Способы дистрибуции точного времени в компьютерных сетях

Обновлено: 07.07.2024

Синхронизация времени в промышленных сетях необходима для согласования работы устройств и приложений, осуществляющих обработку данных в режиме реального времени. Помимо этого, синхронизация требуется в системах мониторинга и управления с целью протоколирования возникающих событий и своевременного реагирования на них.

В зависимости от решаемых задач, могут потребоваться разные уровни точности синхронизации времени. Так одной из наиболее чувствительных к точности времени систем является система автоматизации на энергетических подстанциях. Современная система автоматизации подстанции описана в стандарте МЭК 61850, в котором указано, что точность синхронизации времени на шине процессов должна быть не хуже 1 мкс.

Существует несколько методов синхронизации времени.

Часы Master отправляют информацию о времени на часы Slave. Последние используют полученные данные, учитывая задержку на передачу информации, для синхронизации времени. Задержка может быть измерена или рассчитана. Данный метод может быть использован только в тех системах, где сеть передачи данных и путь от часов Master к часам Slave не меняются, в противном случае при синхронизации времени будет неверно учтена задержка. При использовании этого метода следует учесть, что в любой системе могут возникнуть какие-либо помехи и шумы, которые повлияют на время передачи информации от мастера, но, так как связь односторонняя, отследить дополнительные задержки невозможно.

Помимо отличий в методах синхронизации, разделяют еще и типы сетевых инфраструктур.

Выделенная и конвергентная сети

В выделенной сети для синхронизации времени используют выделенную линию передачи данных. В такой сети используют методы синхронизации времени 1PPS и IRIG-B.

В конвергентной сети синхронизация времени происходит по тем же каналам, по которым передается весь остальной трафик системы. Для подобных систем используют протоколы синхронизации времени NTP, SNTP и PTP.

Кроме того, в отдельную группу можно отнести системы синхронизации от орбитальных спутников – например, GPS/ГЛОНАС.

Технологии синхронизации времени

Рассмотрим, что представляет собой каждый из способов синхронизации времени.

  • GPS (Global Positioning System) – Глобальная система позиционирования. Синхронизация времени осуществляется во время определения местонахождения устройства, оснащенного GPS-приёмником. Для этого устройство ловит сигнал со спутников, установленных на околоземной орбите. Каждый из спутников имеет атомные часы, за счет чего система GPS обеспечивает хорошую точность. Минусом данного метода является необходимость в GPS-антенне, сигнал от которой может быть нестабильным.
  • 1PPS (1 pulse per second) – Сигнал 1PPS не содержит метки времени. Master-устройство посылает 1 импульс в секунду по отдельной сети: оптоволоконной линии, витой паре или коаксиальному кабелю. Часы Slave используют этот импульс только для синхронизации начала каждой секунды. Устройства не могут с помощью 1PPS получить информацию по дате и времени, поэтому его чаще всего используют совместно с другими протоколами синхронизации, например NTP.
  • NTP (Network Time protocol) – Протокол сетевого времени широко распространен в сетях Ethernet и Интернет. Принцип работы NTP основан на многоуровневой системе с множеством источников времени.
  • IRIG-B (Inter Range Instrumentation Group) – С помощью данной технологии передается информация о дате и времени вместе с импульсным сигналом синхронизации. IRIG-B используют выделенную сеть для передачи информации. Сеть может быть построена на оптическом волокне, витой паре или коаксиальном кабеле.

Каждый уровень системы NTP называется слоем и содержит источники времени.

  • Слой 0 — эталонные часы (например, атомные часы или часы GPS)
  • Слой 1 — серверы времени, подключённые напрямую к эталонным часам. Часы этого слоя считаются лучшими источниками времени в системе
  • Слой 2 — серверы времени, которые синхронизируются с часами слоя 1

Всего слоев может быть до 16 (часы 16 слоя считаются не синхронизированными). Устройства предыдущего слоя всегда выступают в качестве серверов времени для устройств более низкого слоя. Каждое устройство в такой иерархической системе может получать данные о времени с устройств своего слоя и предыдущего. Полученные данные сравниваются по определенному алгоритму и выбирается наиболее точное время. Подобная развернутая многоуровневая система также позволяет оптимизировать трафик и нагрузку на устройства в сети.

Более подробно познакомимся с протоколом синхронизации точного времени - PTP.

Стандарт IEEE 1588 V2

Для систем, которым не хватает точности синхронизации, предоставляемой протоколами NTP/SNTP, был разработан стандарт IEEE 1588 v2. Данный стандарт описывает протокол точного времени - PTP (Precision Time protocol). PTP предназначен для использования в локальных сетях и гарантирует высокую точность синхронизации.

Типы устройств в системе РТР:

Выбор гроссмейстера

Изучение технологий дистрибуции точного времени в сетях передачи данных, основанных на протоколе NTP. Примеры организации подсетей-клиентов системы дистрибуции точного времени. Оптимальный вариант логической организации подсистемы синхронизации времени.

Рубрика Программирование, компьютеры и кибернетика
Предмет Проектирование компьютерных систем
Вид статья
Язык русский
Прислал(а) Бородин А.В.
Дата добавления 07.03.2019
Размер файла 1,8 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

Проектирование схемы сбора информации со ста двадцати восьми датчиков на основе микроконтроллера. Разработка листинга программы для контроллера, обрабатывающей поступающие данные с накоплением их во Flash-памяти с учетом точного времени и текущей даты.

курсовая работа [891,8 K], добавлен 24.12.2012

Встроенные структуры данных, связанные с датами и временем. Системное время в секундах. Представление текущего времени в строку. Изменение даты и времени модификации файла. Установка системной даты и времени по секундам. Работа с системными часами.

методичка [28,2 K], добавлен 06.07.2009

Разработка приложения, которое будет выполнять функции показа точного времени и точной даты. Определение дополнительных функций разработанного приложения. Рассмотрение основных этапов создания программного продукта. Результаты тестирования приложения.

курсовая работа [2,2 M], добавлен 14.04.2019

Системы сбора и передачи информации. Обоснование выбора кода, способа передачи и синхронизации. Выбор длины посылки, формата кодового перехода. Расчет помехоустойчивости и времени запаздывания. Разработка структурной схемы передающего устройства.

курсовая работа [412,8 K], добавлен 24.06.2013

Значение астрофизических исследований. Международные космические проекты. Инфокоммуникационные технологии удаленного доступа к компьютеру. Основные возможности и достоинства Team Viewer. Порядок работы с астрофизическим комплексом в реальном времени.

Аннотация: Предметом исследования являются процессы проектирования и создания защищенных мультисервисных сетей передачи данных (ЗМСПД). Объектом исследования является подсистема дистрибуции точного времени ЗМСПД. Наличие указанной подсистемы является базовым требованием с точки зрения обеспечения безопасности функционирования сети. Средства регистрации событий в ЗМСПД, системы анализа протоколов событий, системы защиты от вторжений – это лишь небольшой перечень подсистем ЗМСПД, которые не могут существовать без службы точного времени. С другой стороны, указанная служба может рассматриваться как клиентский сервис ЗМСПД. В этом качестве служба точного времени в вычислительных сетях год от года становится все более востребованной.В то же время не секрет, что в качестве источников точного времени в современных ЗМСПД используется продукция западных стран. При этом, ввиду высокотехнологичности указанных изделий, часто соответствующее производство не вынесено в страны Азии. Соответственно сегодня в этой сфере возникают определенные сложности при подборе и заказе оборудования. Учитывая выше сказанное, автор подробно рассматривает такие аспекты импортозамещения в части создания служб точного времени ЗМСПД, как наличие доступных опорных источников точного времени в Российской Федерации, присутствие отечественного производителя оборудования на соответствующем рынке, экономические аспекты последствий от реализации возможного импортозамещения. Особое внимание уделяется типовым конфигурациям источников точного времени в ЗМСПД, базирующимся на оборудовании отечественного производства. Работа основывается на совокупности результатов маркетинговых исследований отечественного рынка радиоэлектроники, проведенных автором. В качестве источников информации использовались сеть Internet и прямые (по телефону) контакты с отделами продаж ряда производителей. При формировании целей маркетинговых исследований использовались стандарты в области протоколов дистрибуции точного времени поверх Internet-протокола, а также некоторые исследования автора. Основным выводом проведенного исследования является констатация возможности использования в качестве источников точного времени в ЗМСПД комплексов, построенных на оборудовании отечественных производителей. Особым вкладом автора в исследование темы является выработка рекомендаций для отечественных производителей в части корректировки их рыночного поведения. Новизна исследования заключается в использовании концепции совокупной стоимости владения при сравнении различных сценариев построения подсистем дистрибуции точного времени в вычислительных сетях, базирующихся на Internet-протоколе.


Ключевые слова: NMEA, GPS, ГЛОНАСС, РТЗ, эталон времени, РБУ, дистрибуция точного времени, сеть передачи данных, NTP, совокупная стоимость владения

Abstract: The article deals with processes of design and creation of the secure wide area network (SWAN). Object of research is the subsystem of distribution of exact time of SWAN. Existence of the specified subsystem is the basic requirement from the point of view of safety of functioning of a network. Means of registration of events in SWAN, systems of the analysis of protocols of events, intruder detection systems is only a small list of subsystems of SWAN which can't exist without service of exact time. On the other hand, the specified service can be considered as the SWAN client service. In this quality the service of exact time in computer networks from year to year becomes more and more demanded. At the same time it is not a secret that as the sources of exact time in modern SWAN the production of the western countries are used. Thus, in view of categories hi-tech of the specified products, the corresponding production isn't taken out to the countries of Asia. Respectively today in this sphere there are certain difficulties at selection and the order of the equipment. Considering above told, author in detail considers such aspects of import substitution regarding creation of services of exact time of SWAN, as existence of available basic sources of exact time in the Russian Federation, presence of domestic producer of the equipment in the relevant market, economic aspects of consequences from realization of possible import substitution. The special attention is paid to the standard configurations of sources of exact time in SWAN which are based on the equipment of a domestic production. The article is based on set of results of the researches of the domestic market of radio electronics conducted by author. As sources of information the Internet publications and phone calls to the sales departments of a number of producers were used. When forming the purposes of market researches the standards in the field of protocols of distribution of exact time over the Internet-protocol and also some researches of the author were used. The main conclusion of the conducted research is ascertaining of possibility of use as sources of exact time in SWAN of the complexes constructed on the equipment of domestic producers. A special contribution of the author to the research of a subject is development of recommendations for domestic producers regarding correction of their market behavior. Novelty of the research is in the use of the concept of total cost of ownership when comparing various scenarios of creation of subsystems of distribution of exact time in the computer networks which are based on the Internet-protocol.

accurate time server, RBU, clock synchronization, RTZ, GLONASS, GPS, NMEA, network, NTP, total cost of ownership

Современные крупномасштабные защищенные мультисервисные сети передачи данных (ЗМСПД) немыслимы без таких подсистем, как подсистема безопасности, службы мониторинга и диагностики неисправностей, и, в ряде случаев, подсистема динамической ремаршрутизации. Важно обратить внимание на то, что ни одна из названных подсистем не может функционировать без наличия в ЗМСПД службы точного времени.

Целью настоящей статьи является исследование возможности реализации схем импортозамещения технологий и оборудования, а также формирование рекомендаций для российских производителей, которые бы обеспечили создание условий эффективного решения задач дистрибуции точного времени в отечественных ЗМСПД.

Отечественные технологические платформы синхронизации времени высокой точности

Дивизион космического базирования системы ГЛОНАСС в последние годы был в значительной степени усилен, что позволило добиться высоких показателей доступности, см. рис. 1.

glonass.20120514

Рис. 1. Мгновенная доступность системы ГЛОНАСС по состоянию на 14.05.2012 г. (доступные данные на момент подготовки статьи)

rbu_2

Рис. 2. Расположение радиостанции РБУ и примерная зона ее охвата

rtz_2

Рис. 3. Расположение радиостанции РТЗ и примерная зона ее охвата

Методика получения пороговых показателей качества синхронизации времени

stend001

Рис. 4. Топология вычислительной сети стенда для иссдедования процессов синхронизации времени на основе приема спутниковых сигналов системы глобального позиционирования GPS в условиях использовании оборудования компаний Symmetricom и Communication Systems Solutions.

Достаточно длительный (более двух с половиной месяцев) мониторинг работы описанного стенда позволил собрать статистику, представленную на рис. 5. (Для обработки и отображения статистики использовалось программное обеспечение NTP Time Server Monitor by Meinberg версии 1.04.) Обработка данных позволила получить следующие выборочные характеристики случайной величины точности синхронизации:

- рекордные значения: `min quadDelta t = -12.422` мс, `max quad Delta t = 10.778` мс;

- стандартное отклонение: `sigma = 4.453` мс.

ntp_timeservermonitor.v.1.04

Рис. 5. Статистика синхронизации времени от спутникоаого дивизиона GPS в рамках использования исследовательского стенда на основе двух эталонных источников времени: Truetime NTS-90 компании Symmetricom и TM1000A компании Communication Systems Solutions.

Полученные характеристики сдучайной величины точности синхронизации в дальнейшем могут служить ориентиром для оценки альтернативных технических решений.

Исследование отечественного рынка радиоэлектронной продукции соответствующего назначения, включая анализ продуктовой линейки производителей, позволил выделить две компании, чья продукция позволяет решить задачу синхронизации времени в ЗМСПД на основе использования протокола NTP сразу, без привлечения изделий сторонних производителей.

Одним из игроков отечественного рынка оборудования для частотно-временных измерений является нижегородская компания «Общество с ограниченной ответственностью «Конструкторское бюро «Стабихрон», основанная в 1996 году и имеющая богатый опыт разработки радиоизмерительных приборов и аппаратуры тактовой синхронизации для цифровых сетей связи. Клиентами компании являются Министерство связи РФ, ОАО "Ростелеком", операторы региональных сетей связи, центры стандартизации, сертификации и метрологии и многие другие.

В частности, в перечне продукции компании присутствуют следующие изделия.

1) Радиочасы РЧ-011, предназначенные для приема ЭСЧВ, передаваемых радиостанцией РБУ или РТЗ (в зависимости от исполнения) и выдачи информации о времени в объеме, соответствующем ГОСТ 8.515-84. Эти радиочасы при использовании фирменной программы TimeSync обеспечивают синхронизацию векового таймера компьютера относительно эталонной шкалы времени UTC с погрешностью не более 60 мс.

2) Радиочасы РЧ-011 повышенной точности используют те же источники синхронизации. При работе с внутренним кварцевым генератором аппаратурная погрешность синхронизации сигналов 1 сек и 1 мин составляет не более 10 мс. При работе с внешним высокостабильным генератором возможна синхронизация сигналов 1 сек, 1 мин и 5 мин с погрешностью не более 50 мкс.

3) Антенна магнитная активная, предназначенная для приема сигналов радиостанций РБУ на частоте 66,(6) кГц и РТЗ на частоте 50 кГц и ориентированная на работу с радиочасами РЧ-011. Полоса пропускания данной антенны по уровню 3 дБ – 2 кГц. Выходное сопротивление симметричного выхода – 120 Ом. Габаритные размеры – 36x200 мм.

4) Антенна электрическая активная, предназначенная для приема сигналов в диапазоне частот от 30 до 100 кГц и ориентированная на работу с радиочасами РЧ-011. Изготавливается в двух исполнениях: с коаксиальным выходом и выходным сопротивлением 50 Ом, и с симметричным выходом и выходным сопротивлением 120 Ом. Габаритные размеры антенны – 36x510 мм.

6) Спутниковые радиочасы РЧ-021, предназначенные для выдачи информации о текущей дате и времени, синхронизированных по шкале спутниковых навигационных систем ГЛОНАСС и GPS. Часы поддерживают три режима работы: ГЛОНАСС, GPS, ГЛОНАСС+GPS. Погрешность синхронизации сигнала 1 сек обеспечивается данным оборудованием на уровне 1 мкс.

Технические решения по построению NTP-серверов на базе оборудования компании «Конструкторское бюро «Стабихрон» представлены на рис. 6 и в таблице 1, а также на рис. 7.

rch11

Рис. 6. Структурная схема подсистемы синхронизации времени на основе протокола NTP, построенной на базе радиочасов серии РЧ-011 конструкторского бюро «Стабихрон»

Таблица 1. Варианты конфигураций подсистемы синхронизации времени на основе протокола NTP, построенной на базе радиочасов серии РЧ-011 конструкторского бюро «Стабихрон»

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Бородин Андрей Викторович, Зубьяк Дарья Романовна

Рассмотрена задача синтеза систем дистрибуции точного времени, оптимальных по критерию совокупной стоимости владения . Обоснована актуальность проблемы. Предложены модели отказов единичных компонент системы. Разработана методика интеграции моделей отдельных компонент системы в модель всей системы. Представлена формальная постановка задачи выбора оптимальной топологии сети дистрибуции точного времени на дискретном множестве решений.

Похожие темы научных работ по компьютерным и информационным наукам , автор научной работы — Бородин Андрей Викторович, Зубьяк Дарья Романовна

Протокол точного времени Ртр для обеспечения работы АСУТП в режиме жесткого реального времени Протокол точного времени Ртр для обеспечения работы АСУТП в режиме жесткого реального времени Система интеграции микросейсмических и геоакустических данных геомеханического контроля Протокол точного времени Ртр для обеспечения работы АСУТП в режиме жесткого реального времени i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

STOCHASTIC SIMULATION IN TASKS OF SYNTHESIS OF OPTIMUM TOPOLOGY OF NETWORKS OF DISTRIBUTION OF EXACT TIME

The paper deals with the task of synthesis of systems of distribution of exact time , optimum by criterion of total cost of ownership . It is shown that relevance of a problem. Much attention is given to failure patterns of single components of system. It is given the technique of integration of models of separate components of system in model of all system. It is formulated the formal problem definition of a choice of optimum network topology of distribution of exact time on the discrete set of decisions.

Текст научной работы на тему «Стохастическое моделирование в задачах синтеза оптимальных топологий сетей дистрибуции точного времени»

СТОХАСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В ЗАДАЧАХ СИНТЕЗА ОПТИМАЛЬНЫХ ТОПОЛОГИЙ СЕТЕЙ ДИСТРИБУЦИИ

Бородин Андрей Викторович

канд. эконом. наук, профессор кафедры информатики и системного программирования Поволжского государственного технологического университета, РФ, Республика Марий Эл, г. Йошкар-Ола

E-mail: bor@mari-eL com Зубьяк Дарья Романовна

студент группы ПС-31 факультета информатики и вычислительной техники Поволжского государственного технологического университета, РФ,

STOCHASTIC SIMULATION IN TASKS OF SYNTHESIS OF OPTIMUM

TOPOLOGY OF NETWORKS OF DISTRIBUTION OF EXACT TIME

сandidate of Science, professor of Informatics and System Programming department of Volga State University of Technology Russia, Republic of Mari El, Yoshkar-Ola

student of PS-31 Group of Faculty of Informatics and ADP Equipment of Volga State University of Technology Russia, Republic of Mari El, Yoshkar-Ola

Рассмотрена задача синтеза систем дистрибуции точного времени, оптимальных по критерию совокупной стоимости владения. Обоснована актуальность проблемы. Предложены модели отказов единичных компонент системы. Разработана методика интеграции моделей отдельных компонент системы в модель всей системы. Представлена формальная постановка задачи выбора оптимальной топологии сети дистрибуции точного времени на дискретном множестве решений.

The paper deals with the task of synthesis of systems of distribution of exact time, optimum by criterion of total cost of ownership. It is shown that relevance of a problem. Much attention is given to failure patterns of single components of system. It is given the technique of integration of models of separate components of system in model of all system. It is formulated the formal problem definition of a choice of

optimum network topology of distribution of exact time on the discrete set of decisions.

Ключевые слова: точное время; NTP; PTP; GPS; NMEA; топология сети; имитационное моделирование; сеть Петри; случайная величина; совокупная стоимость владения; риск; мера риска; оптимизация.

Keywords: exact time; NTP; PTP; GPS; NMEA; network topology; simulation; Petri net; random variable; total cost of ownership; risk; risk measure; optimization.

Аэропорты, железнодорожные и автовокзалы, биржи и кредитные учреждения — перечень социально значимых объектов, для которых служба точного времени является инфраструктурно-значимой подсистемой. Для операторов связи и многих научно-исследовательских учреждений, относящихся к отраслям гидрометеорологии, сейсмологии, гелиофизики и т. п., эта служба вообще является системообразующей. Отказы подсистемы точного времени означают для названных структур либо индивидуальные потери, либо коллективные потери, включающие последствия природных катастроф. В этих условиях риски, связанные с функционированием подсистемы точного времени, формируют отраслевые и социоприродные риски. Оптимизация этих рисков (идентификация угроз и минимизация соответствующих потерь, представленных в той или иной форме) представляется в этой связи чрезвычайно актуальной проблемой.

Для дистрибуции точного времени в современных инфраструктурных решениях используются протоколы NTP (Network Time Protocol) [7] и Precision Time Protocol (PTP) [6]. Основная масса клиентского оборудования, использующего синхронизацию времени, поддерживает сегодня лишь протокол NTP. Использование протокола PTP, обеспечивающего более высокую точность дистрибуции точного времени, пока ограничено необходимостью использования специальных аппаратных решений и их весьма значительной стоимостью. Основными игроками на рынке разработки и производства NTP-

Учитывая перечисленные выше соображения, была поставлена задача разработки методики выбора оптимальных технических решений по синхронизации времени. В основу синтезируемых технических решений могут быть положены как решения на основе протокола NTP в вычислительных сетях, формирующих инфраструктуру тех или иных организаций, так и источники точного времени в виде потока NMEA-данных, терминируемые стандартными хостами сети с установленным специализированным программным обеспечением синхронизации времени (локальные решения, NTP-, PPS-серверы). Методика должна учитывать возможность использования комбинированных решений.

Для решения поставленной задачи были разработаны модели отказов различных типов источников точного времени в виде конечных вероятностных пространств. Для построения вероятностных пространств, моделирующих источники точного времени, используется подход, основанный на использовании сетей Петри со случайной маркировкой [3]. В частности для специализированных серверов времени с раздельными портами управления и сервиса носитель вероятностного пространства содержит 4 элементарных исхода (см. рис. 1): нормальное функционирование, отказ в обслуживании на порту управления, отказ в обслуживании для сервисной функции, отказ оборудования. Для специализированных серверов с совмещенным портом

носитель содержит 3 исхода (см. рис. 2): нормальное функционирование, отказ в обслуживании и отказ оборудования. Для КМБЛ-устройств — два (см. рис. 3): нормальное функционирование и отказ оборудования.

Из функций, которые позволяет выполнять сервер времени, можно назвать корректное формирование хронологии событий в системах управления для ведения соответствующих логов, журналов, архивирования информации, построения трендов, графиков и пр.

В системах видеонаблюдения таймсервер обеспечивает привязку отснятых видеозаписей к астрономическому времени. Также устройство позволяет безошибочно сопоставлять информацию от разных информационных систем на предприятии. Например, это могут быть системы видеонаблюдения и системы безопасности, такие как СКУД, системы РЗА и независимые системы телемеханики и пр.

Ряд протоколов информационного обмена используют метки времени напрямую в составе пакетов передаваемых данных. К таким протоколам можно отнести МЭК-101/104, применяемые в современных системах телемеханики.

Одним из важных требований, предъявляемых в ряде промышленных приложений, являются требования информационной безопасности, исключающие выход в Интернет для выполнения функции синхронизации времени.

В силу своей простоты и ряда исторических причин для решения задачи синхронизации времени наибольшее распространение получил протокол NTP. В качестве NTP-клиентов на предприятии, помимо серверов, архивных и операторских станций систем управления, могут выступать контроллеры и HMI-панели, сетевое оборудование систем связи (управляемые коммутаторы, маршрутизаторы и пр).

Протокол NTP

Network time protocol (NTP) — это сетевой протокол для синхронизации часов в компьютерных системах по сетям передачи данных с коммутацией пакетов и переменной задержкой (латентностью). Высокая популярность протокола объясняется активным развитием систем на основе Ethernet. Одним из ключевых преимуществ протокола является возможность передачи меток времени непосредственно по сети передачи данных, что позволяет отказаться от отдельной шины точного времени, как например в системах 1PPS или IRIG–B. Протокол был разработан в 1985 году и является одним из старейших Интернет-протоколов, используемых в настоящее время.

NTP обеспечивает приемлемую точность синхронизации для большинства приложений. Протокол может поддерживать время с точностью до десятков миллисекунд в сети Интернет и до 0,2 мс в локальных сетях при идеальных условиях. Асимметричные маршруты передачи данных и перегрузка сети могут привести к ошибкам в 100 мс и более.

NTP синхронизирует устройства относительно всемирного координированного времени (UTC). При этом протокол учитывает появление високосной секунды в результате неравномерности вращения Земли, но никакой информации о местных часовых поясах или переходе на летнее время не передает.

Структура системы

NTP использует иерархическую систему источников точного времени. Каждый уровень иерархии называется Stratum (стратой, слоем) и ему присваивается номер, начинающийся с 0 для эталонных часов на вершине иерархии. Сервер времени на слое N синхронизируется от серверов на уровне N-1. Число N представляет собой расстояние от эталонных часов и используется для предотвращения цикличности в процессе синхронизации. Stratum не всегда является показателем качества или надежности. Например, можно найти источники времени на слое 3, которые имеют более высокое качество, чем источники времени на слое 2.

В качестве эталонных часов на Stratum 0 выступают системы спутниковой навигации (ГЛОНАСС, GPS и пр.), атомные часы или радиопередатчики. Раз в секунду они генерируют импульсный сигнал (1PPS), который вызывает прерывание и генерирует метку времени на подключенных устройствах. Устройства слоя 0 также известны как опорные часы. Серверы NTP не могут позиционировать себя в системе как Stratum 0. Если в пакете передачи данных в поле Stratum установлен 0, это указывает на неопределенный слой.



Логическая структура системы синхронизации на основе NTP

На этом слое находятся устройства, системное время которых синхронизировано с точностью до нескольких микросекунд от эталонных часов. Серверы времени на этом уровне могут работать в одноранговом режиме с другими серверами Stratum 1 для резервирования и проверки точности. Их также называют первичными серверами времени.

Это устройства, которые синхронизируются по сети от серверов уровня 1. Часто устройства уровня 2 опрашивают несколько серверов уровня 1. Компьютеры Stratum 2 также могут быть одноранговыми с другими компьютерами Stratum 2, чтобы обеспечить более стабильное и надежное время для всех устройств в группе одноранговых узлов.

Максимальное теоретическое число слоев равно 15; Stratum 16 используется для указания того, что устройство не синхронизировано. Механизмы протокола NTP на каждом устройстве системы взаимодействуют таким образом, чтобы построить кратчайший путь к серверам Stratum 1 для всех клиентов. Это позволяет минимизировать накопленную задержку в передаче данных и повысить точность синхронизации. В основе алгоритма построения связующего дерева с минимальной длиной пути лежит алгоритм Беллмана-Форда.

Метки времени

Изначально NTP использовал 64-битные метки времени, состоявшие из 32-битной части для секунд и 32-битной части для долей секунды, что давало временную шкалу, которая прокручивалась бы каждые 2 32 секунды (136 лет) и давало теоретическое разрешение 2 -32 секунды (233 пикосекунды). Отсчет времени начинался с 1 января 1900 года, поэтому первая эпоха закончилась бы 7 февраля 2036 года.

Алгоритм синхронизации часов

Клиент NTP регулярно опрашивает один или несколько серверов. При этом он вычисляет смещение времени и круговую задержку. Смещение времени θ представляет собой разницу в абсолютном времени между часами сервера и клиента и определяется по формуле:


Круговая задержка δ определяется как время передачи сигнала по линиям связи от клиента к серверу и обратно. Это время, затраченное на отправку сигнала, плюс время, которое требуется для подтверждения, что сигнал был получен:


где t0 — метка времени клиента для передачи пакета запроса,
t1 — метка времени сервера приема пакета запроса,
t2 — метка времени сервера для передачи ответного пакета,
t3 — метка времени клиента приема ответного пакета.



Алгоритм расчета смещения времени и круговой задержки

Вычисляемые значения θ и δ пропускаются через фильтры и подвергаются статистическому анализу. Выбросы из общей выборки отбрасываются и оценка временного смещения производится на основе оставшихся значений. Зная величины смещения времени и круговую задержку клиент подстраивает собственное время, чтоб добиться θ равного нулю.

Точная синхронизация достигается, когда входящие и исходящие маршруты между клиентом и сервером симметричны, то есть имеют одинаковую задержку. Если маршруты несимметричны, то существует систематическое смещение в половину разницы между временем передачи пакета от клиента к серверу и обратно.

Механизмы передачи

В большинстве случаев протокол NTP использует классическую клиент-серверную модель работы, в которой клиент отправляет запрос и через некоторое время получает ответ от сервера. Однако протокол допускает работу и в одноранговых системах, где два одноранговых узла (peer) рассматривают друг друга как потенциальный источник времени. Этот режим работы также называют симметричным. Для сетевого взаимодействия NTP использует протокол UDP, по умолчанию работая на порту 123. Для передачи данных могут быть использованы различные механизмы – unicast, broadcast, multicast и manycast.

Протокол NTP для передачи данных чаще всего использует режим Unicast. В этом режиме данные передаются от одного устройства сети к другому индивидуально. В Unicast пакетах в качестве IP-адреса назначения используется конкретный адрес устройства, для которого этот пакет предназначен.

Этот режим удобен в тех случаях, когда малое количество NTP-серверов обслуживает большое количество клиентов. В этом режиме сервер периодически рассылает пакеты, используя широковещательный адрес подсети. Клиент, настроенный на синхронизацию таким способом, получает широковещательный пакет сервера и производит синхронизацию с ним.

Этот режим имеет ряд особенностей. Во-первых, режим Broadcast обеспечивает меньшую точность синхронизации по сравнению с Unicast. Во-вторых, широковещательные пакеты могут передаваться только в рамках одной подсети. Кроме того, для защиты от злоумышленников желательно использовать методы аутентификации.

Режим Multicast работает аналогично Broadcast. Разница заключается в том, что для доставки пакетов используется не широковещательный адрес подсети, а адрес Multicast-группы. Для клиентов и серверов задается групповой IP-адрес, который они используют для синхронизации времени. Это делает возможным синхронизацию групп машин, расположенных в различных подсетях, при условии, что соединяющие их маршрутизаторы поддерживают протокол IGMP и настроены на передачу группового трафика.

Для передачи образцов времени клиенты и серверы, работающие в Manycast-режиме, также используют адреса Multicast-групп. Клиенты и серверы, использующие один и тот же адрес, формируют одну ассоциацию. Количество ассоциаций определяется количеством используемых Multicast-адресов.

Версии протокола

С момента своего появления в 1985 года протокол начал активно развиваться и уже к 1992 году сменил четыре версии (от NTPv0 до NTPv3). Каждая новая версия добавляла функционал и оптимизировала его работу, но оставляла неизменным формат данных и сохраняла совместимость различных версий между собой. Последняя четвертая версия протокола датирована 2010 годом. NTP продолжает развитие и в наши дни, ведутся работы по созданию решения, технически схожего с более точным протоколом PTP (Precision Time Protocol).

Одновременно с NTPv3 в 1992 году была представлена более простая версия протокола – SNTP (Simple NTP). В протоколе SNTP используется одинаковый с протоколом NTP формат передачи и представления данных. При этом SNTP не касается алгоритмов работы сервера, а упрощает алгоритмы работы клиентов. Именно поэтому протокол чаще всего используется во встраиваемых системах и устройствах, не требующих высокой точности.

Разница между NTP и SNTP заключается в методах определения оптимальных серверов для синхронизации и методе коррекции времени. Так NTP позволяет клиенту использовать математический алгоритм пересечений (переработанную версию алгоритма Марзулло) для выбора нескольких лучших серверов в сети и плавно корректировать свое время. В SNTP для синхронизации используется один предопределенный NTP сервер, в то время как другие могут являться лишь резервными на случай потери связи с основным устройством. При этом клиент, использующий SNTP, способен корректировать время только скачком по факту получения ответа от сервера.

Типовая схема системы синхронизации и ее недостатки

Традиционно система точного времени на промышленных объектах строится на основе NTP-сервера, состоящего из головного устройства, монтируемого в одном шкафу с сетевым оборудованием, и выносной антенны, которая устанавливается на улице и подключается к серверу при помощи коаксиального кабеля. При этом на головном устройстве имеется несколько сетевых интерфейсов (Ethernet или RS-232/485) для подключения клиентов в одной или нескольких сетях.



Типовая схема системы точного времени

Если посмотреть на это решение более внимательно, то в нем можно выделить несколько недостатков. Во-первых, в такой системе отсутствует полноценное резервирование. Несмотря на то, что головное устройство обладает несколькими сетевыми интерфейсами и способно обеспечивать точное время в нескольких сетях, его сбой или выход из строя приведет к потере источника точного времени на всем объекте. Полное же резервирование головного устройства в подобном решении сделает без того дорогую систему синхронизации еще дороже.

Вторым недостатком можно назвать необходимость установки сервера времени в шкафу. Для больших проектов это не является минусом, но для небольших локальных систем управления это может стать серьезной проблемой.

Также к недостаткам можно отнести необходимость применения выносной антенны и коаксиального кабеля. Почему? Прежде всего, стоимость качественной GPS/ГЛОНАСС антенны с длинным кабелем и защитой от грызунов легко может перевалить за 10 000 руб. в ценах 2020 года. При этом коаксиальные кабели имеют ограниченную длину для передачи сигналов спутниковых систем. При длине более 50 м сигнал будет значительно затухать, что является серьезным ограничивающим фактором в больших зданиях.

Главным же недостатком традиционного подхода в создании систем синхронизации является его высокая стоимость (часто более 150 000 рублей), что существенно сказывается на смете не только небольших проектов, но и вполне крупных.

Как сделать систему дешевле и надежнее

Безусловным трендом современных технологий является создание более компактных и простых для пользователя электронных устройств. В этом плане сервера точного времени не являются исключением.

Всё решение, связанное с системой синхронизации, включая GPS/ГЛОНАСС антенну, может уместиться в небольшую коробочку, как это сделано в
FL TIMESERVER от Phoenix Contact. Устройство выполнено по принципу smart-антенны, то есть совмещает в себе непосредственно функционал сервера времени и антенну GPS/ГЛОНАСС приемника. Конструктивное исполнение – это единственное, что отличает его от привычных решений.



Сервер времени FL TIMESERVER NTP

В плане функционала никаких отличий нет: устройство способно принимать метки времени и данные геолокации от спутниковых систем навигации (ГЛОНАСС, GPS) и транслировать эту информацию для клиентов в сети Ethernet.



Система точного времени на основе решения Phoenix Contact

При использовании подобного решения система синхронизации значительно упрощается и позволяет избавиться от недостатков традиционного подхода. FL TIMESERVER имеет только один порт Ethernet, но при необходимости использовать несколько интерфейсов достаточно подключить его в коммутатор или же использовать несколько smart-антенн. В этом случае мы получим полноценное резервирование серверов времени, а не только его сетевого интерфейса. При этом конечное решение все равно окажется дешевле многих существующих аналогов. FL TIMESERVER можно вынести за пределы сетевого шкафа или шкафа автоматизации, сэкономив место внутри. В этом решении не требуется отдельная антенна, здесь она уже встроена и к сети предприятия мы можем подключаться обычным Ethernet кабелем. В свою очередь это позволяет вынести сервер времени на расстояние до 100 м от основного оборудования без опасения, что сигнал затухнет. Самым главным преимуществом подобного решения является совсем другой порядок цен. Стоимость одного сервера времени менее 300 евро, что делает его удобным в применении как в небольших, так и в крупных проектах.

Читайте также: