Способы создания звуковых файлов и их представление

Обновлено: 07.07.2024

Звуковая информация Звуковые колебания (волны) – механические колебания, частота которых лежит в пределах от 20 до 20 000 Гц. Свойства: звук - продольная волна; распространяется в упругих средах (воздух, вода, различные металлы и т.д.); имеет конечную скорость. На главную Звуковые колебания 20 Гц 20 000 Гц Инфразвук Ультразвук

СПОСОБЫ ПРЕДСТАВЛЕНИЯ ЗВУКА Аналоговый Дискретный физическая величина принимает бесконечное множество значений, причем они изменяются непрерывно. физическая величина принимает конечное множество значений, причем они изменяются скачкообразно. Виниловая пластинка (звуковая дорожка изменяет свою форму непрерывно) Аудиокомпакт-диск (звуковая дорожка содержит участки с разной отражающей способностью) На главную

Введение Запуск цифрового аудио в CD формате в 1980-х годах совпал с появлением персональных компьютеров, и CD взял на себя все аспекты записи музыки и распространения. Сжатие аудио или исследования кодирования звука, искусство представления звукового сигнала наименьшим количеством битов информации, сохраняя при этом свою точность, прошло большими скачками в конце 1980-х годов и 1990-х годов. На главную

Введение Меню Понятие «Звуковая информация» Характеристики звука Способы представления звука Аудио редакторы Создание аудио файлов Форматы аудио файлов Работа в аудио редакторе (На примере Audacity ) Видео по теме

ФОРМАТЫ ЗВУКОВЫХ ФАЙЛОВ WAVE (.wav) - наиболее широко распространенный формат. Используется в ОС Windows для хранения звуковых файлов. MPEG-3 (.mp3) - наиболее популярный на сегодняшний день формат звуковых файлов. MIDI (.mid) - содержат не сам звук, а только команды для воспроизведения звука. Звук синтезируется с помощью FM- или WT-синтеза. Real Audio (.ra, .ram) - разработан для воспроизведения звука в Internet в режиме реального времени. MOD (.mod) - музыкальный формат, в нем хранятся образцы оцифрованного звука, которые можно затем использовать как шаблоны для индивидуальных нот. На главную

На главную Видео по теме

Аудио редакторы: Достаточно посредственный инструмент для выполнения кодирования аудио файлов, а также вырезания аудио файлов из видео. Аудио редактор, способный создать собственный микс, составленный из самых любимых треков и композиций. Удобный аудио редактор для редактирования голоса и других аудио записей на ПК, которая поддерживает все широко используемые форматы аудио, включая WAV, MP3, WMA, AIFF, AU, MID, WMV, MPG, AVI, APE. Аудиоредактор с широкими возможностями, работающий и как самостоятельная программа, и в качестве утилиты в составе AVS Video Editor. Работает со множеством кодеков. Далее MediaCoder 0.8.46.5866 DJ Music Mixer 5.7 WavePad 6.55 AVS Audio Editor 8.2.1.513

Аудио редакторы: Программа для конвертирования аудио файлов из одного формата в другой, которая так же позволяет извлекать аудио дорожки. Программа для настоящих музыкантов. С ее помощью пользователи смогут создавать собственные песни и сохранять их в формате MIDI. Совершенно новый и интересный аудио редактор, поддерживающий большое количество современных, а главное, самых необходимых опций для работы. Аудио редактор, обладающий наличием бесплатных инструментов для полноценного редактирования аудио файлов. С помощью плагинов функционал может быть расширен. На главную Any Audio Converter 5.8.8 Anvil Studio 2016.02.04 Ocenaudio 3.0.7 Audacity 2.1.2

На самом деле все три способа можно применять совместно: часть инструментов писать живьем (уж вокал-то точно!), часть играть по MIDI, отдельные партии формировать из фрагментов чужих композиций (например, использовать качественно записанные барабанные петли). Но есть и третий способ, при котором вы вообще можете ничего не вводить в компьютер. Например, нарезать кусочки из чужих произведений, зациклить их (получаются так называемые петли- loop) и из этих петель монтировать свое произведение. Этот метод часто используется в современной танцевальной музыке. На главную

Меню Меню содержит набор необходимых для работы команд. Команды "Файл", "Правка" и "Вид" являются стандартными и отвечают соответственно за работу с файлами ("Файл"), редактирование звукового материала ("Правка") и представление ("Вид"). Команда "Проект" позволяет добавлять треки в проект (Проект - импортировать звуковой файл. ) для создания композиции из отдельно взятых звуковых файлов. Команда "Эффекты" предоставляет набор стандартных звуковых эффектов: ревер, эхо, хорус, эквалайзер, смена темпа, смена высоты звука. Далее

Панель инструментов "Главная" Главная панель Содержит команды по исполнению звукового материала (игра, остановить, перейти в начало трека), а также его редактированию (переместить, изменить громкость и т. д.). Далее

Группа круглых кнопок предназначена для управления звуковым материалом проекта в целом. Далее Перейти в начало дорожки. Перемещает курсора в начало дорожки. Воспроизвести. Начинает исполнение проекта. Записать. Начинает записывать сигнал со входа звуковой карты в текущий трек. Приостановить. Приостанавливает исполнение проекта. Повторное нажатие на кнопку продолжает исполнение звукового проекта с текущего места. Остановить. Останавливает исполнение проекта, переводя курсор в начало проекта. Перейти в конец дорожки. Перемещает курсор в конец дорожки.

Группа квадратных кнопок предназначена для редактирования отдельного трека. Далее Выделение.Позволяет выделить часть звуковой дорожки для последующего редактирования. Изменение огибающей.Позволяет изменять громкость отдельных звуковых фрагментов, например, плавное нарастание звука в начале сцены или плавное затухание в конце. Изменение сэмплов.Позволяет непосредственно редактировать звуковую волну. Полезен, например, при устранении щелчков, других нарушений звучания. Масштабирование.Изменяет масштаб изображения звуковых дорожек на рабочем поле. Сдвиг дорожки по времени.Позволяет позиционировать звуковые дорожки друг относительно друга. Очень полезно при создании звуковой композиции из нескольких звуковых файлов. Многоинструментальный режим.

Панель инструментов "Редактирование" Кнопки панели "Редактирование" дублируют наиболее часто используемые команды общего меню программы Далее

Панель инструментов "Редактирование" Далее Вырезать. Удаляет (вырезает) выделенный фрагмент из звуковой дорожки и помещает его в буфер обмена. Скопировать. Копирует в буфер обмена выделенный фрагмент звуковой дорожки, не удаляя его со звуковой дорожки. Вставить. Вставляет фрагмент звуковой дорожки, хранящийся в буфере обмена. Вставка происходит в то место, где находится в данный момент курсор. Обрезать все вне выделенного. Удаляет данные звуковой дорожки, за исключением выделенного фрагмента. Заполнить тишиной. Заменяет выделенный фрагмент тишиной. Отменить. Отменяет последнее действие. Повторить. Повторно выполняет последнее отмененное действие. Приблизить. Увеличивает масштаб отображения звуковых дорожек. Отдалить. Уменьшает масштаб отображения звуковых дорожек. Уместить выделенное в окне. Растягивает выделенный фрагмент на ширину окна. Уместить проект в окне. Изменяет масштаб таким образом, что он полностью умещается в окне редактора.

Панель инструментов "Микшер" Слайдер "Громкость" регулирует уровень громкости звучания Вашей звуковой карты. При перетаскивании мышью слайдера слева направо общий уровень звучания проекта увеличивается. Слайдер "Уровень входа" регулирует уровень входного сигнала. При записи позволяет установить желаемый уровень записываемого сигнала. Селектор канала выбирает входной канал, с которого будет производиться запись (микрофон, линейный вход). Панель инструментов "Микшер" позволяет выбрать канал для записи, а также установить уровень громкости входного канала (при записи) и громкость звучания звуковой карты. Далее

Возможные входные каналы Microphone - Микрофонный вход звуковой карты (обычно находится на задней панели системного блока компьютера). Analog Mix (Line/CD/Aux) - Линейный вход звуковой платы (обычно находится на задней панели системного блока компьютера). Wave/MP3 - данный вход позволяет записывать, например, звук с музыкального CD. Далее

Аудио-дорожки (треки) Аудиотрек графически отображает звук в цифровом формате. Аудиотрек, состоящий из двух аудиодорожек Можно изменить вертикальный размер трека, потянув за его нижнюю границу мышью. Тем самым можно регулировать количество видимых треков на рабочем поле программы. Далее

Каждый трек имеет ряд управляющих элементов и других объектов. Рассмотрим их подробнее. Далее Кнопка, позволяющая устанавливать/изменять общий вид и параметры трека: частоту сэмплирования, глубину звука, стерео/моно. "fon" - название аудиофайла, содержание которого размещено в треке Удаляет трек из проекта. Стерео, 44100Hz Надпись показывает, что данный трек состоит из двух каналов ("Стерео"), частота сэмплирования 44100Hz (высокое качество, соответствует качеству Аудио-CD) 32-bit float Надпись показывает, что глубина звука составляет 32 бита (наивысшая из возможных в этой версии редактора). От глубины звука также зависит качество звучания. Нажатие на эту кнопку выключает звучание трека из общего звучания. Повторное нажатие на кнопку включает трек. Нажатие на эту кнопку выключает все остальные треки, обеспечивая сольное исполнение данного трека. Громкость трека. Позволяет установить уровень звучания трека, соотнеся его с уровнем звучания других треков. Панорама. Устанавливает громкость обоих каналов трека относительно друг друга (в режиме "Стерео"). Срединное положение ползунка устанавливает одинаковую громкость каналов относительно друг друга.

Импорт звука в звуковой редактор Чтобы поместить (импортировать) звук в звуковой редактор, необходимо выполнить команду меню "Проект - импортировать звуковой файл. " и выбрать музыкальный файл. Из наиболее известных форматов редактор Audacity позволяет импортировать звук в формате Wave и MP3. Если Ваш звуковой файл имеет другой формат, необходимо сначала его представить в другом звуковом формате, а потом импортировать в звуковой редактор. На главную

Преобразование документа в электронный вид делится на два этапа: получение графического образа документа и перевод графического образа в текстовый формат. Графический образ документа является результатом сканирования. Перевод графического образа документа в текстовый формат может быть произведен вручную или посредством автоматического распознавания.

Сканирование - процесс оцифровки аналогового изображения (документ, фотография, иллюстрация, слайд) при помощи специального устройства, называемого сканером. Сканирование производится для получения, на основе оригинала, его цифрового "портрета", пригодного для компьютерной обработки.

Сканер - оптико-электронное устройство для ввода в компьютер графических зображений. Сканер создает оцифрованное изображение документа и помещает его в память компьютера.

Для работы с архивными документами в настоящее время используются, в основном, черно-белые и полутоновые монохромные сканеры. Это связано в первую очередь, с тем, что преобладающим типом архивного документа является текстовый документ, отпечатанный на пишущей машинке или монохромном принтере, с рукописным заполнением или правкой темными чернилами и эпизодически включающий печати, рисунки, схемы или черно-белые фотографии. Исходя из этого, в настоящей лекции будут рассмотрены только монохромные сканеры.

Чтобы реализовать автоматический или автоматизированный перевод бумажных документов в электронный вид, необходимо выполнить сканирование бумажных документов и распознать их содержимое с помощью специальных программ, называемых системами оптического распознавания символов (Optical Character Recognition - OCR). Системы оптического распознавания символов предназначены для автоматического ввода печатных документов в компьютер. Обработка изображения OCR-системой включает в себя анализ графического изображения, переданного сканером, и распознавание каждого символа. Процессы анализа макета страницы:

определение областей распознавания

выделение в тексте строк и отдельных символов

и распознавания изображения тесно связаны между собой: алгоритм поиска блоков использует информацию о распознанном тексте для более точного анализа страницы.

Современные программно-аппаратные системы позволяют автоматизировать ввод больших объемов информации в компьютер, используя, например, сетевой сканер и параллельное распознавание текстов на нескольких компьютерах одновременно.

25. Способы создания звуковых файлов и их представление в персональном компьютере. Обработка звуковых файлов. Использование аудиотехнологий при подготовке учебных материалов

Способы создания звуковых файлов и их представление в персональном компьютере. Как уже было сказано, звук невозможно передать на расстояние и записать на носитель. Вначале нужно преобразовать звук в сигнал тока. Устройством для такого преобразования является микрофон. Он преобразует звуковые колебания в аналогичные колебания электрического тока. Полученный сигнал можно усиливать и предавать с помощью электромагнитных волн на сколь угодно большие расстояния. Для записи звука с помощью компьютера необходимо иметь звуковую плату и программное обеспечение. Звуковая плата (карта) служит для записи и воспроизведения звука. При записи аналоговый сигнал, поступающий на вход платы, преобразуется (ЦАП) в цифровой и записывается в файл на физическом носителе. При воспроизведении звука цифровой сигнал преобразуется в аналоговый (АЦП), усиливается и подается на акустическую систему. Усилитель низкой частоты звуковой платы рассчитан на подключение к нему динамиков с большим сопротивлением (головные телефоны) или внешнего усилителя. Акустическая система, состоящая из динамиков и встроенного в одну из колонок УНЧ, называется активной. Выход звуковой платы, с которого берется сигнал для усиления обозначается как линейный выход (lin out или speaker). Для записи сигналов от внешнего источника на звуковой плате имеются разьёмы линейного выхода (lin in) и микрофонный (mic). Как правило, встроенные в материнскую плату звуковые карты имеют два канала (стерео) звукозаписи (воспроизведения). Кроме микросхемы АЦП-ЦАП преобразователей на звуковой карте устанавливают УНЧ и микшер, который обеспечивает смешение сигналов при записи одновременно от двух источников. Операционная система Windows имеет стандартные инструменты для записи (Звукозапись и Регулятор громкости) и воспроизведения (проигрыватель Windows Media) звуковых файлов. Обе программы находятся в группе программ «Стандартные».




26. Использование видеотехнологий при подготовке учебных материалов. Способы создания видео файлов и их форматы. Ввод и редактирование видеоинформации. Методы сжатия видеоинформации. Обзор программного обеспечения для работы с видеофайлами.

Программные средства создания мультимедийных учебных пособий. Основные технические средства, используемые для подготовки и представления мультимедийного учебного материала: сканер, цифровые фото- и видеокамеры, видеомагнитофон, DVD-плеер, персональный компьютер, оверхедпроектор, видеопроектор, Web-камера, электронная доска, Flash-накопитель, средства беспроводного доступа. Типы входных и выходных разъемов устройств, коммутация и подключение. Технические параметры, функциональные возможности и принципы работы видеоустройств.

Система современных средств обучения и пути ее совершенствования. Плазменные панели, системы для видеоконференций. Мультимедийные проекторы и их разновидности. Кинескопная система. Жидкокристаллическая система. Основные технические характеристики и критерии выбора электронного проектора. Методические рекомендации по использованию мультимедийного оборудования в учебном процессе.

Интерактивные доски их типы и разновидности. Комплект программного обеспечения учебного назначения, ориентированный на работу с использованием интерактивной электронной доски. Методические рекомендации по работе с интерактивной доской.

Мультимедиа. Программные средства создания мультимедийных учебных пособий. Основные технические средства, используемые для подготовки и представления мультимедийного учебного материала: сканер, цифровые фото- и видеокамеры, видеомагнитофон, DVD-плеер, персональный компьютер, оверхедпроектор, видеопроектор, Web-камера, электронная доска, Flash-накопитель, средства беспроводного доступа. Типы входных и выходных разъемов устройств, коммутация и подключение. Технические параметры, функциональные возможности и принципы работы видеоустройств.

Система современных средств обучения и пути ее совершенствования. Плазменные панели, системы для видеоконференций. Мультимедийные проекторы и их разновидности. Кинескопная система. Жидкокристаллическая система. Основные технические характеристики и критерии выбора электронного проектора. Методические рекомендации по использованию мультимедийного оборудования в учебном процессе.

Интерактивные доски их типы и разновидности. Комплект программного обеспечения учебного назначения, ориентированный на работу с использованием интерактивной электронной доски. Методические рекомендации по работе с интерактивной доской.

Форматы видеофайлов определяют структуру видео, т.е. отражают, как именно хранится файл на каком-либо носителе информации. В настоящее время существует огромное количество разнообразных форматов видеофайлов, и разобраться в их особенностях иногда бывает довольно сложно. Кроме этого, пользователи часто путают понятия "кодек", "контейнер", "стандарт видео" и подменяют одно другим.

В настоящей статье мы постараемся разобраться, какие бывают форматы видео, каковы их отличия и в какой формат конвертировать видео лучше всего.

Для сжатия цифровых мультимедиа файлов используется специальные программы - кодеки. Это своеобразная формула, которая определяет, каким образом можно "упаковать" видео контент. Кодеки выполняют и обратную операцию раскодирования, в этом случае их называют декодерами. Наиболее популярными видео кодеками являются следующие: DivX, XviD, H.261, H.263, H.264 и др. Любая операционная система изначально содержит некий набор кодеков, но, как правило, их недостаточно для воспроизведения определенных форматов видеофайлов. Кодеки преобразуют данные в особый файл, который называют контейнером. Контейнер - это специальная оболочка, в которой хранится зашифрованная с помощью кодеков информация. По сути, медиаконтейнеры - это и есть форматы видеофайлов, которые содержат данные о своей внутренней структуре. Первый медиаконтейнер был создан в 1985 году. В контейнере может храниться информация разного качества, в частности, изображения, аудио, видео и субтитры. Разные виды контейнеров определяют объем и качество информации, которая может быть в нем сохранена, но при этом не влияют на способы кодирования данных.

На практике возникает огромное количество случаев, когда необходимо преобразовать видео из одного формата в другой. Основная проблема заключается в том, что различные устройства накладывают особые требования к качеству загружаемого видео, в частности к его формату. В этой ситуации на помощь приходят специальные программы - конвертеры, которые позволяют переделать видео в нужный формат. Например, удобный видео конвертер на русском языке - ВидеоМАСТЕР.

Далее рассмотрим наиболее известные форматы видеофайлов.

AVI (Audio-Video Interleaved) - один из самых распространенных медиаконтейнеров для операционных система Windows. Этот формат может содержать в себе информацию четырех типов: видео, аудио, текст и midi. В этот контейнер может входить видео различных форматов от MPEG-1 до MPEG-4. AVI имеет большое количество разновидностей по внутренней структуре и может воспроизводиться на смартфонах, коммуникаторах и других устройствах. Медиаконтейнер AVI не накладывает никаких ограничений на тип используемого кодека.

WMV (Windows Media Video) - цифровой видео формат, созданный и контролируемый компанией Microsoft. WMV файлы могут содержать аудио- и видео данные, упакованные с помощью кодеков Windows Media Audio (WMA) и Windows Media Video (WMV).

MOV - этот формат разработан компанией Apple для QuickTime медиа плеера. Для воспроизведения подобных файлов необходимо иметь QuickTime плеер или плееры с уже установленными кодеками MOV. Формат может содержать видео, анимацию, графику, 3D. Данный формат поддерживает любые аудио- и видеокодеки.

ASF (Advanced Streaming Format) - потоковый формат от Microsoft. Основан на MPEG-4 и сипользуется для передачи видео с низким и средним битрейтом в Интернет. ASF представляет собой мультимедиа контейнер, поддерживающий практически все видеокодеки.

MPEG (Moving Pictures Experts Group) - видеофайлы, в которых содержится видео, закодированное с помощью стандартов Mpeg1, Mpeg2, Mpeg3, Mpeg4. Технология MPEG использует поточное сжатие видео, при котором обрабатывается не каждый кадр по отдельности, а анализируются изменения видеофрагментов и удаляется избыточная информация. MPEG-1 - представляет собой формат для хранения аудио и видео данных на мультимедиа носителях. Формат MPEG-4 обычно используется для обмена и передачи видео-файлов в Интернете, видеотелефонии, электронных информационных изданиях и т.п. В этом формате используется раздельное сжатие для аудио и видео дорожек. MPEG-4 рассчитан на очень низкие потоки данных.

Мы перечислили лишь самые основные форматы видеофайлов, которые используются на практике. При выборе того или иного формата, исходите из того, где этот файл будет воспроизводится, а для преобразования видео из одного формата в другой используйте видео конвертеры.

Sony Vegas Pro – это профессиональная программа для создания и монтажа видео. Удобный интерфейс, универсальность и большое количество профессиональных возможностей принесли большую популярность данному видеоредактору.

Немаловажный факт, что разработчиками Vegas Pro является компания Sony – общепризнанный лидер и «законодатель мод» в мире цифрового видео.

Звуковая волна – это некая сложная функция, зависимость амплитуды звуковой волны от времени.

Информация, содержащаяся в звуковой волне, определяется не параметрами среды, в которой распространяется упругая волна, а параметрами колебаний (амплитудой и частотами основного тона и гармоник).

Любая форма звукозаписи (механическая, магнитная, оптическая, лазерная) осуществляется на основе предварительного преобразования звуковой волны в переменный электрический ток с такими же параметрами колебаний (с помощью микрофона).

Аналоговый звук представляется в аппаратуре непрерывным электрическим сигналом.

Качество звучания зависит от точности воспроизведения формы колебаний, которую очень трудно сохранить.

Главный недостаток аналоговой записи звука — неизбежные потери качества при копировании.

Оцифровка звуковой информации

Оцифровка звука – это фиксация амплитуды сигнала через определенные промежутки времени и регистрация полученных значений амплитуды в виде округленных цифровых значений.

Любой компьютер имеет в своем составе плату – аудиоадаптер (звуковую карту).

Звуковые платы включают: АЦП (аналогово-цифровой преобразователь), синтезатор, микшер, ЦАП (цифро-аналоговый преобразователь), усилитель, MIDI интерфейс, порт для игровых манипуляторов.

Для записи цифрового звука АЦП производит:

дискретизацию по времени непрерывного сигнала (определяет значение амплитуды сигнала с частотой необходимой для воссоздания его исходной формы = удвоенной максимальной частотой звуковой волны);

квантование по уровням измеренных значений сигнала (определяет число фиксируемых значений (уровней, градаций) амплитуды сигнала);

кодирование сигнала (запись в двоичной системе счисления).

Обратную операцию проделывает ЦАП (цифро-аналоговый преобразователь).

Битрейт (bit rate) — буквально, скорость прохождения битов информации.

Битрейт - эффективная скорость передачи информации по каналу (скорость передачи «полезной информации», помимо служебной) выраженная килобитамив секунду (kilobit per second, kbps).

Способы создания видео файлов и их форматы. Ввод и редактирование видеоинформации

1. RIFF(англ. Resource Interchange File Format) — один из форматов файлов-контейнеров для хранения потоковых мультимедиа-данных (видео, аудио, возможно текст). Наиболее известными форматами, использующими RIFF в качестве контейнера, являются: AVI (видео), WAV (аудио), RMI (MIDI-треки).

Формат RIFF использует little-endian порядок байтов (младший байт идёт первым). Для машин с форматом данных big-endian предлагался формат RIFX, однако из-за существенно меньшей в бытовом секторе популярности компьютеров с таким форматом данных, RIFX не прижился, в настоящее время формат RIFF воспроизводится и на машинах с big-endian порядком байтов.

Изначально RIFF имел принципиальное ограничение размера данных в 4 ГБ (точнее, максимальный размер файла 232 + 7 байт). В силу особенностей ряда популярных программ по созданию и воспроизведению файлов (в большой степени из-за медиа-стека в Microsoft Windows) ограничение усилилось до 2 ГБ (из-за замены в парсерах RIFF’а DWORD на signed int32). Для поддержки файлов больше 4 ГБ формат AVI был расширен до AVI-DV, выходящего за рамки контейнера RIFF.

Формат RIFF является адаптацией формата IFF для little-endian компьютеров (в основном, ради PC на 80x86). Разработан он был в 1991 году компаниями Microsoft и IBM. (IFF был создан в 1985 году).

Audio Video Interleave (сокращённо avi; букв. Чередование Аудио и Видео) — riff-медиа-контейнер, впервые использованный Microsoft в 1992 году.

Формат файлов с расширением .avi известен как медиа-контейнер, это формат файлов, так же как MP3 или JPG. Но, в отличие от этих форматов,AVI это формат-контейнер. Это означает, что он может содержать видео/аудио данные сжатые с использованием разных комбинаций кодеков, что позволяет синхронно воспроизводить видео со звуком. Так если MP3 и JPG файлы построены на использовании только основного вида компрессии данных (MPEG Audio Layer 3 и JPEG), AVI файл может содержать различные виды компрессированных данных (например, DivX - видео + WMA - аудио или Indeo - видео + PCM - аудио), в зависимости от того, какой кодек используется для кодирования/декодирования.Как и DVD , AVI файлы поддерживают многопотоковое аудио-видео. AVI-файлы могут содержать различные виды сжатых данных, к примеру DivX для видео-информации и MP3 для аудио. Все AVI файлы выглядят одинаково “снаружи” (имеют расширение .AVI), но “внутри” они могут отличаться очень сильно.

3. Microsoft Video for Windowsиспользует четыре основных кодека для сжатия AVI файлов цифрового видео - Microsoft Video 1, RLE compression, Cinepak Codec by SuperMatch и Intel Indeo Video R3.2 (INDEO - INtel viDEO).

Кодек Microsoft Video 1 предназначен для сжатия реалистических видеофрагментов и рассчитан на разрешение цвета не более, чем 16 бит.

Кодек RLE compression (run-length encoding) предназначен для сжатия в AVI анимаций.

Cinepak Codec by SuperMatch и Intel Indeo Video R3.2 используют 24-битное разрешение цвета и имеют достаточно большую степень сжатия - порядка 10:1.

Типы компьютерных сетей

Персональная сеть (Personal Area Network, PAN) позволяет устройствам обмениваться данными на небольших расстояниях. PAN объединяет такие устройства как мыши, клавиатуры, принтеры, смартфоны, планшеты и т. п. Наиболее распространенной технологий подключения является Bluetooth (технология получила название в честь короля викингов Харальда I Синезубого, объединившего народы на территории современных Дании и Сконе).

PAN также может быть создана с помощью других технологий, позволяющих обмениваться данными на малых расстояниях (например, RFID - Radio Frequency IDentification - способ автоматической идентификации объектов при котором данные, хранящиеся в транспондерах, или RFID-метках считываются с помощью радиосигналов).

Локальная сеть (Local Area Network, LAN) – это компьютерная сеть, которая, как правило, покрывает небольшую территорию, располагаясь в одном или нескольких зданиях.

Термин «локальная» в данном контексте относится к совместному локальному управлению (не означает обязательную физическую близость компонентов друг к другу). Локальной может быть домашняя сеть, объединение компьютеров и других устройств малого офиса или крупного предприятия.

В LAN широко используются проводные соединения, большинство из которых выполняется с помощью медных проводов, а некоторые — оптоволоконных. Обычно, проводные сети работают на скоростях от 100 Мбит/с до 1 Гбит/с. Более современные LAN могут работать со скоростью 10 Гбит/с. Наиболее распространенным стандартом проводного соединения является стандарт IEEE 802.3, обычно называемый Ethernet.

В локальных сетях наряду с проводными технологиями широко используются беспроводные соединения по стандарту IEEE 802.11, более известным как Wi-Fi. Беспроводные сети Wi-Fi работают на скоростях от нескольких до сотней мегабит в секунду.

Муниципальные сети (metropolitan area network, MAN) объединяют компьютеры в пределах города. В качестве примера можно рассмотреть систему кабельного телевидения, в которой, благодаря определенным изменениям, появилась возможность передачи цифровых данных и, со временем, система превратилась в муниципальную компьютерную сеть.

Глобальная сеть (Wide Area Network, WAN) охватывает значительные территории, соединяет локальные сети, которые могут располагаться в географически удаленных областях. Глобальная сеть похожа на большую проводную локальную компьютерную сеть, но существуют важные различия:

· управление локальными сетями и предоставление доступа к межсетевой среде передачи данных осуществляется различными организациями;

· могут соединяться сети, использующие различных виды сетевых технологий;

· с помощью коммуникационных каналов могут связываться отдельные компьютеры с локальными сетями, или целые сети.

Под обработкой звука следует понимать различные преобразования звуковой информации с целью изменения каких-то характеристик звучания. К обработке звука относятся способы создания различных звуковых эффектов, фильтрация, а также методы очистки звука от нежелательных шумов, изменения тембра и т.д. Все это огромное множество преобразований сводится, в конечном счете, к следующим основным типам:

1. Амплитудные преобразования. Выполняются над амплитудой сигнала и приводят к ее усилению/ослаблению или изменению по какому-либо закону на определенных участках сигнала.

2. Частотные преобразования. Выполняются над частотными составляющими звука: сигнал представляется в виде спектра частот через определенные промежутки времени, производится обработка необходимых частотных составляющих, например, фильтрация, и обратное «сворачивание» сигнала из спектра в волну.

3. Фазовые преобразования. Сдвиг фазы сигнала тем или иным способом; например, такие преобразования стерео сигнала, позволяют реализовать эффект вращения или «объёмности» звука.

4. Временные преобразования. Реализуются путем наложения, растягивания/сжатия сигналов; позволяют создать, например, эффекты эха или хора, а также повлиять на пространственные характеристики звука.

Практическую обработку сигналов можно разделить на два типа: обработка «на лету» и пост-обработка. Обработка «на лету» подразумевает мгновенное преобразование сигнала (то есть с возможностью осуществлять вывод обработанного сигнала почти одновременно с его вводом). Простой пример – гитарные «примочки» или реверберация во время живого исполнения на сцене. Такая обработка происходит мгновенно, то есть, скажем, исполнитель поет в микрофон, а эффект-процессор преобразует его голос и слушатель слышит уже обработанный вариант голоса. Пост-обработка – это обработка уже записанного сигнала. Скорость такой обработки может быть сильно ниже скорости воспроизведения. Такая обработка преследует те же цели, то есть придание звуку определенного характера, либо изменение характеристик, однако применяется на стадии мастеринга или подготовки звука к тиражированию, когда не требуется спешка, а важнее качество и скрупулезная проработка всех нюансов звучания. Существует множество различных операций над звуком, которые вследствие недостаточной производительности сегодняшних процессоров нельзя реализовать «на лету», поэтому такие преобразования проводят лишь в пост-режиме .

Аналоговый и дискретный способы представления звука

Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме.

При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно.

При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.


Примером аналогового хранения звуковой информации является виниловая пластин­ка (звуковая дорожка изменяет свою форму непрерывно), а дискретного — аудиокомпакт-диск (звуковая дорожка которого содержит участки с различной отражающей способностью).

Восприятие звука человеком

Звуковые волны улавливаются слуховым органом и вызывают в нем раздражение, которое передается по нервной системе в головной мозг, создавая ощущение звука.

Колебания барабанной перепонки в свою очередь передаются во внутреннее ухо и раздражают слуховой нерв. Так образом человек воспринимает звук.

В аналоговой форме звук представляет собой волну, которая характеризуется:

  • Высота звука определяется частотой колебаний вибрирующего тела.
  • Г ромкость звука определяется энергией колебательных движений, то есть амплитудой колебаний.
  • Длительность звука - продолжительность колебаний.
  • Тембром звука называется окраска звука.

Герц (Гц или Hz) — единица измерения частоты колебаний. 1 Гц= 1/с

Человеческое ухо может воспринимать звук с частотой от 20 колебаний в секунду (20 Герц, низкий звук) до 20 000 колебаний в секунду (20 КГц, высокий звук).



Кодирование звуковой информации

Для того чтобы комп ьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).


  • В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.
  • Таким образом, при двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала.

Качество кодирования звуковой информации зависит от :

1)частотой дискретизации, т.е. количества измерений уровня сигнала в единицу времени. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.

2)глубиной кодирования, т.е. количества уровней сигнала.

Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле: N = 2 i = 2 16 = 65536, где i — глубина звука.

Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код.

Количество измерений в секунду может лежать в диапазоне от 8000 до 48 000, то есть частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц — качеству звучания аудио-С D . Следует также учитывать, что возможны как моно-, так и стерео-режимы.

РСМ. РСМ расшифровывается как pulse code modulation, что и является в переводе как импульсно-кодовая. Файлы именно с таким расширением встречаются довольно редко. Но РСМ является основополагающей для всех звуковых файлов.

WAV. Самое простое хранилище дискретных данных. Один из типов файлов семейства RIFF. Помимо обычных дискретных значений, битности, количества каналов и значений уровней громкости, в wav может быть указано еще множество параметров, о которых Вы, скорее всего, и не подозревали - это: метки позиций для синхронизации, общее количество дискретных значений, порядок воспроизведения различных частей звукового файла, а также есть место для того, чтобы Вы смогли разместить там текстовую информацию.

RIFF. Resource Interchange File Format. Уникальная система хранения любых структурированных данных.

IFF. Эта технология хранения данных проистекает от Amiga-систем. Interchange File Format. Почти то же, что и RIFF, только имеются некоторые нюансы. Начнем с того, что система Amiga - одна из первых, в которой стали задумываться о программно-сэмплернойэмуляции музыкальных инструментов. В результате, в данном файле звук делится на две части: то, что должно звучать вначале и элемент того, что идет за началом. В результате, звучит начало один раз, за тем повторяется второй кусок столько раз, сколько Вам нужно и нота может звучать бесконечно долго.

MOD. Файл хранит в себе короткий образец звука, который потом можно использовать в качестве шаблона для инструмента.

AIF или AIFF. Audio Interchange File Format. Данный формат распространен в системах Apple Macintosh и Silicon Graphics. Заключает в себе сочетание MOD и WAV.

МР3. Самый скандальный формат за последнее время. Многие для объяснения параметров сжатия, которые в нем применяют, сравнивают его с jpeg для изображений. Там очень много наворотов в вычислениях, чего и не перечислишь, но коэффициент сжатия в 10-12 раз сказали о себе сами. Специалисты говорят о контурности звука как о самом большом недостатке данного формата. Действительно, если сравнивать музыку с изображением, то смысл остался, а мелкие нюансы ушли. Качество МР3 до сих пор вызывает много споров, но для "обычных немузыкальных" людей потери не ощутимы явно.

VQF. Хорошая альтернатива МР3, разве что менее распространенная. Есть и свои недостатки. Закодировать файл в VQF - процесс гораздо более долгий. К тому же, очень мало бесплатных программ, позволяющих работать с данным форматом файлов, что, собственно, и сказалось на его распространении.

RA. Real Audio или потоковая передача аудиоданных. Довольно распространенная система передачи звука в реальном времени через Интернет. Скорость передачи порядка 1 Кб в секунду. Полученный звук обладает следующими параметрами: 8 или 16 бит и 8 или 11 кГц.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности



2. Раздавайте видеоуроки в личные кабинеты ученикам.


3. Смотрите статистику просмотра видеоуроков учениками.

Конспект урока "Представление звука в компьютере"

· оцифровка вводимого звукового сигнала;

· качество цифрового звука;

· виды кодирования звуковых файлов.

С начала 90-ых годов персональные компьютеры получили возможность работать со звуковой информацией.


Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию.


С помощью специальных программных средств (редакторов звукозаписей) открываются широкие возможности по созданию, редактированию и прослушиванию звуковых файлов. Создаются программы распознавания речи и, в результате, появляется возможность управления компьютером при помощи голоса.


А как же представляется звук в компьютере?

Вообще звук – это процесс колебания воздуха или любой другой среды, в которой он распространяется. Звук характеризуется амплитудой (силой) и частотой (количеством колебаний в секунду).

Под звукозаписью понимают процесс сохранения звуковой информации на каком-либо носителе с помощью специальных устройств.

Ввод звука в компьютер производится с помощью звукового устройства, микрофона или радио, выход которого подключается к порту звуковой карты.


Рассмотрим подробнее процесс ввода звука в компьютер.

Звуковые сигналы непрерывны. С помощью микрофона звуковой сигнал превращается в непрерывный электрический сигнал. Но, как вы помните компьютер может работать только с цифровой информацией, поэтому если нам нужно обработать звук на компьютере, то его необходимо дискретизировать – то есть превратить в прерывистую, состоящую из отдельных частей, последовательность нулей и единиц.

Процессом преобразования звука из непрерывной формы в дискретную при записи и из дискретной в непрерывную при воспроизведении занимается звуковая карта или аудио адаптер.


Звуковая карта – это устройство для записи и воспроизведения звука на компьютере. То есть задача звуковой карты — с определённой частотой производить измерения уровня звукового сигнала и результаты измерения записывать в память компьютера. Этот процесс называют оцифровкой звука.

Промежуток времени между двумя измерениями называется периодом измерений — обозначается буквой Т и измеряется в секундах.

Таким образом на качество преобразования звука влияет несколько условий:

• Частота дискретизации, то есть сколько раз в секунду будет измерен исходный сигнал.

• Разрядность дискретизации – количество битов, выделяемых для записи каждого результата измерений.


Результаты таких измерений представляются целыми положительными числами с конечным количеством разрядов. Как мы уже говорили, в таком случае получается дискретное конечное множество значений в ограниченном диапазоне.

Размер этого диапазона зависит от разрядности ячейки — регистра памяти звуковой карты.


То есть обратите внимание, снова работает главная формула информатики:


здесь i — это разрядность регистра. Также число i называют разрядностью дискретизации. Записанные данные сохраняются в файлах специальных звуковых форматов.

Две минуты записи цифрового аудиофайла занимают на диске 5,1 Мб. Частота дискретизации ровна 22050 Герц. Нужно найти разрядность аудиоадаптера.


При воспроизведении звукового файла цифровые данные преобразуются в электрический аналог звука. К звуковой карте подключаются наушники или звуковые колонки. С их помощью электрические колебания преобразуются в механические звуковые волны, которые воспринимают наши уши.

Таким образом, чем больше разрядность и частота дискретизации, тем точнее представляется звук в цифровой форме и тем больше размер файла, хранящего его.

Рассмотрим такой пример: Нужно определить качество звука (то есть какое это качество радиотрансляции или качество аудио-CD) если известно, что объём моноаудиофайла длительностью звучания в 10 секунд равен 940 Кб. Разрядность аудиоадаптера ровна 16 бит.


Рассмотрим ещё один пример. Аналоговый звуковой сигнал был дискретизирован сначала с использованием 256 уровней интенсивности сигнала (качество звучания радиотрансляции), а затем с использованием 65536 уровней интенсивности сигнала (качество звучания аудио-CD). Нужно найти во сколько раз различаются информационные объёмы оцифрованного звука?


Для работы со звуковой информацией на компьютере используются различные программы. Одни из них позволяют записать звук на цифровой носитель, другие — воспроизвести. Существуют программы, которые выполняют более сложную обработку звука. Такие программы называются редакторы звука. Например, можно вырезать фрагмент музыкального произведения или речи, объединить фрагменты, изменить тембр звучания, длительность воспроизведения создавать различные музыкальные эффекты, очищать звук от шумов, согласовывать с изображениями для создания мультимедийных продуктов и так далее.

При хранении оцифрованного звука приходится решать проблему уменьшения объёма звуковых файлов. Существует два способа кодирования звука: кодирования данных без потерь, позволяющего осуществлять стопроцентное восстановление данных из сжатого потока. А также кодирование данных с потерями. Позволяет добиться схожести звучания восстановленного сигнала с оригиналом при максимальном сжатии данных. Здесь используются различные алгоритмы, сжимающие оригинальный сигнал путём выкидывания из него слабо слышимых элементов.

Существует множество различных аудио форматов. Наиболее часто используются такие форматы как WAV и MP3. Тип формата обычно определяется расширением файла (то, что идёт после точки в имени файла mp3, wav, ogg, wma)

WAV – один из первых аудио-форматов. Обычно используется для хранения несжатых аудиозаписей, идентичных по качеству звука записям на компакт-дисках. В среднем одна минута звука в формате wav занимает около 10 Мб.


MP3 – наиболее распространённый в мире звуковой формат. MP3, как и многие другие форматы кодирует звук с потерей качества, то есть урезает звук, который не слышится человеческим ухом, тем самым уменьшая размер файла.


На текущий момент mp3 не является лучшим форматом по соотношению размера файла к качеству звучания, но в силу своей распространённости и поддерживаемости большинством устройств, многие хранят свои записи именно в нём.


Звуковая карта – это устройство для записи и воспроизведения звука на компьютере. Задача звуковой карты — с определённой частотой производить измерения уровня звукового сигнала и результаты измерения записывать в память компьютера. Этот процесс называют оцифровкой звука.

Качество оцифрованного звука зависит от:

• Частоты дискретизации, то есть сколько раз в секунду будет измерен исходный сигнал.

• и Разрядности дискретизации – то есть от количества битов, выделяемых для записи каждого результата измерений.

Существует два способа кодирования звука:

• кодирования данных без потерь, здесь осуществляется стопроцентное восстановление данных из сжатого потока;

• кодирование данных с потерями. Это способ позволяет добиться схожести звучания восстановленного сигнала с оригиналом при максимальном сжатии данных.

Читайте также: