Способы идентификации компьютеров в сети сетевой и физический адрес компьютера

Обновлено: 04.07.2024

Для того, чтобы компьютеры могли идентифицировать друг друга в информационно-вычислительной сети, им присваиваются явные адреса. Основными типами адресов являются следующие:

  • MAC -адрес;
  • IP -адрес;
  • доменный адрес;
  • URL .

Физические адреса

MAC -адрес, который также называют физическим адресом, Ethernet- адресом, присваивается каждому сетевому адаптеру при его производстве. Его размер - 6 байт.

Этот сетевой адрес является уникальным, - фирмам-производителям выделены списки адресов, в рамках которых они обязаны выпускать карты. Адрес записывается в виде шести групп шестнадцатеричных цифр по две в каждой (шестнадцатеричная запись байта). Первые три байта называются префиксом (что определяет 2 24 различных комбинаций или почти 17 млн адресов), и именно они закреплены за производителем.

Адаптер "слушает" сеть, принимает адресованные ему кадры и широковещательные кадры с адресом FF:FF:FF:FF:FF:FF и отправляет кадры в сеть, причем в каждый момент времени в сегменте узла сети находится только один кадр.

Собственно, MAC -адрес соответствует не компьютеру, а его сетевому интерфейсу. Таким образом, если компьютер имеет несколько интерфейсов, то это означает, что каждому интерфейсу будет назначен свой физический адрес. Каждой сетевой карте соответствует собственный MAC -адрес и IP -адрес, уникальный в рамках глобальной сети.

MAC -адреса используются на физическом и канальном уровнях, т.е. в "однородной" среде. Для того, чтобы могли связываться друг с другом компьютеры, входящие в большие составные сети, используется другой вид адресов - IP- адреса.

IP -адресация

IP -адрес является основным видом адресации в Internet . Он обозначает не только компьютер, но и сегмент сети, в котором находится данный компьютер. Например, адрес 192.123.004.010 соответствует узлу номер 10 в сети 192.123.004. У другого узла в этом же сегменте может быть номер 20 и т.д. Сети и узлы в них - это отдельные объекты с отдельными номерами.

IP -адрес - представляет собой 32-разрядное двоичное число (например, 11000000 01111011 00001010). Для удобства оно разбивается на четыре восьмиразрядных поля, называемых октетами. TCP/IP представляет эти двоичные октеты их десятичными эквивалентами (в данном примере это 192.123.004.010), что облегчает использование IP -адресов для человека.

Классы IP -сетей

Эти четыре октета в разных сетях обозначают разные вещи. В некоторых организациях создается одна большая сеть, но с миллионами узлов. Здесь первый октет адреса используется для обозначения сети, а остальные три октета - для обозначения отдельных рабочих станций. Такой адрес называют адресом класса А. Самые частые потребители адресов класса А - поставщики сетевых услуг (провайдеры), которые обслуживают очень большие сети с тысячами конечных пунктов.

В некоторых организациях могут быть тысячи узлов, включенных в состав нескольких сетей. В таких случаях используются адреса класса В, в которых первые два октета (16 битов) используются для обозначения сети, а последние два - для обозначения отдельных узлов. Наиболее известные потребители адресов класса В - университеты и крупные учреждения.

Наконец, наиболее часто используется адрес класса С, в котором первые три октета (или 24 бита) служат для обозначения сегмента, а последний октет - для обозначения рабочих станций. Такие адреса лучше всего подходят для случая, когда имеется множество отдельных сетей, в состав каждой из которых входит всего несколько десятков узлов. Адреса такого типа чаще всего встречаются в локальных сетевых средах, где в одном сетевом сегменте в среднем бывает около 40 узлов.

При соединении сети класса А с сетью класса В маршрутизатору необходимо сообщить, как он должен отличать одну сеть от другой. В противном случае он подумает, что трафик, исходящий из сети класса С и предназначенный для узла класса, можно идентифицировать по последнему октету. На самом же деле узел класса А обозначается последними тремя октетами - а это большая разница. Не зная этого, маршрутизатор попытается найти трехоктетную сеть, к которой подключен однооктетный хост. На самом же деле ему нужно послать данные в однооктетную сеть, в которой находится трехоктетный хост.

Стек протоколов TCP/IP использует первые три бита первого октета для идентификации класса сети, позволяя устройствам автоматически распознавать соответствующие типы адресов. У адресов класса А первый бит установлен в 0, а остальные семь битов служат для идентификации сетевой часть адреса (как вы полмните, в адресах класса А первый октет служит для обозначения сети, а остальные три - для обозначения узлов). Поскольку можно использовать только семь битов, максимально возможное количество сетей - 128. Номера сетей 000 и 127 зарезервированы для использования программным обеспечением, поэтому это число уменьшается до 126 (001 - 126). Для обозначения узлов можно использовать 24 бита, поэтому для каждой из этих сетей максимальное число узлов составляет 16 777 216.

У адресов класса В первый бит всегда устанавливается в 1, а второй в 0. Поскольку для обозначения сетей здесь используются два октета, то для каждого сетевого сегмента остается, таким образом, 14 битов. Следовательно, максимально возможное число адресов этого класса - 16 384, в диапазоне от 128.001 до 191.254 (номера 000 и 255 зарезервированы).

В адресах класса С первые два бита всегда равны 1, а третий установлен в 0. В этих адресах для обозначения сетей используются первые три октета, следовательно, остается 21 бит. Диапазон возможных номеров сетей - от 192.001.001 до 223.254.254, или 2 097 152 сегмента. При этом, однако, для обозначения узлов остается только один октет, поэтому в каждом сегменте может быть всего 254 устройства.

В таблице 1 приведены характеристики адресов сетей различных классов. Адреса класса D предназначены для широковещательной рассылки пакетов сразу группе машин. Адреса класса Е пока не используются. Предполагается, что со временем они будут задействованы с целью расширения стандарта.

Таблица 1. Характеристика классов IP -адресов

Среди IP -адресов несколько зарезервировано под специальные случаи использования (табл. 2). Так, значение первого октета 127 зарезервировано для служебных целей, в основном, для тестирования сетевого оборудования, поскольку IP -пакеты, направленные на такой адрес, не передаются в сеть, а ретранслируются обратно управляющей надстройке сетевого программного обеспечения как только что принятые.

Таблица 2. Значение выделенных IP -адресов

Централизованным распределением IP -адресов занимаются государственные организации. В США - Стенфордский международный научно-исследовательский институт ( Stanford Research Institute) , расположенный в г. Мэнло-Парк, штат Калифорния. Услуга по присвоению новой локальной сети IP -адресов бесплатная, и занимает она приблизительно неделю.

В небольших локальных сетях, использующих стек TCP/IP , можно назначать IP -адреса компьютерам произвольно - в том случае, если данные компьютеры не имеют непосредственного (прямого) выхода в Internet

Маски подсетей

Часто перед администраторами локальных сетей встает необходимость разбиения вверенной им сети на несколько подсетей. Делается это с помощью маски подсети. Маска подсети заставляет сетевое программное обеспечение иначе интерпретировать IP -адреса машин, входящих в сеть.

Рассмотрим, например, адрес хоста 192.123.004.010. Это адрес класса С, в котором первые 24 бита обозначают номер сети. Остальные 8 битов обозначают хост. Можно установить сетевую маску так, чтобы первые 25 битов обозначали сеть, а остальные 7 - хост.

Последние 8 битов администратор локальной сети может использовать так, как ему нужно. Можно их использовать обычным образом, для обозначения хост-машин. Но есть и другой вариант: назначить некоторые из оставшихся 8 битов подсетям. По сути дела, сетевая часть адреса получает еще одно поле, а диапазон номеров хостов сокращается.

Рассмотрим воображаемую компанию, Windows Inc. , которая использует и сети Ethernet , и кольцевые сети с маркерным доступом. Ей выделен, однако, только один сетевой адрес класса С, 192.123.004. Вместо того чтобы использовать последний октет для обозначения 254 хостов в одной сети, компания решила ввести в адрес маску подсети, "позаимствовав" первый бит последнего октета. В результате создаются две подсети по 128 возможных хост-номера в каждой.

Изучая свои сетевые номера, Windows Inc. видит следующее:

*Номера 000 и 255 зарезервированы.

Следует, однако учесть, что устройства в сети не выполняют эту логическую разбивку автоматически. Основываясь на идентификаторе класса С в начале адреса, они продолжают считать, что последние 8 битов адреса обозначают хост. Поэтому о принятой маске нужно сообщить всем устройствам в сегменте сети.

В маске подсети используется очень простой алгоритм. Если бит маски установлен в 1, это часть номера сети. Если бит маски установлен в 0, это часть номера хоста. Следовательно, маска подсети для приведенного выше примера имеет вид 11111111 11111111 11111111 10000000.

Маска - это число, двоичная запись которого содержит единицы в тех разрядах, которые должны интерпретироваться как номер сети.

В таблице 3 приведены стандартные маски подсетей для различных классов адресов сетей.

Таблица 3. Стандартные маски подсетей

Маска подсети должна применяться при обработке адреса маршрутизаторами. Если ранее маршрутизатор просто проверял, не совпадает ли адрес сети получателя, например, 192.123.004, с адресом какой-либо непосредственно подсоединенной к маршрутизатору сети, то теперь он должен использовать маску подсети, чтобы выделить адрес сети получателя. Чтобы маска подсети работала, ее должны поддерживать все устройства данной подсети.

Проблемы 4-х байтовой адресации

Если сложить все возможные IP -адреса, то получится свыше 4,7 млрд. адресов хостов. Это очень много, но, к сожалению, четырехоктетной структуре присущи серьезные ограничения. Каждый раз, когда какой-то организации назначается адрес класса А, с ним уходит около 17 млн. адресов хостов. Если назначить все 126 адресов класса А, то свыше 3 млрд. из наличных 4,7 млрд. адресов окажутся занятыми. Если назначить все 16000 адресов класса В, уйдет еще миллиард. При этом не важно, используются ли выделенные адреса или нет: все они назначены конкретной сети и повторно использоваться не могут.

Самая большая проблема, однако, связана с классом С. Тому есть две причины. Во-первых, этих адресов меньше всего (имеется лишь около 500 млн. адресов узлов). Во-вторых, эти адреса самые популярные, потому что удовлетворяют размерам большинства локальных сетей. Каждый раз, когда сетевому сегменту выделяется адрес класса С, с ним уходят 254 возможных адреса узлов. Вспомним, что для каждой отдельной сети нужен новый номер. Поэтому люди, у которых три сегмента и всего 60 узлов, тратят впустую более 700 возможных адресов рабочих станций (3 сегмента ´ 254 адреса узлов = 762 адреса - 60 активных узлов = 702 незадействованных адреса). Понятно, что при таких темпах "расходования" наличные хост-номера фактически уже закончились.

По действующей схеме (протокол IPv4 ) может быть всего 2113662 сети. Если бы для обозначения сегмента все сети применяли первые 24 бита (не используя "классовые" биты), то максимальное число сетей составило бы 16777216, по 254 узла в каждой.

Вспомним, однако, что сети TCP/IP изначально рассчитаны на использование маршрутизаторов. Естественно, узлам и маршрутизаторам проще запомнить несколько сетей, чем множество. Необходимость обработки 16 миллионов адресов сетей быстро переполнила бы базы данных маршрутизаторов, и сетевой трафик существенно замедлился бы. Наличие классов сетей позволяет маршрутизаторам легко работать с большими сетями, причем без ущерба для производительности.

Следует также помнить, что первоначально Internet состояла, в основном, из крупных сетей, соединенный друг с другом. Было удобно дать один адрес сети milnet (это сеть несекретных военных компьютеров), а другой - сети NSFnet (это сеть Национального научного фонда США). Благодаря этому маршрутизаторам, для того чтобы передавать данные буквально на миллионы хост-машин, достаточно было запомнить только адрес другого маршрутизатора.

На сегодняшний день, однако истощение запаса адресов порождает огромные проблемы. При отсутствии адресов ни одна новая организация не сможет подключиться к Internet , а существующие сети не смогут расширяться. Для решения большинства этих проблем разработана новая версия протокола IP - IPv6 ( или IPng - IP next generation) .

Система доменных имен

DNS строится по иерархическому принципу, однако эта иерархия не является строгой. Фактически нет единого корня всех доменов Internet . В 80-е гг. были определены первые домены (национальные, США) верхнего уровня: gov, mil, edu, com, net. Позднее появились национальные домены других стран: uk ( Великобритания) , jp (Япония) , au (Австрия) , cn (Китай) и т.п. Для СССР был выделен домен su , однако после приобретения республиками Союза суверенитета многие из них получили собственные домены: ua - Украина , ru - Россия и т.п.

В настоящее время существуют домены верхнего уровня com - для коммерческих компаний, edu - для школ и университетов, org - для прочих организаций, net - для сетевых организаций и т.д.

Вслед за доменами верхнего уровня следуют домены, определяющие либо регионы, либо организации; следующие уровни иерархии могут быть закреплены за небольшими организациями, либо за подразделениями больших организациях.

DNS -серверы, реализующие перевод IP -адресов в доменные и обратно, устанавливаются обычно на машинах, которые являются шлюзами для локальных сетей. Вообще говоря, сервер имен может быть установлен на любой компьютер локальной сети. При выборе машины для установки сервера имен следует принимать в расчет то обстоятельство, что многие реализации серверов держат базы данных имен в оперативной памяти. При этом часто подгружается информация и с других серверов. Все это может вызвать задержки при разрешении запроса на адрес по имени машины, если для сервера имен будет использоваться маломощный компьютер.

Универсальная идентификация ресурсов ( URL )

Понятие URL

URL (Uniform Resource Locator - универсальный указатель ресурсов ) - система обозначений для однозначной идентификации компьютера, каталога или файла в Internet .

В систему URL заложены следующие принципы:

  • Расширяемость - новые адресные схемы должны легко вписываться в существующий синтаксис URL ; расширяемость достигается за счет выбора определенного порядка интерпретации адресов, который базируется на понятии "адресная схема". Идентификатор схемы стоит перед остатком адреса, отделен от него двоеточием и определяет порядок интерпретации остатка.
  • Полнота - по возможности любая из существовавших схем должна описываться посредством URL .
  • Читаемость - адрес должен легко пониматься человеком, что вообще характерно для технологии WWW , - документы вместе с ссылками могут разрабатываться в обычном текстовом редакторе.

Формат URL включает:

Для каждого вида протокола приложений выбирается свое подмножество полей из представленного выше списка. Прежде чем рассмотреть различные схемы представления адресов, приведем пример простого адреса URL :

Кроме подобной полной записи URL существует упрощенная, которая предполагает, что к моменту ее использования многие основные компоненты адреса ресурса уже определены (протокол, адрес машины в сети, некоторые элементы пути). В таком случае достаточно указывать только адрес, относительный определенных базовых ресурсов - относительный адрес.

Схемы URL

Рассмотрим несколько различных схем URL , с помощью которых можно обратиться к различным информационным ресурсам Internet .

Схема file - используется в локальном режиме:
file:///C|/text/html/indes.htm
В данном примере приведено обращение к локальному документу на персональном компьютере с ОС Windows .

Существует еще несколько схем URL . Однако они реально на практике не используются или находятся в стадии разработки, поэтому останавливаться на них мы не будем.

Топология локальной сети

Первое к чему нужно приступать при изучении основ функционирования компьютерных сетей, это топология (структура) локальной сети. Существует три основных вида топологии: шина, кольцо и звезда.

Топология локальной сети – линейная шина

Линейная шина

Топология локальной сети – кольцо

Кольцо

В данной топологии каждый из компьютеров соединен только с двумя участниками сети. Принцип функционирования такой ЛВС заключается в том, что один из компьютеров принимает информацию от предыдущего и отправляет её следующему выступая в роли повторителя сигнала, либо обрабатывает данные если они предназначались ему. Локальная сеть, построенная по кольцевому принципу более производительна в сравнении с линейной шиной и может объединять до 1000 компьютеров, но, если где-то возникает обрыв сеть полностью перестает функционировать.

Топология локальной сети – звезда

Звезда

Топология звезда, является оптимальной структурой для построения ЛВС. Принцип работы такой сети заключается во взаимодействии нескольких компьютеров между собой по средствам центрального коммутирующего устройства (коммутатор или свитч). Топология звезда позволяет создавать высоконагруженные масштабируемые сети, в которых центральное устройство может выступать, как отдельная единица в составе многоуровневой ЛВС. Единственный минус в том, что при выходе из строя центрального коммутирующего устройства рушится вся сеть или её часть. Плюсом является то, что, если один из компьютеров перестаёт функционировать это никак не сказывается на работоспособности всей локальной сети.

Что такое MAC-адрес, IP-адрес и Маска подсети?

Прежде чем познакомиться с основными принципами взаимодействия сетевых устройств, необходимо подробно разобрать, что такое IP-адрес, MAC-адрес и Маска подсети.

MAC-адрес, IP-адрес и Маска подсети

MAC-адрес, IP-адрес и Маска подсети

MAC-адрес, IP-адрес и Маска подсети

Маска подсети – специальная запись, которая позволяет по IP-адресу вычислять адрес подсети и IP-адрес компьютера в данной сети. Пример записи маски подсети: 255.255.255.0. О том, как происходит вычисление IP-адресов мы рассмотрим чуть позже.

Что такое ARP протокол или как происходит взаимодействие устройств ЛВС?

ARP протокол или как происходит взаимодействие устройств ЛВС

Сетевой коммутатор и маршрутизатор (роутер)


Коммутатор содержит таблицу MAC-адресов устройств локальной сети непосредственно подключенных к его портам. Изначально таблица пуста и начинает заполняться при старте работы коммутатора, происходит сопоставление MAC-адресов устройств и портов, к которым они подключены. Это необходимо для того, чтобы коммутатор напрямую пересылал информационные пакеты тем участникам локальной сени, которым они предназначены, а не опрашивал все устройства ЛВС.

Таблица маршрута IPv4

Маршрутизатор также имеет таблицу, в которую заносит IP-адреса устройств на основе анализа локальной сети. Роутер может самостоятельно раздавать IP-адреса устройствам ЛВС благодаря протоколу динамического конфигурирования узла сети (DHCP). Таблица маршрутизации позволяет роутеру вычислять наикратчайшие маршруты для отправки информационных пакетов между различными узлами ЛВС. Данные узлы (компьютеры) могут находиться в любом сегменте многоуровневой сети невзирая на архитектуру той или иной подсети. К примеру, маршрутизатор связывает локальную сеть с глобальной (интернет) через сеть провайдера.

Пример маршрутизации

Допустим, в таблице маршрутизации есть такая запись:

СетьМаскаИнтерфейс
192.168.1.0255.255.255.0192.168.1.96

Роутер получает пакет, предназначенный для хоста с IP-адресом 192.168.1.96, после чего начинает обход таблицы маршрутизации и обнаруживает, что при наложении маски подсети 255.255.255.0 на IP-адрес 192.168.1.96 вычисляется сеть с IP-адресом 192.168.1.0. Пройдя строку до конца роутер находит IP-адрес интерфейса 192.168.1.96, на который и отправляет полученный пакет.

Как происходит вычисление IP-адреса сети и компьютера?

Для вычисления IP-адреса сети используется маска подсети. Начнем с того, что привычная для наших глаз запись IP-адреса представлена в десятеричном формате (192.168.1.96). На самом деле, сетевое устройство данный IP-адрес видит, как набор нолей и единиц, то есть в двоичной системе исчисления (11000000.10101000.00000001.01100000). Так же выглядит и маска подсети (255.255.255.0 -> 11111111.11111111.11111111.00000000).

IP-адрес назначения192.168.1.9611000000 10101000 00000001 01100000
Маска подсети255.255.255.011111111 11111111 11111111 00000000
IP-адрес сети192.168.1.011000000 10101000 00000001 00000000

Что получается? Какой бы у нас не был IP-адрес назначения (к примеру 192.168.1.96 или 192.168.1.54) при наложении на него маски подсети (255.255.255.0) будет получаться один и тот же результат (192.168.1.0). Происходит это из-за поразрядного (побитного) сравнения записей (1х1 = 1, 1х0 = 0, 0х1 = 0). При этом IP-адрес компьютера берётся из последней группы цифр IP-адреса назначения. Также стоит учитывать, что из общего диапазона адресов, в рамках одной подсети, доступно будет на два адреса меньше, потому что 192.168.1.0 – является IP-адресом самой сети, а 192.168.1.255 – служебным широковещательным адресом для передачи общих пакетов запросов.

Что такое NAT?

Принцип NAT заключается в следующем: при отправке пакета из ЛВС маршрутизатор подменяет IP-адрес локальной машины на свой собственный, а при получении производит обратную замену и отправляет данные на тот компьютер, которому они и предназначались.

adresaciya-v-kompyuternyx-setyax

Для передачи данных в локальных и глобальных сетях устройство-отправитель должно знать адрес устройства-получателя. Поэтому каждый сетевой компьютер имеет уникальный адрес, и не один, а целых три адреса: физический или аппаратный (MAC-адрес); сетевой (IP-адрес); символьный (обычное имя компьютера или полное доменное имя).

Физический адрес компьютера

Физический (аппаратный) адрес компьютера зависит от технологии, с помощью которой построена сеть. В сетях Ethernet это MAC-адрес сетевого адаптера. MAC-адрес жестко “зашивается” в сетевую карту ее производителем и обычно записывается в виде 12 шестнадцатеричных цифр (например, 00-03-BC-12-5D-4E).

Это гарантированно уникальный адрес: первые шесть символов идентифицируют фирму-производителя, которая следит, чтобы остальные шесть символов не повторялись на производственном конвейере. MAC-адрес выбирает производитель сетевого оборудования из выделенного для него по лицензии адресного пространства. Когда у машины заменяется сетевой адаптер, то меняется и ее MAC-адрес.

mac-адрес

Узнать MAC-адрес сетевой карты вашего компьютера можно следующим образом:
1. Зайдите в “Пуск” – “Выполнить” – введите с клавиатуры команду cmd – “ОК”.
2. Введите команду ipconfig /all и нажмите клавишу Enter.
Данная команда позволяет получить полную информацию обо всех сетевых картах ПК. Поэтому найдите в этом окошке строку Физический адрес – в ней будет обозначен MAC-адрес вашей сетевой карты. В моем случае это выглядит так:

Сетевой адрес компьютера

Сетевой адрес, или IP-адрес используется в сетях TCP/IP при обмене данными на сетевом уровне. IP расшифровывается как Internet Protocol – протокол интернета. IP-адрес компьютера имеет длину 32 бита и состоит из четырех частей, именуемых октетами. Каждый октет может принимать значения от 0 до 255 (например, 90.188.125.200). Октеты отделяются друг от друга точками.

IP-адрес компьютера, например 192.168.1.10, состоит из двух частей – номера сети (иногда называемого идентификатором сети) и номера сетевого компьютера (идентификатора хоста). Номер сети должен быть одинаковым для всех компьютеров сети и в нашем примере номер сети будет равен 192.168.1. Номер компьютера должен быть уникален в данной сети, и компьютер в нашем примере имеет номер 10.
IP-адреса компьютеров в разных сетях могут иметь одинаковые номера. Например, компьютеры с IP-адресами 192.168.1.10 и 192.168.15.10 хоть и имеют одинаковые номера (10), но принадлежат к разным сетям (1 и 15). Поскольку адреса сетей различны, то компьютеры не могут быть спутаны друг с другом.

Чтобы отделить номер сети от номера компьютера, применяется маска подсети. Чисто внешне маска подсети представляет собой такой же набор из четырех октетов, разделенных между собой точками. Но, как правило, большинство цифр в ней – это 255 и 0.


255 указывает на биты, предназначенные для адреса сети, в остальных местах (которым соответствует значение 0) должен располагаться адрес компьютера. Чем меньше значение маски, тем больше компьютеров объединено в данную подсеть. Маска сети присваивается компьютеру одновременно с IP-адресом. Чтобы было понятно, приведем простой пример: сеть 192.168.0.0 с маской 255.255.255.0 может содержать в себе компьютеры с адресами от 192.168.0.1 до 192.168.0.254. А сеть 192.168.0.0 с маской 255.255.255.128 допускает адреса от 192.168.0.1 до 192.168.0.127.

Сети с большим количеством компьютеров обычно делят на части, называемые подсетями. Деление на подсети применяется для обеспечения повышенной безопасности и разграничения доступа к ресурсам различных подсетей. Компьютеры разных подсетей не смогут передавать пакеты друг другу без специального устройства – маршрутизатора, а, следовательно, никто не сможет проникнуть в защищенную таким образом подсеть. Чтобы создать подсети, часть места в IP-адресе, отведенном для номера хоста, отдают под номера подсети.
Рассмотрим пример, когда у нас в локальной сети 50 компьютеров и требуется настроить их так, чтобы 20 компьютеров могли “общаться” между собой, но не смогли передавать и принимать данные от остальных 10 компьютеров, которые также должны общаться только между собой. Решение этой задачи довольно простое – делим нашу сеть на две подсети . В первой подсети “раздаем” компьютерам (их у нас 20) номера из диапазона 192.168.1.1 – 192.168.1.20, а во второй подсети для оставшихся 10 компьютеров раздаем номера из диапазона 192.168.2.1 – 192.168.2.10.

ip-адрес и маска подсети

Если ваш компьютер подключен к локальной сети или интернет, вы можете узнать его IP-адрес и маску подсети уже знакомым нам способом:
1. Зайдите в “Пуск” – “Выполнить” – наберите cmd и нажмите “ОК”.
2. В открывшемся окне введите команду ipconfig /all и нажмите клавишу Enter.
IP-адрес компьютера и маску подсети вы увидите в соответствующих строках:Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Интернет (Network Information Center – NIC), если сеть должна работать как составная часть Интернет. Обычно интернет-провайдеры получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами. Это внешние IP-адреса (доступные из интернета), например 90.188.125.200.

Для локальных сетей зарезервированы внутренние IP-адреса (к ним нельзя получить доступ через интернет без специального ПО) из диапазонов:

  • 192.168.0.1 – 192.168.254.254
  • 10.0.0.1 – 10.254.254.254
  • 172.16.0.1 – 172.31.254.254

Из этих диапазонов вы, как системный администратор, и будете назначать адреса компьютерам в вашей локальной сети. Если вы “жестко” зафиксируете IP-адрес в настройках компьютера, то такой адрес будет называться статическим – это постоянный, неизменяемый IP-адрес ПК.
Существует и другой тип IP-адресов – динамические, которые изменяются при каждом входе компьютера в сеть. За управление процессом распределения динамических адресов отвечает служба DHCP. О ней я расскажу вам в одной из следующих статей.

Имя сетевого компьютера

Помимо физического и сетевого адресов компьютер может также иметь символьный адрес – имя компьютера . Имя компьютера – это более удобное и понятное для человека обозначение компьютера в сети. Различают NetBIOS имена и полные доменные имена компьютеров.

Имена NetBIOS используются в одноранговых локальных сетях, в которых компьютеры организованы в рабочие группы. NetBIOS – протокол для взаимодействия программ через компьютерную сеть. Протокол NetBIOS распознает обычные буквенные имена компьютеров и отвечает за передачу данных между ними. Проводник Windows для просмотра локальной сети предоставляет папку Сетевое окружение, автоматически отображающей имена NetBIOS компьютеров вашей локальной сети.

Имя NetBIOS может содержать не более 15 символов и должно быть на английском языке.

Каждый компьютер в компьютерной сети имеет имя. Для этого служит так называемая IP (Internet Рго1осо1)-адресация.

IP-адрес - это уникальный номер компьютера в сети. IP-адрес определяет местонахождение узла в сети подобно тому, как адрес дома указывает его расположение в городе. IP-адрес может быть «статический - неизменный» или «динамический - выдается сервером». Каждый IP-адрес состоит из двух частей - идентификатора сети и идентификатора узла. Первый определяет физическую сеть. Он одинаков для всех узлов в одной сети и уникален для каждой из сетей, включенных в объединенную сеть. Идентификатор узла соответствует конкретной рабочей станции, серверу, маршрутизатору или другому TCP/IP-узлу в данной сети. Он должен иметь уникальное значение в данной сети. Каждый узел TCP/IP однозначно определяется по своему логическому IP-адресу. Такой уникальный адрес необходим всем сетевым компонентам, взаимодействующим по TCP/IP.

Сообщество Интернета определило пять классов IP-адресов в соответствии с различными размерами компьютерных сетей. Microsoft TCP/IP поддерживает адреса классов А, В и С. Класс адреса определяет, какие биты относятся к идентификатору сети, а какие - к идентификатору узла. Также он определяет максимально возможное количество узлов в сети.

Класс IP-адреса идентифицируют по значению его первого октета, 32-разрядные IP-адреса могут быть присвоены в общей совокупности 3720314628 узлам. Ниже показано, как определяются поля в IP-адресах разных классов.

Идентификатор сети

Идентификатор узла

Адреса класса А назначаются узлам очень большой сети. Старший бит в адресах этого класса всегда равен нулю. Следующие семь бит первого октета представляют идентификатор сети. Оставшиеся 24 бита (три октета) содержат идентификатор узла. Это позволяет иметь 126 сетей с числом узлов до 17 млн. в каждой.

Адреса класса В назначаются узлам в больших и средних по размеру сетях. В двух старших битах IP-адреса класса В записывается двоичное значение 10. Следующие 14 бит содержат идентификатор сети (два первых октета). Оставшиеся 16 бит (два октета) представляют идентификатор узла. Таким образом, возможно существование 16384 сетей класса В, в каждой из которых около 65000 узлов.

Адреса класса С применяются в небольших сетях. Три старших бита IP-адреса этого класса содержат двоичное значение 110. Следующие 21 бит составляет идентификатор сети (первые три октета). Оставшиеся 8 бит (последний октет) отводятся под идентификатор узла. Всего возможно около 2000000 сетей класса С, содержащих до 254 узлов.

Примечание. В качестве идентификатора сети не может использоваться значение 127. Оно зарезервировано для диагностики и используется в качестве локальной заглушки.

Класс Е - экспериментальный. Он зарезервирован для использования в будущем и в настоящее время не применяется. Четыре старших бита адресов класса Е равны 1111.

Для выделения (маскирования) из IP-адреса его частей (идентификаторов сети и узла) используется 32-разрядная маска подсети. Использование маски необходимо при выяснении того, относится тот или иной IP-адрес к локальной или удаленной сети. Каждый узел TCP/IP должен иметь маску подсети либо задаваемую по умолчанию (в том случае, когда сеть не делится на подсети), либо специальную (если сеть разбита на несколько подсетей). Задаваемая по умолчанию маска подсети используется в том случае, если сеть TCP/IP не разделяется на подсети. Даже в сети, состоящей из одного сегмента, всем узлам TCP/IP необходима маска подсети. Значение маски подсети по умолчанию зависит от используемого в данной сети класса IP-адресов. В маске подсети биты, соответствующие идентификатору сети, устанавливаются в 1. Таким образом, значение каждого октета будет равно 255. Все биты, соответствующие идентификатору узла, устанавливаются в 0.

Читайте также: