Способы соединения компьютеров в сеть дерево

Обновлено: 07.07.2024

В топология дерева это комбинация шинной топологии и звездообразной топологии. Эта комбинация позволяет пользователям иметь несколько серверов в сети. Подключите несколько звездообразных топологий к другой звездообразной топологии. Она также известна как расширенная звездообразная топология или иерархическая топология.

Сетевая топология - это систематический дизайн устройств в сети. Топология дерева имеет центральный узел, к которому подключены все остальные устройства, чтобы построить иерархию, которая должна иметь как минимум три уровня.

Топология дерева следует иерархической модели; по этой причине каждый уровень связан со следующим более высоким уровнем по симметричной схеме.

Эту топологию лучше всего применять в большой сети. Это не рекомендуется для небольшой сети, потому что потребуется использовать больше кабелей, чем в других топологиях, что приводит к большим потерям.

Лучше всего использовать древовидную топологию, потому что все компьютеры одновременно принимают сигналы, передаваемые центральным устройством.

характеристики

Два типа топологии

Топология дерева представляет собой комбинацию двух топологий: топологии шины и топологии звезды. Он построен путем соединения нескольких звездообразных топологий через магистральный кабель. Эта топология очень полезна для возможности расширения сети.

В древовидной сети несколько звездообразных сетей соединены шинной сетью. Этот основной провод выглядит как основной путь дерева, а другие звездные сети служат его ветвями.

В топологии шины различные узлы подключаются к основному кабелю, тогда как в топологии звезды центральный концентратор служит для соединения всех устройств.

Соединение точка-точка

В древовидной топологии каждый компьютер имеет прямое подключение к концентратору, а также каждая часть сети подключена к магистральному кабелю.

В этом типе сети кабельная разводка точка-точка выполняется для каждого отдельного сегмента и, следовательно, может поддерживаться несколькими поставщиками программного и аппаратного обеспечения. Однако, если центральная магистраль выходит из строя, вся сеть выходит из строя.

Каждое устройство на иерархическом уровне имеет прямую связь с каждым соседним узлом на его нижнем уровне.

Все узлы второго уровня имеют двухточечные соединения с узлами третьего уровня в своей иерархии, а основное устройство имеет двухточечное соединение с каждым узлом второго уровня.При просмотре диаграммы этой топологии эта конфигурация выглядит похожей на структуру дерева.

Иерархические отношения

Это сетевая топология, которая имеет по крайней мере три уровня иерархии, которые работают вместе с первичной сетью, потому что в звездообразной топологии уже показаны два уровня иерархии.

К концентратору можно подключить два или более устройства. Эти два устройства называются дочерними по отношению к главному узлу. Топология называется древовидной, потому что ее форма похожа на дерево с разными ветвями устройств.

Использование топологии дерева

- Он в основном используется в сети, охватывающей большую территорию. Идеально, если рабочие места сгруппированы по разным зонам.

- Связь между двумя сетями для создания более крупной сети.

- Сетевая структура, которая требует корневого устройства, промежуточных первичных устройств и конечных узлов, как показано в дереве.

- Для обмена информацией по более крупной сети.

- Позволяет пользователям иметь несколько серверов в сети.

Преимущество

- Древовидная топология снижает сетевой трафик.

- Он совместим со многими поставщиками оборудования и программного обеспечения.

- Устройства в других иерархиях сети не пострадают, если какое-либо из устройств в одной из ветвей сети будет повреждено.

Очень гибкий

В древовидной топологии компьютеры могут быть добавлены просто путем добавления нового концентратора в топологию сети. Следовательно, расширение узла возможно и просто.

Это означает, что он обеспечивает большую масштабируемость, потому что устройства последнего уровня могут вместить больше устройств в иерархической цепочке.

Вот почему легко добавить компьютер, просто удлинив кабель, который используется для его подключения.

Централизованный мониторинг

Эта топология позволяет пользователям легко контролировать и управлять довольно большой сетью, а древовидную топологию легко перенастроить.

Легкое обнаружение ошибок

Древовидную сеть можно легко расширить, поскольку дочерние узлы могут стать родителями будущих узлов.

Доступ к компьютеру

Поскольку древовидная топология предназначена для большой сети, все компьютеры будут иметь лучший доступ к любому устройству в сети.

Недостатки

- Требуется огромное количество кабелей по сравнению с топологией звезды и шины.

- Каждый раз, когда добавляются новые узлы, обслуживание становится сложнее. Следовательно, требуется много обслуживания.

Единая точка отказа

Если магистраль всей сети сломана, обе части сети не смогут связываться друг с другом, хотя одна часть сможет продолжить связь.

С другой стороны, если центральный концентратор сети выйдет из строя, выйдет из строя вся сеть. Таким же образом, если возникает проблема с центральным кабелем, вся сеть перестает работать.

Сложно настроить

Древовидную топологию сложно настроить. Это потому, что это топология для больших сетей. Кроме того, сложно подключить сеть. Требуется много кабелей, и их сложно обслуживать.

Существует множество способов соединения сетевых устройств. Выделяют следующие топологии:

  • полносвязная
  • ячеистая
  • общая шина
  • звезда
  • кольцо
  • снежинка

Рассмотрим каждую из них по подробнее.

1) Полносвязная топология — топология компьютерной сети, в которой каждая рабочая станция подключена ко всем остальным. Этот вариант является громоздким и неэффективным, несмотря на свою логическую простоту. Для каждой пары должна быть выделена независимая линия, каждый компьютер должен иметь столько коммуникационных портов сколько компьютеров в сети. По этим причинам сеть


может иметь только сравнительно небольшие конечные размеры. Чаще всего эта топология используется в многомашинных комплексах или глобальных сетях при малом количестве рабочих станций.

Технология доступа в сетях этой топологии реализуется методом передачи маркера. Маркер – это пакет, снабженный специальной последовательностью бит (его можно сравнить с конвертом для письма). Он последовательно предается по кольцу от компьютера к компьютеру в одном направлении. Каждый узел ретранслирует передаваемый маркер. Компьютер может передать свои данные, если он получил пустой маркер. Маркер с пакетом передается, пока не обнаружится компьютер, которому предназначен пакет. В этом компьютере данные принимаются, но маркер движется дальше и возвращается к отправителю.
После того, как отправивший пакет компьютер убедится, что пакет доставлен адресату, маркер освобождается.

Недостаток: г ромоздкий и неэффективный вариант , т . к . каждый компьютер должен иметь большое кол - во коммуникационных портов .

2) Ячеистая топология - базовая полносвязная топология компьютерной сети, в которой каждая рабочая станция сети соединяется с несколькими другими рабочими станциями этой же сети. Характеризуется высокой отказоустойчивостью, сложностью настройки и переизбыточным расходом кабеля. Каждый компьютер имеет множество возможных путей соединения с другими компьютерами. Обрыв кабеля не приведёт к потере соединения между двумя компьютерами.


Получается из полносвязной путем удаления некоторых возможных связей. Эта топология допускает соединение большого количества компьютеров и характерна, как правило, для крупных сетей.

3) Общая шина, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.

Сравнение с другими топологиями.

  • Небольшое время установки сети;
  • Дешевизна (требуется меньше кабеля и сетевых устройств);
  • Простота настройки;
  • Выход из строя рабочей станции не отражается на работе сети.


  • Неполадки в сети, такие как обрыв кабеля и выход из строя терминатора, полностью блокируют работу всей сети;
  • Сложная локализация неисправностей;
  • С добавлением новых рабочих станций падает производительность сети.
Шинная топология представляет собой топологию, в которой все устройства локальной сети подключаются к линейной сетевой среде передачи данных. Такую линейную среду часто называют каналом, шиной или трассой. Каждое устройство, например, рабочая станция или сервер, независимо подключается к общему шинному кабелю с помощью специального разъема. Шинный кабель должен иметь на конце согласующий резистор, или терминатор, который поглощает электрический сигнал, не давая ему отражаться и двигаться в обратном направлении по шине. 4) З везда - базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно коммутатор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило, «дерево»). Весь обмен информацией идет исключительно через центральный компьютер, на который таким способом возлагается очень большая нагрузка, поэтому ничем другим, кроме сети, он заниматься не может. Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, потому что управление полностью централизовано.


Метод доступа реализуется с помощью технологии Arcnet. Этот метод доступа также использует маркер для передачи данных . Маркер передается от компьютера к компьютеру в порядке возрастания адреса . Как и в кольцевой топологии , каждый компьютер регенерирует маркер .

Сравнение с другими топологиями.

  • выход из строя одной рабочей станции не отражается на работе всей сети в целом;
  • хорошая масштабируемость сети;
  • лёгкий поиск неисправностей и обрывов в сети;
  • высокая производительность сети (при условии правильного проектирования);
  • гибкие возможности администрирования.
  • выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;
  • для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;
  • конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.
5) К ольцо - это топология , в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды , работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов .

Работа в сети кольца заключается в том, что каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли повторителя, потому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, потому что выход его из строя сразу же парализует весь обмен.


Компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, который ведет передачу в этот момент, раньше, а другие — позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на «кольцо». В этих методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру.

Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количество абонентов в кольце может быть достаточно большое (1000 и больше). Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

В кольце, в отличие от других топологий (звезда, шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2—10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.

Последующий алгоритм работы таков — пакет данных GRE, передаваемый отправителем адресату начинает следовать по пути, проложенному маркером. Пакет передаётся до тех пор, пока не доберётся до получателя.

Сравнение с другими топологиями.

  • Простота установки;
  • Практически полное отсутствие дополнительного оборудования;
  • Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.
  • Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;
  • Сложность конфигурирования и настройки;
  • Сложность поиска неисправностей.
  • Необходимость иметь две сетевые платы, на каждой рабочей станции.
6) Снежинка ( Иерархическая Звезда или древовидная топология) - топология типа звезды , но используется несколько концентратов , иерархически соединенных между собой связями типа звезда . Топология "снежинка" требует меньшей длины кабеля, чем "звезда", но больше элементов.


Самый распространенный способ связей как в локальных сетях , так и в глобальных .

tr99.jpg

Топология дерево представляет собой особый тип структуры, в которой многие соединенные элементы расположены как ветви дерева. Они, как правило, используются для организации компьютеров в корпоративной сети или информации в базе данных.

Особенности

Топология дерева базируется на двух топологиях — шины и звезды. Несмотря на то что такая конфигурация не является широко используемой сетевой топологией, она все же применяется в определенных обстоятельствах, например, когда требуется масштабируемая иерархическая связь между двумя сетями.

В древовидной топологии между любыми двумя связанными узлами может быть только одно соединение. Поскольку любые два узла могут иметь только одну взаимную связь, такая структура образует естественную родительски-дочернюю иерархию. Например, в компьютерных сетях топология дерева также известна как топология звездной шины, потому что как уже было сказано выше, она включает в себя элементы как шинной, так и звездной конфигурации.

Древовидная топология — это иерархическая структура, в которой каждый уровень связан со следующим уровнем, и находится он, как правило, выше текущего. Таким образом, в ней могут объединяться несколько звездообразных структур, что позволяет, например, если речь идет о сети, пользователям соединятся с большим количеством серверов. Такая иерархическая структура считается лучшим вариантом для подключения больших сетей.

topol22.jpg

Преимущества

  • Гибкость. В древовидную топологию можно легко добавлять новые узлы (компьютеры), просто подключив к ней концентратор. Это фактически позволяет добавлять несколько компьютеров в сеть одновременно.
  • Простой централизованный мониторинг. Данная конфигурация позволяет пользователям легко контролировать и управлять большой сеткой. Кроме того, ее очень легко перенастраивать.
  • Масштабируемость. Она очень масштабируема, потому что конечные узлы могут концентрировать в себе несколько подключений от новых узлов. Такое разветвление с каждым новых подключением множит количество потенциальных подключений.
  • Простое подключение “точка-точка”. Подключение“точка-точка” к центральному концентратору на каждом промежуточном узле соответствует узлу в шинной топологии. Фактически, в древовидной топологии каждый компьютер подключен к концентратору, а также каждая часть сети подключена к главному кабелю.
  • Доступ. Поскольку древовидная топология представляет собой большую сеть, все компьютеры будут иметь лучший доступ к сети. Это фактически делает ее наиболее эффективным способом подключения нескольких компьютеров к одному дереву.
  • Надежность. В древовидной топологии другие иерархические сети не затрагиваются, если одна из них повреждена. Это делает ее очень надежной и эффективной.
  • Поддерживается аппаратными и программными поставщиками. Она также поддерживается многими аппаратными и программными поставщиками, а это означает, что компоненты, которые требуются для конфигурации и обслуживания легкодоступны на рынке.
  • Простая идентификация системы. Благодаря древовидной конфигурации очень легко идентифицировать конкретную систему, а также подключиться к более крупной сетке.
  • Обмен информацией. Она также позволит обмениваться информацией по крупной сети, что очень удобно для крупных корпораций.
  • Позволяет использовать несколько серверов. Топология дерева также позволяет пользователям подключаться к нескольким серверами. Это фактически делает ее расширяемой и способной одновременно вместить множество компьютеров.
  • Снижение трафика. Поскольку древовидная топология включает несколько серверов, это поможет значительно уменьшить трафик независимо от количества компьютеров, находящихся в сети.

Недостатки и минусы

  • Одна точка отказа.Если магистраль всей сети выходит из строя, то ее отдельные части не смогут взаимодействовать друг с другом.
  • Необходимы огромные кабели. Поскольку в древовидной топологии имеется несколько точек подключения, наверняка понадобятся, большое количество длинных кабелей, а это довольно затратно.
  • Сложности в настройке. Иногда такую топологию достаточно сложно настроить. Во-первых, потому что, как правило, большая сеть подразумевает большое количество подключений, во-вторых, структура подключения в реальной жизни может быть довольно запутанной, и не всегда совпадает со схемой.
  • Длина сети ограничена типом кабеля. При такой конфигурации длина сети ограничена типом кабеля, который будет использоваться. Таким образом, потребуется использовать высококачественные кабели для расширения, иначе сигнал не будет проходить.
  • Обслуживание. Подобные структуры нуждаются в постоянном мониторинге и обслуживании. Причина состоит в том, что большое количество точек подключения, подразумевает относительно регулярный выход из строя того или иного узла.

Рекомендации

Древовидная структура подходит лучше всего в случае, когда сеть широко распространена и разбита на множество ветвей. Как и любая другая топология, древовидная имеет свои преимущества и недостатки. Подобная конфигурация, как правило, не подходит для небольших сетей, потому что она подразумевает приобретение дорогостоящего кабеля использование, которого может быть нецелесообразным. Топология дерева имеет некоторые ограничения, и конфигурация должна соответствовать этим ограничениям. Стоит отметить, что на практике древовидная структура хорошо подходит для прокладки кабелей и сетей по всей территории многоэтажных зданий, таких как общественные антенные системы или кабельное телевидение.

Во время конфигурации компьютерной сети нужно выбрать одну из топологий, которая идеально будет соответствовать конкретным требованиям. Выбор необходимо сделать в пользу той топологии, при которой можно достичь результата при минимальных затратах. Также стоит отметить, что необязательно зацикливаться на одной конфигурации, так как существуют комбинированные топологии, которые имеют свои преимущества.

Гибкость. Топология сети должна быть достаточно гибкой, чтобы можно было изменять конфигурацию офиса, добавлять новые узлы и перемещать существующие узлы.

Простота установки. Сеть должна легко устанавливаться с точки зрения требований к оборудованию, программному обеспечению и техническому персоналу.

Топология шины

Сеть передачи данных с топологией шины имеет линейный кабель передачи , обычно коаксиальный , к которому подключено множество сетевых устройств и рабочих станций по всей длине. Сервер находится на одном конце шины. Когда рабочая станция должна отправлять данные, она передает пакеты с адресом назначения в своем заголовке по шине.

42755e07da7730e50b17539b5735700401c1cbda573f317312c14876aa1d7257.jpg

Данные перемещаются в обоих направлениях вдоль автобуса. Когда терминал назначения видит данные, он копирует их на локальный диск.

Преимущества топологии шины

  • Простота установки и обслуживания
  • Может быть легко продлен
  • Очень надежный из-за единственной линии передачи

Недостатки шинной топологии

  • Поиск и устранение неисправностей затруднен, так как нет единой точки контроля
  • Один неисправный узел может разрушить всю сеть
  • Тупые клеммы не могут быть подключены к шине

Кольцевая топология

В кольцевой топологии каждый терминал связан ровно с двумя узлами , что дает сети круглую форму. Данные перемещаются только в одном заранее заданном направлении.

bf432271fb207e3c455db34f8ef665463beb3d29e4999702b6db492cbec22faa.jpg

Преимущества кольцевой топологии

  • Небольшие сегменты кабеля необходимы для соединения двух узлов
  • Идеально подходит для оптических волокон, поскольку данные перемещаются только в одном направлении
  • Возможны очень высокие скорости передачи

Недостатки кольцевой топологии

Отказ одного узла обрушивает всю сеть

Поиск и устранение неисправностей затруднен, так как многие узлы могут быть проверены, прежде чем будет обнаружен неисправный

Сложно удалить один или несколько узлов, оставив остальную сеть нетронутой

Топология звезды

В звездной топологии сервер подключается к каждому узлу индивидуально. Сервер также называется центральным узлом. Любой обмен данными между двумя узлами должен осуществляться через сервер. Это наиболее популярная топология для информационных и голосовых сетей, поскольку центральный узел может обрабатывать данные, полученные от исходного узла, перед отправкой их на целевой узел.

dc1eefcd02912f5c40e0f38f0d5a970111a199c4523779c65d33b5fdb9145223.jpg

Преимущества топологии звезды

Отказ одного узла не влияет на сеть

Устранение неполадок легко, так как неисправный узел может быть сразу обнаружен центральным узлом

Протоколы простого доступа, необходимые в качестве одного из связывающих узлов, всегда являются центральным узлом

Недостатки звездной топологии

Длинные кабели могут потребоваться для подключения каждого узла к серверу

Отказ центрального узла обрушивает всю сеть

Топология дерева

Древовидная топология имеет группу звездных сетей, соединенных с магистральным кабелем линейной шины. Он включает в себя функции как топологии звезды, так и шины. Топология дерева также называется иерархической топологией.

Преимущества топологии дерева

Существующая сеть может быть легко расширена

Двухточечная проводка для отдельных сегментов облегчает установку и обслуживание

Хорошо подходит для временных сетей

Недостатки древовидной топологии

Требуется техническая экспертиза для настройки и топологии проводного дерева

Отказ магистрального кабеля разрушает всю сеть

Обслуживание сложно для больших сетей

Термины топология сети, структура сети или конфигурация сети означают способ соединения компьютеров в сеть. Основные топологии: звезда, кольцо, шина

Термин топология сети означает способ соединения компьютеров в сеть. Вы также можете услышать другие названия – структура сети или конфигурация сети (это одно и то же). Кроме того, понятие топологии включает множество правил, которые определяют места размещения компьютеров, способы прокладки кабеля, способы размещения связующего оборудования и многое другое. На сегодняшний день сформировались и устоялись несколько основных топологий. Из них можно отметить “шину”, “кольцо” и “звезду”.

Топология “шина”

Достоинства топологии “шина”:

  • простота настройки;
  • относительная простота монтажа и дешевизна, если все рабочие станции расположены рядом;
  • выход из строя одной или нескольких рабочих станций никак не отражается на работе всей сети.

Недостатки топологии “шина”:

  • неполадки шины в любом месте (обрыв кабеля, выход из строя сетевого коннектора) приводят к неработоспособности сети;
  • сложность поиска неисправностей;
  • низкая производительность – в каждый момент времени только один компьютер может передавать данные в сеть, с увеличением числа рабочих станций производительность сети падает;
  • плохая масштабируемость – для добавления новых рабочих станций необходимо заменять участки существующей шины.

Именно по топологии “шина” строились локальные сети на коаксиальном кабеле . В этом случае в качестве шины выступали отрезки коаксиального кабеля, соединенные Т-коннекторами. Шина прокладывалась через все помещения и подходила к каждому компьютеру. Боковой вывод Т-коннектора вставлялся в разъем на сетевой карте. Вот как это выглядело:Сейчас такие сети безнадежно устарели и повсюду заменены “звездой” на витой паре, однако оборудование под коаксиальный кабель еще можно увидеть на некоторых предприятиях.

Топология “кольцо”

Достоинства кольцевой топологии:

  • простота установки;
  • практически полное отсутствие дополнительного оборудования;
  • возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети.

Однако “кольцо” имеет и существенные недостатки:

  • каждая рабочая станция должна активно участвовать в пересылке информации; в случае выхода из строя хотя бы одной из них или обрыва кабеля – работа всей сети останавливается;
  • подключение новой рабочей станции требует краткосрочного выключения сети, поскольку во время установки нового ПК кольцо должно быть разомкнуто;
  • сложность конфигурирования и настройки;
  • сложность поиска неисправностей.

Кольцевая топология сети используется довольно редко. Основное применение она нашла в оптоволоконных сетях стандарта Token Ring.

Топология “звезда”

Звезда – это топология локальной сети, где каждая рабочая станция присоединена к центральному устройству (коммутатору или маршрутизатору). Центральное устройство управляет движением пакетов в сети. Каждый компьютер через сетевую карту подключается к коммутатору отдельным кабелем. При необходимости можно объединить вместе несколько сетей с топологией “звезда” – в результате вы получите конфигурацию сети с древовидной топологией. Древовидная топология распространена в крупных компаниях. Мы не будем ее подробно рассматривать в данной статье.

Топология “звезда” на сегодняшний день стала основной при построении локальных сетей. Это произошло благодаря ее многочисленным достоинствам:

  • выход из строя одной рабочей станции или повреждение ее кабеля не отражается на работе всей сети в целом;
  • отличная масштабируемость: для подключения новой рабочей станции достаточно проложить от коммутатора отдельный кабель;
  • легкий поиск и устранение неисправностей и обрывов в сети;
  • высокая производительность;
  • простота настройки и администрирования;
  • в сеть легко встраивается дополнительное оборудование.

Однако, как и любая топология, “звезда” не лишена недостатков:

  • выход из строя центрального коммутатора обернется неработоспособностью всей сети;
  • дополнительные затраты на сетевое оборудование – устройство, к которому будут подключены все компьютеры сети (коммутатор);
  • число рабочих станций ограничено количеством портов в центральном коммутаторе.

Звезда – самая распространенная топология для проводных и беспроводных сетей. Примером звездообразной топологии является сеть с кабелем типа витая пара, и коммутатором в качестве центрального устройства. Именно такие сети встречаются в большинстве организаций.

Метки: монтаж сети

Другие топологии

Применяются довольно часто и комбинированные топологии, среди которых наибольшее распространение получили звездно-шинная (рис. 1.8) и звездно-кольцевая (рис. 1.9).

Рис. 1.8. Пример звездно-шинной топологии

Рис. 1.9. Пример звездно-кольцевой топологии

В случае звездно-кольцевой (star-ring) топологии в кольцо объединяются не сами компьютеры, а специальные концентраторы (изображенные на рис. 1.9 в виде прямоугольников), к которым в свою очередь подключаются компьютеры с помощью звездообразных двойных линий связи. В действительности все компьютеры сети включаются в замкнутое кольцо, так как внутри концентраторов все линии связи образуют замкнутый контур (как показано на рис. 1.9). Данная топология позволяет комбинировать преимущества звездной и кольцевой топологий. Например, концентраторы позволяют собрать в одно место все точки подключения кабелей сети.

Топология дерево: основные плюсы и минусы

Топология дерево представляет собой особый тип структуры, в которой многие соединенные элементы расположены как ветви дерева. Они, как правило, используются для организации компьютеров в корпоративной сети или информации в базе данных.

Особенности

В древовидной топологии между любыми двумя связанными узлами может быть только одно соединение. Поскольку любые два узла могут иметь только одну взаимную связь, такая структура образует естественную родительски-дочернюю иерархию. Например, в компьютерных сетях топология дерева также известна как топология звездной шины, потому что как уже было сказано выше, она включает в себя элементы как шинной, так и звездной конфигурации.

Древовидная топология — это иерархическая структура, в которой каждый уровень связан со следующим уровнем, и находится он, как правило, выше текущего. Таким образом, в ней могут объединяться несколько звездообразных структур, что позволяет, например, если речь идет о сети, пользователям соединятся с большим количеством серверов. Такая иерархическая структура считается лучшим вариантом для подключения больших сетей.

Топология дерево

Преимущества

  • Гибкость. В древовидную топологию можно легко добавлять новые узлы (компьютеры), просто подключив к ней концентратор. Это фактически позволяет добавлять несколько компьютеров в сеть одновременно.
  • Простой централизованный мониторинг. Данная конфигурация позволяет пользователям легко контролировать и управлять большой сеткой. Кроме того, ее очень легко перенастраивать.
  • Масштабируемость. Она очень масштабируема, потому что конечные узлы могут концентрировать в себе несколько подключений от новых узлов. Такое разветвление с каждым новых подключением множит количество потенциальных подключений.
  • Простое подключение “точка-точка”. Подключение“точка-точка” к центральному концентратору на каждом промежуточном узле соответствует узлу в шинной топологии. Фактически, в древовидной топологии каждый компьютер подключен к концентратору, а также каждая часть сети подключена к главному кабелю.
  • Доступ. Поскольку древовидная топология представляет собой большую сеть, все компьютеры будут иметь лучший доступ к сети. Это фактически делает ее наиболее эффективным способом подключения нескольких компьютеров к одному дереву.
  • Надежность. В древовидной топологии другие иерархические сети не затрагиваются, если одна из них повреждена. Это делает ее очень надежной и эффективной.
  • Поддерживается аппаратными и программными поставщиками. Она также поддерживается многими аппаратными и программными поставщиками, а это означает, что компоненты, которые требуются для конфигурации и обслуживания легкодоступны на рынке.
  • Простая идентификация системы. Благодаря древовидной конфигурации очень легко идентифицировать конкретную систему, а также подключиться к более крупной сетке.
  • Обмен информацией. Она также позволит обмениваться информацией по крупной сети, что очень удобно для крупных корпораций.
  • Позволяет использовать несколько серверов. Топология дерева также позволяет пользователям подключаться к нескольким серверами. Это фактически делает ее расширяемой и способной одновременно вместить множество компьютеров.
  • Снижение трафика. Поскольку древовидная топология включает несколько серверов, это поможет значительно уменьшить трафик независимо от количества компьютеров, находящихся в сети.

Недостатки и минусы

  • Одна точка отказа.Если магистраль всей сети выходит из строя, то ее отдельные части не смогут взаимодействовать друг с другом.
  • Необходимы огромные кабели. Поскольку в древовидной топологии имеется несколько точек подключения, наверняка понадобятся, большое количество длинных кабелей, а это довольно затратно.
  • Сложности в настройке. Иногда такую топологию достаточно сложно настроить. Во-первых, потому что, как правило, большая сеть подразумевает большое количество подключений, во-вторых, структура подключения в реальной жизни может быть довольно запутанной, и не всегда совпадает со схемой.
  • Длина сети ограничена типом кабеля. При такой конфигурации длина сети ограничена типом кабеля, который будет использоваться. Таким образом, потребуется использовать высококачественные кабели для расширения, иначе сигнал не будет проходить.
  • Обслуживание. Подобные структуры нуждаются в постоянном мониторинге и обслуживании. Причина состоит в том, что большое количество точек подключения, подразумевает относительно регулярный выход из строя того или иного узла.

Рекомендации

Древовидная структура подходит лучше всего в случае, когда сеть широко распространена и разбита на множество ветвей. Как и любая другая топология, древовидная имеет свои преимущества и недостатки. Подобная конфигурация, как правило, не подходит для небольших сетей, потому что она подразумевает приобретение дорогостоящего кабеля использование, которого может быть нецелесообразным. Топология дерева имеет некоторые ограничения, и конфигурация должна соответствовать этим ограничениям. Стоит отметить, что на практике древовидная структура хорошо подходит для прокладки кабелей и сетей по всей территории многоэтажных зданий, таких как общественные антенные системы или кабельное телевидение.

Во время конфигурации компьютерной сети нужно выбрать одну из топологий, которая идеально будет соответствовать конкретным требованиям. Выбор необходимо сделать в пользу той топологии, при которой можно достичь результата при минимальных затратах. Также стоит отметить, что необязательно зацикливаться на одной конфигурации, так как существуют комбинированные топологии, которые имеют свои преимущества.

Сетевые топологии Преимущества и недостатки каждого

Топология сети - это описание расположения узлов (например, коммутаторов и маршрутизаторов) и соединений в сети, часто представляемых в виде графика..

Независимо от того, насколько идентичны две организации, нет двух одинаковых сетей. Тем не менее, многие организации полагаются на устоявшиеся модели топологии сети. Топологии сети описывают, как устройства соединяются вместе и как данные передаются от одного узла к другому..

топология логической сети это концептуальное представление о том, как устройства работают на определенных уровнях абстракции. физическая топология подробно, как устройства физически связаны. Логические и физические топологии могут быть представлены как визуальные диаграммы.

карта топологии сети это карта, которая позволяет администратору видеть физическое расположение подключенных устройств. Наличие карты топологии сети под рукой очень полезно для понимания того, как устройства соединяются друг с другом, и лучших методов устранения неполадок..

Существует много различных типов топологий, которые корпоративные сети построили сегодня и в прошлом. Некоторые из топологий сети, которые мы собираемся рассмотреть, включают топология шины, кольцевая топология, звездная топология, топология сетки, и гибридная топология.

Топология шины

Топология сети: 6 сетевых топологий, объясненных и сравненных

Топология шины - это тип сети, где каждое устройство подключается к одному кабелю, который проходит от одного конца сети к другому. Этот тип топологии часто называют линейная топология. В топологии шины данные передаются только в одном направлении. Если топология шины имеет две конечные точки, она называется топология линейной шины.

Меньшие сети с топологией этого типа используют коаксиальный кабель или кабель RJ45 для объединения устройств. Однако схема топологии шины устарела, и вы вряд ли встретите компанию, использующую топологию шины сегодня..

преимущества

Топологии шины часто использовались в небольших сетях. Одна из главных причин заключается в том, что они сделай макет простым. Все устройства подключены к одному кабелю, поэтому вам не нужно управлять сложной топологической настройкой..

Расположение также помогло сделать экономическую топологию шины экономически выгодной, потому что они можно запустить с помощью одного кабеля. Если требуется добавить больше устройств, вы можете просто подключить свой кабель к другому кабелю..

Недостатки

Однако использование одного кабеля означает, что топологии шины имеют единую точку отказа. Если кабель выходит из строя, вся сеть будет повреждена. Отказ кабеля стоил бы организациям много времени, пока они пытаются возобновить обслуживание. В дополнение к этому, высокий сетевой трафик снизит производительность сети потому что все данные проходят через один кабель.

Это ограничение делает топологии шины подходящими только для небольших сетей. Основная причина в том, что чем больше у вас узлов, тем ниже будет ваша скорость передачи. Стоит также отметить, что шинные топологии ограничены в том смысле, что они полудуплекс, это означает, что данные не могут быть переданы в двух противоположных направлениях одновременно.

Смотрите также: Мониторинг сети, сервера и приложений для малого и среднего бизнеса

Кольцевая топология

Топология сети: 6 сетевых топологий, объясненных и сравненных

В сетях с кольцевой топологией компьютеры соединяются друг с другом в кольцевом формате. Каждое устройство в сети будет иметь двух соседей и не больше или не меньше. Кольцевые топологии обычно использовались в прошлом, но вам было бы трудно найти предприятие, все еще использующее их сегодня.

Первый узел подключен к последнему узлу, чтобы связать цикл вместе. Как следствие размещения в этом формате пакеты должны проходить через все узлы на пути к месту назначения..

В рамках этой топологии один узел выбран для настройки сети и мониторинга других устройств. Кольцевые топологии полудуплекс, но также может быть сделан дуплекс. Чтобы сделать кольцевые топологии полнодуплексными, вам потребуется два соединения между сетевыми узлами для формирования Топология двойного кольца.

Топология двойного кольца

Топология сети: 6 сетевых топологий, объясненных и сравненных

Как упомянуто выше, если кольцевые топологии сконфигурированы, чтобы быть двунаправленными, то они упоминаются как топологии с двумя кольцами. Топологии с двумя кольцами обеспечивают каждый узел двумя соединениями, по одному в каждом направлении. Таким образом, данные могут передаваться в по часовой стрелке или против часовой стрелки направление.

преимущества

В кольцевых топологиях риск коллизий пакетов очень низок из-за использования основанных на токене протоколов, которые позволяют только одной станции передавать данные в данный момент времени. Это усугубляется тем, что данные могут перемещаться по узлам на высоких скоростях который может быть расширен при добавлении большего количества узлов.

Топологии с двумя кольцами обеспечили дополнительный уровень защиты, потому что они были более устойчивы к сбоям. Например, если кольцо выходит из строя внутри узла, то другое кольцо может подняться и поддержать его. Кольцевые топологии были также низкая стоимость установки.

Недостатки

Одна из причин, по которой кольцевые топологии были заменены, заключается в том, что они очень уязвимы к сбоям. еAilure одного узла может вывести из строя всю сеть. Это означает, что сети с топологией кольца должны постоянно управляться, чтобы гарантировать, что все узлы находятся в хорошем состоянии. Тем не менее, даже если узлы были в добром здравии вашей сети все еще может быть сбит в автономном режиме из-за отказа линии электропередачи!

Кольцевые топологии также повышенные проблемы масштабируемости. Например, полоса пропускания используется всеми устройствами в сети. К тому же, больше устройств, которые добавляются в сеть чем больше задержка связи сеть переживает. Это означает, что количество устройств, добавленных в топологию сети, необходимо тщательно контролировать, чтобы убедиться, что сетевые ресурсы не были растянуты за их пределы..

Внесение изменений в кольцевую топологию также было сложным, потому что вы необходимо выключить сеть, чтобы внести изменения к существующим узлам или добавить новые узлы. Это далеко не идеально, так как вам нужно учитывать время простоя каждый раз, когда вы хотите внести изменения в топологическую структуру!

Смотрите также: Инструменты для мониторинга пропускной способности

Топология звезды

Топология сети: 6 сетевых топологий, объясненных и сравненных

Топология «звезда» - это топология, в которой каждый узел в сети подключен к одному центральному коммутатору. Каждое устройство в сети напрямую связано с коммутатором и косвенно связано с любым другим узлом. Связь между этими элементами заключается в том, что центральное сетевое устройство является сервером, а другие устройства рассматриваются как клиенты. Центральный узел отвечает за управление передачей данных по сети и действует как ретранслятор. В топологии «звезда» компьютеры подключаются с помощью коаксиального кабеля, витой пары или оптоволоконного кабеля..

преимущества

Звездные топологии наиболее часто используются, потому что вы может управлять всей сетью из одного местаЦентральный выключатель Как следствие, если узел, который не является центральным узлом, выйдет из строя, то сеть останется работоспособной. Это дает топологиям звезд уровень защиты от сбоев, которые не всегда присутствуют при других настройках топологии. Точно так же ты можно добавлять новые компьютеры без необходимости отключать сеть как вы бы сделали с кольцевой топологией.

С точки зрения физической структуры, для топологии типа звезда требуется меньше кабелей, чем для других типов топологии. Это делает их прост в настройке и управлении в долгосрочной перспективе. Простота общего дизайна значительно облегчает администраторам устранение неполадок при работе с ошибками производительности..

Недостатки

Хотя звездные топологии могут быть относительно безопасны от отказа, если центральный коммутатор выйдет из строя, то вся сеть выйдет из строя. Таким образом, администратору необходимо тщательно контролировать состояние центрального узла, чтобы убедиться, что он не выходит из строя. Производительность сети также привязаны к конфигурации и производительности центрального узла. Топологией Star легко управлять в большинстве случаев, но их установка и использование далеко не дешевы.

Топология дерева

Топология сети: 6 сетевых топологий, объясненных и сравненных

Как следует из названия, древовидная топология - это сетевая структура, имеющая форму дерева с множеством ветвей. Топологии деревьев иметь корневой узел который связан с другой иерархией узлов. иерархия родитель-потомок где существует только одна взаимная связь между двумя связанными узлами. Как правило, топология дерева должна иметь три уровня иерархии для классификации таким образом. Эта форма топологии используется в глобальных сетях выдержать много разложенных устройств.

преимущества

Основная причина, почему древовидные топологии используется для расширения топологии шины и звезды. В этом иерархическом формате легко добавить больше узлов в сеть, когда ваша организация увеличивается в размерах. Этот формат также хорошо подходит для поиска ошибок и устранения неполадок потому что вы можете систематически проверять проблемы с производительностью по всему дереву.

Недостатки

Наиболее существенным недостатком топологии дерева является корневой узел. В случае сбоя корневого узла все его поддеревья становятся разделенными. Все еще будет частичное соединение в сети среди других устройств, таких как родительский узел неисправного.

Поддерживать сеть тоже не просто, потому что чем больше узлов вы добавляете, тем сложнее становится управлять сеть. Другим недостатком древовидной топологии является количество необходимых кабелей. Кабели необходимы для подключения каждого устройства по всей иерархии, что делает макет более сложным по сравнению с более простой топологией.

Топология сетки

Топология сети: 6 сетевых топологий, объясненных и сравненных

Топология сетки - это соединение точка-точка, где узлы взаимосвязаны. В этой форме топологии, данные передаются двумя способами: маршрутизации и затопление. В маршрутизации узлы используют логику маршрутизации для определения кратчайшего расстояния до места назначения пакета. Напротив, при затоплении данные отправляются на все узлы в сети. Наводнение не требует никакой формы логики маршрутизации для работы.

Есть две формы топологии сетки: частичная топология сетки и етопология ULL-сетки. При частичной топологии сетки большинство узлов взаимосвязаны, но есть несколько, которые связаны только с двумя или тремя другими узлами. В топологии с полной сеткой каждый узел взаимосвязан.

преимущества

Сетчатые топологии используются в первую очередь потому, что они надежны. взаимосвязанность узлов делает их чрезвычайно устойчивыми к сбоям. Нет ни одного сбоя компьютера, который мог бы сломать всю сеть. Отсутствие единой точки отказа является одной из причин, почему это популярный выбор топологии. Эта настройка также защищена от взлома.

Недостатки

Однако сетчатые топологии далеки от совершенства. Oни требует огромного количества конфигурации как только они развернуты. Топологическая схема более сложна, чем у многих других топологий, и это отражается в том, сколько времени потребуется для ее настройки. Вам нужно будет разместить целый ряд новых проводов, которые могут быть довольно дорогими.

Гибридная топология

Топология сети: 6 сетевых топологий, объясненных и сравненных

Когда топология состоит из двух или более разных топологий, она называется гибридной топологией. Гибридные топологии чаще всего встречается на крупных предприятиях где отдельные отделы имеют сетевые топологии, которые отличаются от другой топологии в организации. Соединение этих топологий вместе приведет к гибридной топологии. Как следствие, возможности и уязвимости зависят от типов топологии, которые связаны.

преимущества

Существует много причин, по которым используются гибридные топологии, но все они имеют одну общую черту: гибкость. Есть несколько ограничений на структуру, которые гибридная топология не может вместить, и вы может включать несколько топологий в одну гибридную установку. Как следствие, гибридные топологии очень масштабируемы. Масштабируемость гибридных установок делает их хорошо подходящими для больших сетей.

Недостатки

К сожалению, гибридные топологии может быть довольно сложным, в зависимости от топологии, которую вы решили использовать. Каждая топология, которая является частью вашей гибридной топологии, должна управляться в соответствии с ее уникальными требованиями. Это усложняет работу администраторов, поскольку им придется пытаться управлять несколькими топологиями, а не одной. Кроме того, настройка гибридной топологии может оказаться довольно дорогостоящим.

Смотрите также: Инструменты и программное обеспечение для обнаружения сети

Какую топологию выбрать?

Существует ряд факторов, которые необходимо учитывать при выборе топологии. Прежде чем выбрать топологию, вы должны внимательно рассмотреть следующее:

  • Необходимая длина кабеля
  • Тип кабеля
  • Стоимость
  • Масштабируемость

Во-первых, вам нужно принять во внимание длину кабеля, который вам нужен предоставлять услуги всем вашим сетевым устройствам. Топология шины является наиболее легкой с точки зрения потребностей в кабеле. В этом смысле это будет самая простая топология для установки и покупки кабеля. Это связано со вторым фактором, вам нужно рассмотрите тип кабеля, который вы собираетесь использовать. Типы кабелей варьируются от витых пар до коаксиальных и оптоволоконных кабелей.

Стоимость установки топологии также очень важна. Чем сложнее выбранная топология, тем больше вам придется заплатить с точки зрения ресурсов и времени, чтобы создать эту настройку..

Последний фактор, который вы хотите принять во внимание, - это масштабируемость.. Если вы планируете повысить вашей сетевой инфраструктуры в будущем вы хотите убедиться, что вы использовать сеть, в которую легко добавлять устройства. Сеть со звездообразной топологией идеально подходит для этого, потому что вы можете добавлять узлы с минимальным нарушением работы. Это не так просто в кольцевой сети, потому что вы добавите время простоя, если добавите какие-либо узлы.

ПО для картирования топологии сети

Теперь, когда мы знаем различные типы топологии, пришло время подумать о том, как спроектировать вашу сеть с нуля. Существует ряд программных продуктов, позволяющих создавать собственные диаграммы топологии сети. Диаграммы топологии сети показывают, как ваша сеть соединяется вместе, и помогают вам создать эффективный дизайн сети. Он также предоставляет вам контрольную точку, которая помогает вам при попытке выполнить поиск и устранение неисправностей для устранения неисправностей..

Существует множество различных продуктов для отображения топологии сети, но один из наиболее широко используемых Microsoft Visio. С помощью Microsoft Visio вы можете создать свою сеть, добавив сетевые элементы на холст. Эта программа позволяет вам разработать схему, которая детализирует вашу сеть. Конечно, создание собственной сети не всегда идеально, особенно когда вы пытаетесь отобразить большую сеть.

В результате вы можете рассмотреть возможность использования другого инструмента, такого как Картограф топологии сети SolarWinds который может автоматически обнаруживать устройства, подключенные к вашей сети. Автообнаружение пригодится, потому что это означает, что вам не нужно составлять структуру сети вручную.

Сетевая топология SolarWinds MapperDownload 14-дневная бесплатная пробная версия

Обзор сетевых топологий

Топология сети, которую вы выбираете для своего предприятия, должна основываться на ваших требованиях к использованию. Количество узлов в вашей сети будет определять, сможете ли вы сделать это с помощью топологии шины или вам понадобится развернуть более сложную сетку или гибридную установку.

Помни что все топологии имеют свои преимущества и недостатки в зависимости от среды, в которой они применяются (даже те, которые устарели!). После того, как вы продумали топологию, которую хотите использовать, вы можете приступить к ее развертыванию..

Один хороший способ планировать заранее - использовать инструмент отображения топологии сети составить макет, который вы собираетесь использовать. Используя такой инструмент, как Картограф топологии сети SolarWinds позволит вам построить свою сеть на диаграмме, чтобы увидеть топологическую структуру в одном месте.

Читайте также: