хранится всего 1 бит данных, запись в ячейку происходит очень быстро. Ресурс жизни ячейки SLC — примерно 100 000 циклов перезаписи. Из-за высокой стоимости производства SSD накопители на основе SLC уже не встретить в продаже. Тем более SLC накопители были только с интерфейсом SATA и небольшого объема.


Samsung — единственная компания, которая продолжает называть всю свою память MLC, лишь добавляя количество бит на ячейку. И часто это вводит покупателей в заблуждение. Например, 3-bit MLC, хотя по факту это TLC.




Сегодня самыми распространенным типом памяти в твердотельных накопителях является усовершенствованный 3D NAND TLC. Невысокая цена производства, высокая плотность данных, современные контроллеры и использование технологий SLC-кэширования позволили производителям значительно повысить скорость и ресурс TLC накопителей. Но все ли так хорошо, как кажется на первый взгляд?

Что такое SLC-кэш, и как он реализован

Чтение и запись данных на SSD-накопитель происходит по битам. Запись в ячейки SLC памяти самая быстрая, так как одна ячейка содержит лишь один бит. С TLC-накопителями сложнее. Чтобы записать одну ячейку, необходимо несколько раз считать с нее данные, для того чтобы далее их правильно записать. А дополнительные операции чтения с ячейкой значительно увеличивают время.

И для того, чтобы повысить скорость записи в TLC ячейки, производители прибегли к простой хитрости. В начале записи контроллер сохраняет данные по одному биту на ячейку, что называется режимом SLC. Это значительно увеличивает скорость записи. Продолжая запись, контроллер в фоновом режим уплотняет записанные данные в ячейку, преобразуя ее в трехбитную. Но такая быстрая запись не может быть постоянной. Объем накопителя все же рассчитывается из трех бит на ячейку. Следовательно, после заполнения SLC-кэша, скорость падает и достаточно сильно. SLC-кэш бывает реализован разными способами:

    Ограниченная выделенная область SSD-диска.
    На SSD с контроллером Phison PS3111-S11 выделяется небольшой объем диска (SLC-кэш) — как правило, это 4–6 ГБ, куда данные пишутся с максимальной скоростью. Если вы решите разом записать данные, объем которых больше, чем эта область, то вы увидите сильное падение скорости после переполнения SLC-кэша. Пример ограниченного SLC-кэша на Patriot P210 256GB (P210S256G25).



Следовательно, на QLC накопителях в таком режиме максимальная скорость будет на четверть свободного объема накопителя или меньше — все зависит от реализации SLC-кэша. Пример SLC-кэша на Smartbuy Nitro 480GB (SBSSD-480GQ-MX902-25S3). Объем SLC-кэша на QLC накопителе составил всего 23 % от общего свободного объема SSD.


Большинство пользователей не столкнутся с заполнением SLC-кэша при работе с SSD накопителем и вот почему:

  • Для того чтобы заполнить SLC-кэш накопителя, необходимо записывать на него большой объем данных с другого SSD-накопителя. А пока у большинства пользователей в ПК используется всего один SSD и запись больших объемов данных бывает редко.
  • При скачивании данных из интернета, пропускная способность канала 100 Мбит не позволит SLC-кэшу переполнится.
  • При установке и распаковке игр на накопитель, больше задействован процессор и оперативная память, запись на накопитель происходит нелинейно.
  • При скачивании данных с жесткого диска, скорость которых меньше SSD в несколько раз, SLC-кэш в большинстве случаев не успеет заполниться, чтобы снизить скорость записи
  • Просмотр видео высокой четкости тоже никак не скажется на скорости вашего накопителя, несмотря на кэширование браузера.

Как определить объем SLC-кэша?

SLC-кэш на разных тестах и при разных условиях может показывать разные значения. Все зависит от того, как в данный момент используется накопитель. Поэтому все тесты лучше проводить на абсолютно новом пустом SSD накопителе, при этом не используя его в качестве системного. При установке операционной системы на SSD, даже в покое происходят операции чтения и записи, а следовательно результат будет не совсем точный.

Подготовка SSD накопителя

Если накопитель уже используется как дополнительный, лучше его очистить или отформатировать. Дальше необходимо выполнить команду TRIM через оптимизацию накопителя средствами Windows. Для этого переходим в «Этот компьютер» («Мой компьютер»).


Правой кнопкой мыши нажимаем на наш SSD и выбираем Свойства.


Переходим во вкладку Сервис и нажимаем кнопку Оптимизировать.


После чего выбираем снова наш SSD накопитель и наживаем кнопку Оптимизировать.


После данной операции необходимо дать накопитель «отдохнуть» примерно 15 минут и не выполнять с ним никаких операций.

Первый способ

Для определения SLC-кэша нам понадобятся программы, которые могут непрерывно линейно записывать данные на накопитель. Это можно сделать утилитой AIDA64, в разделе Сервис → Тест диска.


Далее в новом окне AIDA64 Disk Benchmark, в первом выпадающем списке меню выбираем Тест линейной записи (Linear Write), а затем накопитель, который необходимо протестировать.

ВАЖНО! Сразу после начала этого теста все данные с накопителя будут удалены!


Второй способ

Не настолько точный, как тесты утилитами, но тоже наглядный и очень понятный. Для этого нам понадобится второй SSD-накопитель, назовем его «исходный». (исходный SSD накопитель может быть даже системным). Для максимальной точности скорость чтения Исходного SSD должна быть выше, чем скорость записи тестового SSD, на котором будем определять объем SLC-кэша. На исходном накопителе создаем папку с объемными видеофайлами. Даже если у вас есть один видеофайл, просто копируем его несколько раз. Объем папки будет зависеть от объема тестового SSD — папка должна быть кратна 100 ГБ, чтобы можно было легко увидеть объем SLC-кэша. Также объем папки должен быть больше, чем треть общего объема тестового SSD накопителя, чтобы на примере одного копирования мы смогли все увидеть. Не забываем подготовить SSD по инструкции выше. Давайте скопируем папку объемом 100 Гб на SSD накопитель ADATA Falcon 256GB (AFALCON-256G-C) и посмотрим на SLC-кэш.

По графику объем SLC-кэша составил примерно 85 Гб. А вот скорость до заполнения SLC-кэша и после составили 1,05 ГБ/сек и 123 МБ/сек соответственно.

Как сильно скорость SSD накопителя может падать после заполнения SLC-кэша?

Ответить на это вопрос однозначно для всех накопителей не получится. И тому есть несколько причин:

  • Контроллер SSD-накопителя. Чем производительнее контроллер, тем выше будет скорость как до заполнения SLC-кэша, так и после.
  • Наличие DRAM-буфера на накопителе. В этом буфере находится таблица с адресами данных в ячейках NAND памяти SSD. А это позволяет не считывать данные лишний раз для проверки. Поэтому при наличии DRAM-буфера скорости накопителя выше как до заполнения SLC-кэша, так и после.
  • Тип NAND памяти, структура ячеек и количество слоев также влияют на скорость.
  • Файлы разного объема и их количество влияют на скорость записи, а следовательно — скорость заполнения SLC-кэша. Копируя на SSD много мелких файлов, скорость записи будет низкая, и заполняться SLC-кэш будет медленнее.
  • Перегрев и последующий троттлинг контроллера может снизить скорость NVMe SSD накопителя до заполнения SLC-кэша.

Вот пример недорого SATA SSD накопителя Patriot P210 128GB (P210S128G25)


Скорость после заполнения SLC-кэша падает до 71,5 МБ/сек. И это скорости прямой записи в TLC режиме.

Теперь давайте посмотрим, на что способны топовые NVMe SSD накопители на примере Samsung 970 EVO Plus 1TB (MZ-V7S1T0BW).


Даже после заполнения SLC-кэша скорости падают не значительно и остаются высокими до полного заполнения SSD-накопителя.

Если мы посмотрим на Smartbuy Nitro 240GB с QLC чипами памяти, то тут сразу видно еще более сильное снижение скорости до 22 МБ/сек. Даже не нужно ждать окончания теста — по графику все и так понятно.


Без SLC-кэширования не обходится ни один современный SSD-накопитель. Причем не важно, на каком типе памяти он построен — TLC или QLC. Благодаря SLC-кэшу мы имеет такие высокие скорости. И пусть на разных накопителях разный объем кэша, при обычном использовании мы никогда не увидим значительное снижение скорости, так как просто не сможем заполнить SLC-кэш. Конечно, если вы работаете с видеофайлами, особенно с разрешением 4К, и вам постоянно приходится перемещать их, например при видеомонтаже, то не стоит покупать дешевые SSD накопители. Лучше заранее посмотреть тесты и обзоры и выбрать оптимальный вариант. В большинстве же случаев SLC-кэш так и останется чем-то неизвестным.

Для данной статьи существует видоеверсия с большим количеством анимаций, рекомендую к просмотру именно её, вместо текстовой версии:

Принципы работы ячеек памяти, определение носителя информации, принципы считывания состояния ячейки памяти

Каждая ячейка памяти — это полевой транзистор с изолированным затвором, но не простой, а хитрый. Со сдвоенным затвором. Если кто не в курсе общая суть полевого транзистора заключается в следующем:

У нас есть исток и сток, проще говоря вход и выход, и между ними область через которую может проходить заряд от стока к истоку, и есть ещё одна отделённая область от этих структур диэлектриком, которая называется — затвор. И если подать заряд на затвор, то затвор своим электромагнитным полем начинает влиять на легированную часть транзистора между стоком и истоком и этим перекрывает возможность протекания тока между ними.

Ячейки памяти в SSD. Как работают, почему ломаются? SLC, MLC, TLC, QLC SSD, Компьютер, Ликбез, Статья, Видео, Длиннопост

Ячейки памяти в SSD. Как работают, почему ломаются? SLC, MLC, TLC, QLC SSD, Компьютер, Ликбез, Статья, Видео, Длиннопост

То есть если поместить в него какой-то заряд, то этот заряд сам никуда не денется. И тут начинается самое интересное. Предположим, что заряда на плавающем затворе — нет. В таком случае — транзистор работает ровно так же, как и в случае когда второго затвора не было вообще. То есть не подаём заряд на затвор ток не идёт — подаём — ток идёт. Но если в плавающий затвор подать отрицательный заряд, то логика работы меняется. Если не подавать заряд на обычный затвор, то ток идти не будет, но если падать положительный заряд, то этот заряд будет компенсирован отрицательным зарядом плавающего затвора и в сумме они не дадут необходимого заряда чтобы ток через транзистор пошёл. То есть в случае активации транзистора ток через него всё равно не идёт. Иными словами — в случае подачи положительного заряда, если на плавающем ничего нет, то транзистор будет открыт, а если заряд есть — то транзистор будет закрыт. А теперь вспоминаем, что заряд в плавающем затворе никуда не девается, в том числе и в моменты когда питание на весь накопитель не подаётся вообще. То есть в любой момент времени мы можем по поведению тока сток исток понять есть ли заряд в нашем хитром затворе или нет. То есть прочитать заранее сохранённое состояние нашего транзистора, который стал уже вовсе и не транзистором, а ячейкой памяти.

Запись данных в ячейку памяти и причины ограниченности ресурса работы SSD

С запоминанием информации в целом понятно. С тем как понять что записано надеюсь тоже понятно. Остаётся понять только то, как осуществляется зарядка и разрядка плавающего изолированного затвора. То есть изменение состояния самой ячейки памяти. Иными словами — запись и стирание данных. И тут всё в общем-то не так сложно. Общая суть в том, что если приложить достаточное напряжение — то электроны могут пройти через диэлектрик, в нашем случае диоксид кремния.

Ячейки памяти в SSD. Как работают, почему ломаются? SLC, MLC, TLC, QLC SSD, Компьютер, Ликбез, Статья, Видео, Длиннопост

При подаче высокого напряжения на Затвор и Сток электроны вынужденно проходят в область плавающего затвора

И имея вокруг нашего хитрого затвора достаточную разность потенциалов можно в него насильно впихнуть электроны, или наоборот высосать из него электроны, тем самым придав ему некий заряд, который сам по себе, без этих повышенных напряжений, никуда уже не денется долгие годы. Собственно таким образом и производится запись в ячейки памяти.

Ячейки памяти в SSD. Как работают, почему ломаются? SLC, MLC, TLC, QLC SSD, Компьютер, Ликбез, Статья, Видео, Длиннопост

Проблема только в том, что эти насильственные действия над транзистором на повышенном напряжении разрушают диоксид кремния вокруг затвора раз за разом при каждом прохождении через него заряда.

Ячейки памяти в SSD. Как работают, почему ломаются? SLC, MLC, TLC, QLC SSD, Компьютер, Ликбез, Статья, Видео, Длиннопост

Что ведёт к деградации свойств, и в конечном итоге к выходу ячейки памяти из строя. То есть при многократном воздействии на изолированный плавающий затвор для изменения его заряда — разрушается транзистор. То есть для транзистора существует предельное количество циклов изменения состояния этого затвора перед тем как ячейка памяти перестанет работать должным образом. Естественно разработчики накопителей в курсе проблемы, это всё учитывается в создаваемых контроллеров памяти, которые стремятся равномерно производить износ всего накопителя, вводятся резервные области для замены вышедших из строя ячеек, есть и другие софтовые оптимизации уже и на уровне операционных систем позволяющие максимально редко производить ненужные перезаписи.

Многобитные ячейки памяти. MLC, TLC, QLC. Принципы работы и отличия от однобитных. Причины падения скорости от увеличения битности.

С точки зрения работы транзистора наш дополнительный затвор позволяет сдвигать сток затворную характеристику. И кардинальное наличие заряда в плавающем затворе сдвигает эту характеристику так далеко, что рабочие напряжения для транзистора его не открывают.

Ячейки памяти в SSD. Как работают, почему ломаются? SLC, MLC, TLC, QLC SSD, Компьютер, Ликбез, Статья, Видео, Длиннопост

Ячейки памяти в SSD. Как работают, почему ломаются? SLC, MLC, TLC, QLC SSD, Компьютер, Ликбез, Статья, Видео, Длиннопост

Отрицательные заряды сильно смещают напряжение Затвор-исток при котором начинает идти ток сток-исток

И в показанной схеме у нас есть некий широкий диапазон напряжений на затворе который нам позволяет понять что записано условно 0 или 1. То есть мы сохраняем 1 бит информации.

И описанный метод записи и чтения — полностью цифровой. То есть транзистор либо проводит ток, либо — нет, и это мы можем интерпретировать условно в то, что записан условно 0 или 1.

Ячейки памяти в SSD. Как работают, почему ломаются? SLC, MLC, TLC, QLC SSD, Компьютер, Ликбез, Статья, Видео, Длиннопост

Набор стоко-затворных характеристик для разного уровня заряда плавающего затвора

И это уже не цифровая запись, а аналоговая, то есть если мы зарядили чуть-чуть плавающий затвор, то и сместили мы характеристику чуть-чуть и у нас транзистор открывается если подать на затвор напряжение чуть выше чем минимально нужное, если зарядить плавающий затвор чуть сильнее, то и открыть транзистор будет ещё сложнее и т.д. В теории можно допустить бесконечное количество градаций уровней записей. Сейчас наверное некоторые из вас в шоке, но ячейки памяти в MLC, TLC и QLC SSD накопителях — это аналоговые носители информации, а не цифровые. Потому что именно таким образом и производиться запись многобитных ячеек памяти. Ячейка всё равно может сохранить только одно состояние записи, но если для однобитных ячеек записью было наличие или отсутствие заряда на плавающем затворе, то в многобитных ячейках под записью понимается не факт наличия или отсутствия заряда — а величина заряда. И уже эта величина при чтении должна быть оцифрована таким образом, чтобы это можно было записать в более чем один бит информации. И при оцифровывании любого аналогового сигнала емкость его данных в цифровом виде зависит от получаемой дискретности уровней распознавания сигнала. То есть чем больше градаций сигнала можно распознать, тем выше ёмкость данных аналогового сигнала. В текущий момент дискретизация сигнала производиться не очень сильная.

Для двух битов данных нужно распознать 4 уровня величины сохранённого заряда,

Ячейки памяти в SSD. Как работают, почему ломаются? SLC, MLC, TLC, QLC SSD, Компьютер, Ликбез, Статья, Видео, Длиннопост

для трёх бит нужно распознать 8 уровней величины заряда,

Ячейки памяти в SSD. Как работают, почему ломаются? SLC, MLC, TLC, QLC SSD, Компьютер, Ликбез, Статья, Видео, Длиннопост

и для 4-х бит нужно распознавать до 16 уровней заряда.

Ячейки памяти в SSD. Как работают, почему ломаются? SLC, MLC, TLC, QLC SSD, Компьютер, Ликбез, Статья, Видео, Длиннопост

И распознование производится по смещению характеристики открытия транзистора. Грубо говоря, если у нас разбит весь диапазон тестирования открытия транзистора на 16 диапазонов, то надо по очереди тестировать каждое напряжение на затвор и зная при каком из них у нас в достаточной степени открылся транзистор — такой уровень и считать записанным в этом транзисторе. И просто каждой градации этих напряжений даются порядковые номера которые и есть цифровая интерпретация уровня заряда плавающего затвора. И для 16 градаций или для QLC памяти — это 4 бита. Некоторые компании грозятся сейчас выпустить 5 битные ячейки.

Ячейки памяти в SSD. Как работают, почему ломаются? SLC, MLC, TLC, QLC SSD, Компьютер, Ликбез, Статья, Видео, Длиннопост

Как вы понимаете именно по технике разницы с 4-х битными не будет, но градаций будет уже не 16, а 32. То есть надо очень точно попадать в нужный диапазон заряда при наполнении плавающего затвора, и гораздо сложнее становится процесс считывания сигнала, вернее процесс оцифровки уровня заряда плавающего затвора. Естественно при этом снижается скорость работы с памятью. Кроме того — напомню, что процесс наполнения затвора зарядом — это аварийный для транзистора режим работы, и этот аварийный режим надо ещё очень точно контролировать, чтобы действительно был помещён нужный заряд, а не чуть больше или чуть меньше, потому что если заряд не попал в строгие рамки, то при его интерпритации он может дать другие цифровые значения. И, естественно, чем больше градаций — тем сложнее попасть в нужный диапазон. И в многобитных ячейках — неверная запись не является чем-то очень редким, поэтому для записи всегда требуется контроль на ошибки, что отнимает время, снижая скорость работы, вдобавок в случае ошибочной записи требуется перезапись ячеек в странице в которой была произведена ошибочная запись, что, как вы понимаете, ещё и снижает ресурс.

Причины снижения ресурса работы накопителей, запись накопителей с уплотнением данных.

Но не только этим снижается ресурс записи на многобитных ячейках. Как вы могли понять из теории — аппаратных различий для MLC, TLC или QLC памяти — нет. Меняется только процесс интерпретации записи, который задаётся программно. Иными словами если контроллер накопителя это позволяет, то QLC можно записывать в более простых для записи TLC, MLC или SLC режимах. Что сейчас активно и делается, хотя не на всех накопителях, но если пару лет назад было редкость — перезапись накопителей с уплотнением, то сейчас редкость когда такого не происходит. Работу уплотнения записи отлично было видно в тестах накопителей, когда при полной последовательной записи скорость падала в несколько градаций.

Ячейки памяти в SSD. Как работают, почему ломаются? SLC, MLC, TLC, QLC SSD, Компьютер, Ликбез, Статья, Видео, Длиннопост

Разберёмся в том, что при этом происходило с накопителем.

Вначале накопитель занимал весь свой объём записывая всё в однобитном режиме. То есть абы какой заряд уже абы как смещает стоко-затворную характеристику, но этого достаточно чтобы записать один бит на ячейку. И в таком режиме весь объём ячеек быстро заканчивается. По данным о диске он ещё записан совсем чуть-чуть, но на самом деле он полностью забит данными. И для дальнейшего записывания накопитель начинает уплотнять запись. Но происходит это исключительно перезаписыванием. То есть надо во временное место скопировать данные страницы, далее затереть записанные данные, то есть вытащить из плавающих затворов заряды, дальше взять новый кусок информации, собрать его со старым куском информации и записать в те же ячейки, но уже не абы как, а, допустим, в MLC режиме, то есть с 4-мя градациями уровней заряда плавающих затворов. Далее накопитель так же заполняется полностью уже в режиме MLC. Если надо продолжить запись, а в MLC режиме место опять закончилось, то процесс уплотнения, то есть перезаписи в более плотном формате производиться уже в TLC режиме. Далее ещё может быть произведена запись в QLC режиме. Подобный механизм работает и в случае если вам хватило места до уплотнения. Как только вы перестаёте заполнять накопитель он автоматически начинает уплотнять запись, чтобы в случае необходимости он мог опять кратковременно вести запись в однобитном режиме используя свободный остаток. Хотя ещё раз напомню, что не все накопители так делают. В некоторых выделен фиксированный объём для быстрой записи и дальше накопитель заполняется уже с финальной плотностью.

Естественно такое огромное количество травмирующих ячейки перезаписей а также перезаписей из-за ошибок — крайне негативно сказывается на долговечности работы ячеек. Кроме того при большей плотности записи для изменения одного и того же объёма данных записанных случайным образом потребуется перезаписать больше страниц накопителя. Иными словами — ресурс накопителей от увеличения плотности резко падает и, в общем-то, причин на это аж несколько.

Надеюсь теперь полученные знания сделают для вас тесты накопителей увлекательнее.

Читайте также: