Типы квантовых компьютеров разработаны на данный момент

Обновлено: 01.07.2024

Нейросети сейчас у всех на слуху. Одна из причин такого быстрого и повсеместного их распространения — это сильно упавший порог вхождения. Существует огромное количество инструментов как для использования готовых и натренированных сетей, так и для создания своих собственных, причем для этого даже не требуется знать суровый матан, который прячется "под капотом" большинства таких инструментов.

Еще одной интересной и очень перспективной сферой являются квантовые вычисления, которые, тем не менее, не получили столь широкого распространения (по крайней мере, пока), как нейросети. Скорее всего, это связано с еще более сложным матаном ( и физикой), а также с чрезмерной дороговизной и сложностью "железа".

Если очень просто, то это устройство, в основе работы которого лежат явления квантовой механики. Среди этих явлений такие великолепные и ̶п̶р̶о̶с̶т̶ы̶е̶ для понимания, как:

  • Квантовая суперпозиция - способность квантовой частицы находиться во всех возможных для нее состояниях сразу. Отличным примером может служить всем известный кот Шрёдингера.
  • Квантовая запутанность - явление, при котором состояния двух и более квантовых частиц становятся зависимыми друг от друга. Причем изменение состояния одной частицы мгновенно сказывается на состоянии другой. То есть как бы далеко не были друг от друга эти частицы, состояние поменяется за неизмеримо малое время. Здесь в качестве примера можно взять "попсовую" и всем известную квантовую телепортацию.
  • Правило Борна (закон) - ̶ ̶ш̶е̶с̶т̶а̶я̶ ̶ч̶а̶с̶т̶ь̶ ̶п̶о̶х̶о̶ж̶д̶е̶н̶и̶й̶ ̶б̶ы̶в̶ш̶е̶г̶о̶. Если вкратце и без тяжелого мат.аппарата, это закон (ну или правило), который рассчитывает вероятность получить какой-либо результат при вычислении, что помогает при работе со следующим пунктом сего списка.
  • Вероятность - в квантовой механике балом правит именно эта госпожа. Любое квантовое явление не есть факт, а есть вероятность того, что оно случится. Но об этом мы еще поговорим.

Справедливости ради, квантовая телепортация не является телепортацией, известной из научной фантастики и прочего сайфая, потому что при передаче квантового состояния (а именно это и происходит) исходное состояние в точке А разрушается и воссоздается в точке Б, при этом не происходит переноса ни материи, ни энергии.

Обновление по комментариям к статье: парадокс кота Шрёдингера был призван показать абсурдность самой идеи суперпозиции. Соответственно, пример кота - не самый лучший для иллюстрации явления суперпозиции.

Спасибо Marat Khamadeev

Преимущества прямо вытекают из самой квантовой механики:

  • Высокий параллелизм - в отличие от классических компьютеров, в которых бит принимает значение либо 0, либо 1 в один момент времени, в квантовом компьютере кубит одновременно и 0, и 1, что позволяет обсчитывать все возможные комбинации параллельно и одновременно на уровне физики без всяких ухищрений с многопоточностью.
  • Высокая масштабируемость и быстрый прирост производительности - при добавлении каждого следующего кубита вычислительная мощность увеличивается экспоненциально. То есть двухкубитный компьютер в 2 раза мощнее однокубитного, 3 - в 8 раз, 4 - в 16 и так далее.

Важно также отметить и недостатки, которым подвержены текущие образцы КК:

  • Измерение неизбежно ведет к ошибкам, потому что любое вмешательство в квантовую систему вызывает "возмущения" (шумы), искажающие полученные данные. Стало быть, необходимо предусмотреть постобработку результатов.
  • Большое количество ошибок в вычислениях, частично вытекающее из первого недостатка а частично из-за самой природы квантовых процессов (ведь мы оперируем вероятностями, а не фактами, помните?), из-за чего одни и те же вычисления следует проводить много раз (сотни и тысячи в зависимости от желаемой точности)

На самом деле, в ответе на этот вопрос кроется еще одна причина, почему же квантовые вычисления не такая популярная (с прицелом на поп) тема для общественности. Основные области, где это было бы полезно, эффективно и вообще не очень сильно сложно (с квантовой точки зрения, разумеется):

  • Моделирование молекул и прочих химических и биологических процессов, являющихся квантовыми по своей природе. Например, расчет нового лекарства от рака за 500 млн долларов за дозу займет не годы, а доли секунды.
  • Криптография. Во-первых, при появлении достаточно мощного КК падут почти все (если не все) классические алгоритмы шифрования, потому что большинство из них ломаются обычным перебором, а перебор - это то, что КК делает очень быстро. Квантовая же криптография позволяет построить такую зашифрованную систему, которая всегда узнает, если ее попытаются прослушать или взломать из-за лежащего в основе принципа неопределенности (Гейзенберга). То есть в данном случае недостаток измерения (вмешательства) в систему становится преимуществом.
  • Эти ваши нейросеточки. КК способен моделировать нейросеть экспоненциального размера и обрабатывать огромные объемы данных практически мгновенно.

Как верно отметили некоторые в комментариях квантовая криптография построена на несколько иных принципах и не имеет прямого отношения к квантовым же компьютерам.

Так что поиграть со включенным RTX при fps свыше 120 в 4К разрешении на КК пока что не получится, увы.

Квантовые компьютеры начали появляться с начала XXI века, но их производительность и возможности сильно ограничены. И вопреки распространенному заблуждению довольно много его составных частей представляют собой вполне себе обычную электронику, а уж для обработки результатов и вовсе нужен самый обыкновенный ПК (ну или сервер. ну или ЦОД).

Квантовый компьютер на 50 кубит, разработанный IBM Research в Цюрихе.​

Окей, с железом понятно, но что с софтом?

Принцип работы с квантовым компьютером, по идее, не должен сильно отличаться от работы с компьютером классическим, но, тем не менее, стандартные инструменты из знакомой всем электроники не применимы, равно как и классическая логика и информатика.

С целью решения этой проблемы в 2017 году был описан язык промежуточного представления OpenQASM (ОпенКАЗМ) - Open Quantum Assembly Language (Открытый квантовый язык ассемблера), представляющий собой по сути аналог языка ассемблера из классической электроники.

Ассемблер (сборщик) - это программа-преобразователь, транслирующая код программы из языка ассемблера в машинный язык, который понимает непосредственно процессор.

Программирование под ассемблер представляет собой весьма нетривиальную задачу, так как требует от разработчика не только досконального знания архитектуры и команд процессора, но и умения работать с физической памятью.

Большинство программистов используют языки высокого уровня, которые затем транслируются в язык ассемблера компилятором.

К счастью, авторы позаботились и о языке высокого уровня, создав на основе QASM целый фреймворк. Встречайте - Qiskit.

̶В̶а̶ш̶а̶ ̶q̶i̶s̶k̶i̶t̶ ̶к̶у̶п̶и̶л̶а̶ ̶б̶ы̶.̶.̶.̶ Логотип проекта - схематичное представление сферы Блоха (способ представления состояний кубита в виде точек на сфере). ​ А вот так выглядит сама сфера Блоха. "Точка на сфере по оси z вверх соответствует значению 1 классического бита, вниз - значению 0.​

Qiskit содержит в себе инструменты для создания квантовых программ (цепей), состоящий из нескольких подпроектов:

  • Terra позволяет создавать квантовые цепи, которые по сути и являются квантовыми программами. Квантовая цепь - это последовательность квантовых вентилей, являющихся аналогом вентилей-операторов из классической логики. Например, здесь есть аналоги логического И (умножения) и ИЛИ (сложение) с поправкой на квантовые законы. Например, самый базовый квантовый вентиль Хадамард (H) при вычислении обеспечивает одинаковую вероятность получить значение 0 и 1.
  • Aqua. Проект-ретранслятор, позволяющий преобразовывать классические алгоритмы в квантовые. В настоящий момент он поддерживает ограниченный набор инструментов для работы с ИИ, химией, оптимизацией и финансами. В перспективе позволит программистам и даже просто пользователям без специальных знаний создавать квантовые алгоритмы.
  • Aer. Симулятор квантового компьютера, который может быть запущен на любом обычном компьютере, но не забывайте, что добавление нового кубита требует увеличения классических вычислительных мощностей в два раза. Aer позволяет понять, насколько ничтожны "силы" вашего ПК, потому что уже при значении в 4-5 кубитов производительность падает практически до нуля, делая симуляцию очень медленной или вовсе невозможной.
  • Ignis. Подпроект, работающий с "шумами". Помним о том, что любое измерение вызывает возмущения в квантовой системе и ошибки. По сути этот проект призван бороться с ошибками.

Кубит невозможно "хранить" в обычных условиях при комнатной температуре. Соответственно, каждый кубит - крошечный и очень холодный объект, работающий при температуре, близкой к абсолютному нулю - лежит в своем собственном "холодильнике", изолированный от внешнего мира. К сожалению, в настоящий момент не существует способов взаимодействия с кубитом без вмешательства в его хрупкую натуру, что неизбежно приводит к шумам, что, в свою очередь, ведет к ошибкам в вычислениях.

Да-да, ошибки - сквозная тема и боль любого квантового программиста настоящего и даже будущего.

Любой желающий уже может сесть и начать пробовать писать простенькие квантовые алгоритмы. Мощностей обычных домашних ПК хватит на 3-4-кубитную цепь, чего уже достаточно для осуществления квантовой телепортации.

К счастью, добрые дяди из корпорации IBM предоставляют бесплатный доступ в порядке очереди к настоящим квантовым компьютерам (до 15 кубитов) и к симулятору (до 32 кубитов). Для регистрации достаточно принять пользовательское соглашение, заполнить простенькую анкету, указав в ней Institution (например, Amateur Quantum Boy) и цель использования, свое имя и имейл.

Если совершенно не хочется (или не умеется) писать свой код, то всегда можно воспользоваться туториалами, которые любезно лежат прямо под ногами.

В качестве инструмента используются обычные Jupyter-ноутбуки, знакомые любителям языка python.

В этих "ноутбуках" текстовые описания перемежаются с готовыми кусками кода, которые выполняются прямо там, без необходимости писать или читать код где-либо еще, а затем переносить в исполняемую среду. Все лежит и запускается на месте.

Единственное по-настоящему нужное в данном случае умение - это знание английского языка. Но не спеши расстраиваться, если не знаешь английский. В продолжении я подробно и со скриншотами опишу, как таки осуществить квантовую телепортацию. А для тех, кто не хочет ждать и самостоятельно пройдет базовый туториал, вот схема для телепортации:

Статья просто призвана обратить внимание на то, что существует такая вот перспективная область. Она весьма сложна в понимании. Первая версия этого материала состояла почти целиком из матана и физики с графиками и формулами, но я, не являясь специалистом в данной области, не мог все нормально объяснить, потому что чем глубже ты опускаешься, тем труднее что либо понять. Поэтому я решил просто коротко описать текущее состояние и показать, какие есть инструменты для работы. Ну и основной посыл - эта технология ближе к применению, чем может показаться со стороны, она уже потихоньку используется. Просто применение может быть не таким, каким его ждут

Я *немножко* разочарован, потому что 95% моих знакомых, как и я, знаем упомянутое в статье (возможно, исключая то, что есть публичный компьютер-пробник).

Про разработки от Google: ред.

В сентябре публикация компании ненадолго появлялась на сайте NASA.

А что бы ты хотел увидеть?

Я пришёл раздавать квантовую жвачку и надирать квантовые задницы, и жвачка у меня уже кончилась. Поехали разбирать написанное.

Если очень просто, то это устройство, в основе работы которого лежат явления квантовой механики.

Туннельный транзистор, спинтронные устройства и ещё ряд устройств тоже используют явления КМ, но квантовыми вычислителями не являются
Отличным примером может служить всем известный кот Шрёдингера.

Парадокс кота Шрёдингера был придуман как раз таки для того, чтобы показать абсурдность идеи квантовой суперпозиции. Не задумывались, почему он называется парадоксом?
Любое квантовое явление не есть факт, а есть вероятность того, что оно случится.

То есть, квантовая запутанность - это вероятность, а не факт?
Измерение неизбежно ведет к ошибкам, потому что любое вмешательство в квантовую систему вызывает "возмущения" (шумы), искажающие полученные данные.

Само измерение - это штука нужная, важная и ошибок оно не даёт. К ошибкам приводят декогеренция и дефазировка. В определённом, грубом смысле их можно назвать "паразитным измерением", осуществляемым со стороны окружения (стенок прибора, волокна и тд). Видимо, эту мысль и закладывал автор.
(если не все)

Не все
Квантовая же криптография позволяет построить такую зашифрованную систему, которая всегда узнает, если ее попытаются прослушать

Квантовая криптография не есть производная от квантовых вычислений. Там даже принципы разные. Это независимая область квантовых технологий и квантовые компьютеры здесь не причём, ну вот вообще никак.
Вращение по оси z вверх соответствует значению 1 классического бита

Ничего подобного. Классическому значению 1 соответствует точка на северном полюсе, 0 — на южном. Остальное - суперпозиция.
Хадамард

Общепринятым в русском является вариант "Адамар"
Соответственно, каждый кубит - крошечный и очень холодный объект, работающий при температуре, близкой к абсолютному нулю - лежит в своем собственном "холодильнике", изолированный от внешнего мира.

Представляю, как удивится автор этого текста, когда узнает, что обычный фотон с обычной поляризацией, кои летают миллиардами рядом - это тоже кубит.

Туннельный транзистор, спинтронные устройства и ещё ряд устройств тоже используют явления КМ, но квантовыми вычислителями не являются

Если очень просто

Парадокс кота Шрёдингера был придуман как раз таки для того, чтобы показать абсурдность идеи квантовой суперпозиции

Какой бы абсурдной она не была, но используется.

квантовые компьютеры здесь не причём

Опять же, с повсеместным распространением КК классическая криптография умрет, так что КК все таки имеют к этому отношение

очка на северном полюсе, 0 — на южном

Куда же упирается ось z.

"Адамар"

Извини, но та лекция, которую я слушал, была на английском, так что я не знаком с общепринятой терминологией на русском языке, но согласен, моя недоработка. Материал на русском, так что надо было "дожать".

В целом, некоторые придирки я понимаю, потому что они исходят (по моему предположению) из более глубинного понимания темы, чем у меня. Собственно, я не специалист в этой области, а лишь имел возможность познакомиться с этой сферой, а затем решил поделиться. Некоторые же выглядят как придирки ради придирок.

Какой бы абсурдной она не была, но используется.

Так суперпозиция и не абсурдная, это вполне себе экспериментально доказанный феномен. Другой вопрос, что котик - не самая лучшая иллюстрация, несмотря на то, что она ушла в народ. Это всё равно, что, говоря про авиацию, приводить в пример драконов.

Опять же, с повсеместным распространением КК классическая криптография умрет, так что КК все таки имеют к этому отношение

Ну, это ещё вилами на воде писано, но речь не об этом. Вы пишете, что квантовая криптография делается с помощью квантовых компьютеров. Это ошибка.

Куда же упирается ось z.

Вы пишете "вращение по оси z вверх". Я говорю, вращение тут не причём, до тех пор, пока не рассматривается эволюция во времени или вентиль. Всё проще - состояние кубита - это просто точка на сфере.

Некоторые же выглядят как придирки ради придирок.

Камон, такая была всего одна)

А если серьёзно, текст ваш, вам и карты в руки, моё дело указать на ошибки. Замечу, однако, что большинство из описанных ошибок работают против целей, ради которых написан этот материал, а именно целей просвещения. Мне не раз приходилось исправлять людям неверное понимание некоторых квантовых вещей, которое начиналось со слов "А я вот читал в одном месте. ".
Не стоит пренебрегать нюансами, многие из них формируют квантовое мировоззрение на глубинных уровнях. Взять тот же парадокс кота Шрёдингера. Вопрос суперпозиции состояний макрообъектов до сих пор является предметом спора, разделившего физиков на несколько лагерей и экспериментального конца ему пока не видно (я про интерпретации).
Я не из тех, кто любит говорить "Миша всё фигня, давай по новой". Ищите информацию, пишите, мы с вами по одну сторону баррикад. А мой провокационный тон призван лишь добавить эмоциональной мотивации к исправлению пробелов. Ну и плюсики собрать, куда уж без этого.

Я понял:) Первая версия материала потому и заглохла, что ответ на каждый следующий вопрос лишь порождал еще больше вопросов. Я решил пожертвовать глубиной, что привело к некоторым ошибкам

Добавил несколько замечаний по твоим комментариям

Так объяснение пар. Шрёдингера как раз в том, что создание подобного механизма коллапсирует всю волновую функцию и состояние кота становится классической механикой. Странно приводить это в роли примера.

И да, и нет. Такое объяснение этого парадокса принято сторонниками копенгагенской интерпретации. Мультиверсщики коллапс не признают, а считают, что вместо этого вселенная раздваивается на две части, в каждой из которых состояние классическое. В канонической дираковской квантовой механике, однако, вопрос интерпретаций не возникает - там просто используется проекционный оператор. Добавлю лишь, что вопрос интерпретаций пока находится за пределами физики.

Здравствуйте. А если создать "подвижный" код из двух спаренных фотонов. На базе принципа Паули. И иметь таким образом квантовый компьютер "холодного" типа. Извиняюсь. Чушь.? Можно же построить такой компьютер?

Не понимаю, о чем вы, но попытаюсь догадаться
А если создать "подвижный" код из двух спаренных фотонов.

Вероятно, речь идёт о запутанной паре фотонов. Это довольно хрупкая вещь, с ней сложно проводить какие либо операции, поэтому от идеи фотонных кубитов отказались.
На базе принципа Паули.

Принцип запрета Паули? Он про фермионы. Фотоны же - это бозоны, на них этот принцип не распространяется
И иметь таким образом квантовый компьютер "холодного" типа. Извиняюсь.

Это я извиняюсь. Это всё, что я понял из вопроса)

То есть если я сейчас составлю программку и встану в очередь, то какая-то морозная частичка из Мельбурна сможет мне взломать страничку бывшей на вк?

Тебе понадобится квантовый компьютер помощнее, но это было бы возможно, хоть и идет в разрез с пользовательским соглашением, которое ты принимаешь перед использованием ;)

Для того чтобы более или менее полноценно раскрыть суть квантовых компьютерных технологий, коснемся сперва истории квантовой теории.
Зародилась она благодаря двум ученым, чьи результаты исследования были удостоены Нобелевских премий: открытие М. Планком кванта в 1918 г. и А. Эйнштейном фотона в 1921 г.
Годом зарождения идеи квантового компьютера стал 1980 г., когда Беньофу удалось успешно продемонстрировать на практике правоту квантовой теории.
Ну а первый прототип квантового компьютера был создан Гершенфельдом и Чуангом в 1998 г. в Массачусетском технологическом институте (MTI). Этой же группой исследователей созданы в два последующих года более совершенные модели.

Чем объясняется стремление к овладению этими технологиями? Их бесспорными весомыми преимуществами над полупроводниковыми компьютерами!

ЧТО ЖЕ ЭТО ТАКОЕ?



Квантовый компьютер – это устройство для вычислений, которое работает на основе квантовой механики.
На сегодняшний день полномасштабный квантовый компьютер – это гипотетическое устройство, которое невозможно создать с учетом имеющихся данных в квантовой теории.

Квантовый компьютер, для вычисления использует не классические алгоритмы, а более сложные процессы квантовой природы, которые еще называют квантовыми алгоритмами. Эти алгоритмы используют квантовомеханические эффекты:квантовую запутанность и квантовый параллелизм.

Чтобы понять, зачем вообще необходим квантовый компьютер, необходимо представить принцип его действия.
Если обычный компьютер работает за счет проведения последовательных операций с нулями и единицами, то квантовый компьютер использует кольца из сверхпроводящей пленки. Ток может течь по этим кольцам в разных направлениях, поэтому цепочка таких колец может реализовывать одновременно намного больше операций с нулями и единицами.
Именно большая мощность является основным преимуществом квантового компьютера. К сожалению, эти кольца подвержены даже самым малейшим внешним воздействиям, в результате чего направление тока может меняться, и расчеты оказываются в таком случае неверными.

ОТЛИЧИЕ КВАНТОВОГО КОМПЬЮТЕРА ОТ ОБЫЧНОГО

главным отличием квантовых компьютеров от обычных является то, что сохранение, обработка и передача данных происходит не с помощью «битов», а «кубитов» – попросту говоря «квантовых битов». Как и обычный бит, кубит может находиться в привычных нам состояниях «|0>» и «|1>», а кроме этого – в состоянии суперпозиции A·|0> + B·|1>, где A и B – любые комплексные числа, удовлетворяющие условию | A |2 + | B |2 = 1.

ТИПЫ КВАНТОВЫХ КОМПЬЮТЕРОВ

Можно выделить два типа квантовых компьютеров. И те, и другие основаны на квантовых явлениях, только разного порядка.

компьютеры, в основе которых лежит квантование магнитного потока на нарушениях сверхпроводимости- Джозефсоновских переходах. На эффекте Джозефсона уже сейчас делают линейные усилители, аналого-цифровые преобразователи, СКВИДы и корреляторы.Эта же элементная база используется в проекте создания петафлопного (1015 оп./с) компьютера. Экспериментально достигнута тактовая частота 370 ГГц, которая в перспективе может быть доведена до 700 ГГц.Однако время расфазировки волновых функций в этих устройствах сопоставимо со временем переключения отдельных вентилей, и фактически на новых, квантовых принципах реализуется уже привычная нам элементная база - триггеры, регистры и другие логические элементы. Другой тип квантовых компьютеров, называемых еще квантовыми когерентными компьютерами, требует поддержания когерентности волновых функций используемых кубитов в течение всего времени вычислений - от начала и до конца (кубитом может быть любая квантомеханическая система с двумя выделенными энергетическими уровнями). В результате, для некоторых задач вычислительная мощность когерентных квантовых компьютеров пропорциональна2N, где N - число кубитов в компьютере. Именно последний тип устройств имеется в виду, когда говорят о квантовых компьютерах.

КВАНТОВЫЕ КОМПЬЮТЕРЫ СЕЙЧАС


Но небольшие квантовые компьютеры создаются уже сегодня. Особенно активно в этом направлении работает компания D-Wave Systems, которая еще в 2007 году создала квантовый компьютер из 16 кубитов. Этот компьютер успешно справлялся с задачей рассаживания за столом гостей, исходя из того, что некоторые из них друг друга недолюбливали. Сейчас компания D-Wave Systems продолжает развитие квантовых компьютеров.

Группе физиков из Японии, Китая и США впервые удалось построить на практике квантовый компьютер по архитектуре фон Неймана - то есть с физическим разделением квантового процессора и квантовой памяти. В настоящий момент для практической реализации квантовых компьютеров (вычислительных машин, в основу которых положены необычные свойства объектов квантовой механики) физики используют разного рода экзотические объекты и явления - захваченные в оптическую ловушку ионы, ядерный магнитный резонанс. В рамках новой работы ученые полагались на миниатюрные сверхпроводящие схемы - возможность реализации квантового компьютера с помощью таких схем была описана в Nature в 2008 году.

Собранная учеными вычислительная машина состояла из квантовой памяти, роль которой выполняли два микроволновых резонатора, процессора из двух кубит, соединенных шиной (ее роль тоже играл резонатор, а кубиты представляли собой сверхпроводящие схемы), и устройств для стирания данных. При помощи этого компьютера ученые реализовали два основных алгоритма - так называемое квантовое преобразование Фурье, и конъюнкцию при помощи квантовых логических элементов Тоффоли:

Первый алгоритм представляет собой квантовый аналог дискретного преобразования Фурье. Его отличительной особенностью является гораздо меньшее (порядка n2) количество функциональных элементов при реализации алгоритма по сравнению с аналогом (порядка n 2n). Дискретное преобразование Фурье применяется в самых разных областях человеческой деятельности - от исследования дифференциальных уравнений в частных производных до сжатия данных. В свою очередь квантовые логические элементы Тоффоли представляют собой базовые элементы, из которых, с некоторыми дополнительными требованиями, можно получить любую булеву функцию (программу). Отличительной особенностью этих элементов является обратимость, что, с точки зрения физики, среди прочего позволяет минимизировать тепловыделения устройства.

По словам ученых, созданная ими система обладает одним замечательным плюсом - она легко масштабируется. Таким образом, она может служить своего рода строительным блоком для будущих компьютеров. По словам исследователей, новые результаты наглядно демонстрируют перспективность новой технологии.

16 ноября компания IBM презентовала новый квантовый компьютер с рекордным числом квантовых битов (кубитов): 127. В пресс-релизе компании заявляется, что работу этого квантового чипа невозможно смоделировать на обычном компьютере. Число битов, которые потребовалось бы для этого классической ЭВМ, превышает суммарное количество атомов во всех людях, населяющих земной шар. Чтобы это сравнение стало более наглядным, вспомним, что в одном лишь стакане воды больше атомов, чем стаканов воды в Мировом океане или галактик в видимой Вселенной.

Уже на следующий день стартап QuEra Computing Inc. объявил, что закончил работу над квантовым компьютером из 256 кубитов (научная статья об этой разработке появилась в журнале Nature еще в июле). Специалисты QuEra планируют в течение двух лет довести число кубитов до тысячи, а в перспективе — до сотен тысяч, и все это без особых изменений в архитектуре. Стартап привлек $17 млн инвестиций от компаний Rakuten, Day One Ventures, Frontiers Capital, а также частных инвесторов — основателя Acronis Сергея Белоусова и бывшего топ-менеджера Microsoft Пола Марица.

Сотрудники QuEra эффектно продемонстрировали работу своего компьютера. Они заставили кубиты, выстроенные в виде прямоугольника, воспроизводить анимацию с Марио — легендарным персонажем компьютерных игр. Но, конечно, квантовые компьютеры — это не игрушка, а вычислительная техника завтрашнего дня. Или нет?

Призрак превосходства

Современная экономика немыслима без мощных компьютеров. При этом даже лучшие из них зачастую пасуют перед задачами, которые ставит жизнь. Выходом могут стать квантовые компьютеры, которые потенциально гораздо мощнее обычных. Это их свойство — пока существующее скорее в перспективе, чем на практике — называют квантовым превосходством (quantum supremacy) или квантовым преимуществом (quantum advantage).

Дело в том, что квантовые компьютеры иначе хранят и обрабатывают информацию. Классический компьютер имеет дело с битами. Бит имеет только два возможных состояния: 0 и 1, и переходит из одного в другое скачком. Бит похож на рубильник, который либо включен, либо выключен, и третьего не дано. Квантовый бит (кубит) может находиться в любом из бесконечного множества промежуточных состояний и плавно переключаться между ними. Это позволяет ему хранить куда больше информации, чем бит. Если сильно упрощать, то можно представить кубит стаканом, в котором может быть любой уровень воды между «пуст» и «полон».

Идея квантовых вычислений была высказана еще в 1980-х. Однако настоящий интерес к ней возник в 1990-е, когда выяснилось, что квантовый компьютер мог бы взламывать самые надежные шифры. Речь идет о RSA-шифровании, которое широко используется для обмена финансовыми и другими конфиденциальными данными. Этот алгоритм основан на том факте, что два больших числа легко перемножить, но крайне трудно разложить произведение обратно на множители. Однако в 1994 году математик Питер Шор показал, что квантовый компьютер (тогда существовавший лишь на бумаге) справляется с такой задачей гораздо быстрее, чем классический. Тот, кто пренебрегает возможностями квантовых вычислений, рискует однажды обнаружить, что все его счета взломаны.

Однако до момента, когда банкам потребуется защита от квантовых взломщиков, еще далеко. Квантовый компьютер, который мог бы соперничать в производительности с обычным ноутбуком, должен иметь, по разным оценкам, от тысяч до миллионов кубитов.

Правда, уже сейчас раздаются заявления о достижении пресловутого квантового превосходства. Первой отметилась корпорация Google, заявившая в 2019 году, что ее 53-кубитное детище Sycamore за 200 секунд решило задачу, на которую у крупнейшего современного суперкомпьютера Summit ушло бы десять тысячелетий. Правда, конкуренты из IBM усомнились в этих цифрах. В 2020 году о достижении квантового преимущества сообщили китайские ученые. Однако, в обоих случаях имело место некоторое лукавство. Классическому компьютеру предлагали соревноваться с квантовым в моделировании квантовых явлений. Поскольку в квантовые машины эти явления встроены на уровне «железа», это было похоже на состязание в плавании между человеком и дельфином. Разумеется, в своей стихии дельфин победит даже олимпийского чемпиона. Но настоящее квантовое превосходство заключалось бы в безоговорочной победе во всех дисциплинах, включая бег и метание молота.

Новые принципы

Почему так трудно создавать квантовые компьютеры с большим числом кубитов? Дело в том, что с точки зрения физики кубит представляет собой объект, живущий по законам квантовой механики. Это может быть, например, отдельный атом, ион или микроскопическое кольцо из сверхпроводника. Такие объекты необычайно хрупки и уязвимы. Малейшее внешнее воздействие разрушает квантовое состояние, в котором находится кубит. Поэтому кубиты требуют изоляции от внешнего мира, вакуума и охлаждения почти до абсолютного нуля, и все равно в их работе то и дело возникают ошибки. Собрать тысячи и тем более миллионы таких капризных элементов в управляемую и отказоустойчивую систему — та еще задача. Некоторые физики (правда, они в меньшинстве) полагают даже, что она никогда не будет решена.

Но, пока глаза скептиков боятся, руки и головы энтузиастов делают. Вот и специалисты QuEra отвергли обычные реализации кубитов (ионы и сверхпроводящие контуры) и опробовали новую (электрически нейтральные атомы).

Всего в нескольких миллиметрах от стенок камеры, имеющих комнатную температуру, сотни атомов зафиксированы в вакууме и охлаждены до температуры, лишь на миллионную долю градуса превосходящей абсолютный нуль (около −273 °C). Эти атомы буквально подвешены в перекрестье лазерных лучей. Лазеры не только удерживают атомы-кубиты от контакта с внешним миром, но и управляют их работой. Когда электрон в атоме поглощает фотон, он приобретает дополнительную энергию и переходит на следующую орбиту, дальше от ядра. В результате атом, так сказать, раздувается. Но только в том случае, если ему не мешает другой раздувшийся атом, находящийся впритык к первому. Так кубиты взаимодействуют между собой.

Эта реализация кубитов лучше альтернатив по нескольким причинам. Например, в отличие от ионов, атомы не отталкиваются друг от друга электрическими силами, поэтому сотни кубитов можно разместить на площадке в доли квадратного миллиметра. Но это решение требует сопутствующих технологий, появившихся только в последние годы.

Специалисты QuEra рассчитывают, что они создали практически полезное устройство, а не просто прототип. Так, новый компьютер может стать подспорьем для физиков в моделировании квантовых систем (как отмечалось выше, этот «навык» квантовые компьютеры уже продемонстрировали). Другое возможное поле для деятельности — квантовая оптимизация. Так называется решение обычных задач оптимизации (например, финансовых и логистических) с помощью математических подходов, позаимствованных из квантовой физики. Квантовый компьютер, воплощающий эту математику «в железе», в принципе может хорошо справляться с этими задачами даже при малом числе кубитов. Но так ли это на самом деле, покажет только практика.

Квантовый шум

Индустрия квантовых вычислений находится в странной промежуточной зоне. На бумаге теоретики смело оперируют миллионами кубитов, разрабатывая вычислительные схемы послезавтрашнего дня. Практики же, которым приходится воплощать эти идеи в реальность, едва освоили производство устройств с сотнями кубитов. Эксперты называют нынешний технологический этап эпохой шумных квантовых процессоров среднего масштаба (Noisy Intermediate-Scale Quantum, или NISQ). Средний масштаб — это десятки или сотни кубитов. Слово «шумный» отражает тот факт, что системы все еще работают неустойчиво из-за внешних помех, переключающих кубиты когда и как вздумается.

Как извлечь максимальную пользу из NISQ-устройств — тема обширных дискуссий. Работа таких систем еще далека от надежности. Неудобств добавляет то, что проанализировать ее с помощью классических компьютеров уже трудно (вспомним пример с числом атомов в семи миллиардах человек). С другой стороны, эти машины, кажется, уже умеют кое-что недоступное классическим компьютерам. Игнорировать эти возможности было бы расточительно.

Подходить к решению этой проблемы можно по-разному. Например, специалисты Google делают ставку на симбиоз квантовых и классических компьютеров. Квантовый компьютер выдает результат, загрязненный помехами и вычислительными ошибками. По сути, отмечают эксперты компании, перед нами классическая задача отделить полезный сигнал от случайного шума. А в ее решении вполне преуспели привычные компьютеры, и особенно искусственные нейронные сети. В 2020 году Google презентовала библиотеку программ TensorFlow Quantum для интеграции квантовых компьютеров с классическими. В числе прочего этот инструмент позволяет использовать искусственный интеллект для «подчистки» результатов работы квантового компьютера. Библиотека распространяется свободно и имеет открытый исходный код. Кроме того, она интегрирована с платформой Cirq, также разработанной Google и предназначенной для программирования квантовых компьютеров.

Впрочем, поток многообещающих новостей не должен затмевать простого факта: квантовые компьютеры пока не сделали ничего практически полезного. Может быть, они войдут в нашу жизнь через считанные годы или хотя бы десятилетия. А быть может, этот «квантовый шум» так и не принесет плодов в обозримом будущем.

Строго говоря, можно выделить два типа квантовых компьютеров. И те, и другие основаны на квантовых явлениях, только разного порядка.

Представителями первого типа являются, например, компьютеры, в основе которых лежит квантование магнитного потока на нарушениях сверхпроводимости - Джозефсоновских переходах. На эффекте Джозефсона уже сейчас делают линейные усилители, аналого-цифровые преобразователи, СКВИДы и корреляторы. Известен проект создания RISC-процессора на RSFQ-логике (Rapid Single Flux Quantum). Эта же элементная база используется в проекте создания петафлопного (1015 оп./с) компьютера. Экспериментально достигнута тактовая частота 370 ГГц, которая в перспективе может быть доведена до 700 ГГц. Однако время расфазировки волновых функций в этих устройствах сопоставимо со временем переключения отдельных вентилей, и фактически на но-вых, квантовых принципах реализуется элементная база - триггеры, регистры и другие логические элементы.

Другой тип квантовых компьютеров, называемых еще квантовыми когерентными компьютерами, требует поддержания когерентности волновых функций используемых кубитов в течение всего времени вычислений - от начала и до конца (кубитом может быть любая квантомеханическая система с двумя выделенными энергетическими уровнями). В результате, для некоторых задач вычислительная мощность когерентных квантовых компьютеров пропорциональна 2N, где N - число кубитов в компьютере. Именно последний тип устройств имеется в виду, когда говорят о квантовых компьютерах.

Область применение квантовых компьютеров

Существуют задачи, решение которых с помощью обычного компьютера очень трудно найти, но легко проверить. Время, затрачиваемое на решение таких задач, растет экспоненциально по отношению к числу битов, которыми представлена задача. Именно здесь может пригодиться естественный параллелизм квантовых вычислений, для которых быстродействие увеличивается экспоненциально с возрастанием числа кубитов.

Одной из областей приложения мощи КК может стать квантовая криптография и квантовый криптоанализ. Важным событием являлось создание П. Шором квантового алгоритма факторизации. Эту задачу также называют нахождением дискретного логарифма, и она является основной преградой на пути расшифровки всех современных шифров. Так, например, факторизация числа с 1000 знаков потребует 1025 лет работы 1000 современных персоналок, то есть времени большего, чем возраст нашей родной вселенной, которой «всего» 1010 лет. КК с регистром из 10 000 кубитов решил бы ту же задачу за пару часов. Алгоритм Шора можно реализовать даже на КК с небольшим числом кубитов (несколько десятков) и использовать уже в ближайшем будущем для шифрования и расшифровки «на лету», обеспечивая тем самым безопасную связь.

Другая вершина, которую должен покорить квантовый компьютер, -- это поиск записи в базе данных. Алгоритм для ее решения с помощью КК предложил в 1997 году Л. Гровер. Если у нас имеется база данных, содержащая 2N записей, и нужно найти одну, то современному компьютеру потребуется в среднем 2N/2 обращений к базе. Квантовый алгоритм Гровера прекрасно справится с задачей за 2N/2 обращений.

Одна из преград на пути прогресса -- это задача на проектирование оптимальной микросхемы с заданной функциональностью (PSPACE-задача). За решение частных ее случаев получают свои зарплаты лучшие инженеры Intel и AMD. Ведь оптимальная микросхема -- это лучший вариант из всех возможных. Именно его и поможет быстро находить квантовый компьютер. Кроме того, родственными PSPACE-задачами являются и некоторые проблемы искусственного интеллекта.

И, наконец, самое парадоксальное применение КК - это моделирование других квантовых систем (как говорил Ганеман, Similia similibus curantur (Подобное лечится подобным). Ведь если бы такое моделирование было сегодня легко реализуемо, то с одной стороны, исчерпали бы себя проблемы с конструированием КК, а с другой -- Ричард Фейнманн, возможно, не написал бы своей статьи, породившей такой интерес к КК. К квантовым системам, подлежащим моделированию, можно отнести молекулы сложных химических соединений (например, белков), детали современных микросхем (те же транзисторы в процессорах), разнообразные наноструктуры (но это уже из другой модной области -- нанотехнологий).

Одним словом, создание квантового компьютера позволило бы решать многие задачи проще, быстрее и с меньшей затратой ресурсов.

Фото: University of Science and Technology of China

Пионер отрасли, канадская D-Wave, в 2020 году начала предлагать работу с 5000-кубитовыми квантовыми компьютерами Advantage для бизнеса. С ними можно взаимодействовать через облако. Система способна разбивать большую задачу на части для решения классическим и квантовым способами. Однако такие компьютеры не являются универсальными, а используются для решения определенной задачи в качестве вычислителей.

Advantage

Google после презентации Sycamore заявила, что потратит несколько миллиардов долларов на создание к 2029 году коммерческого квантового компьютера. Компания планирует предлагать свои услуги через облако. Google хочет создать машину на миллион кубитов, а ее текущие системы включают менее 100 кубитов.

Компактные решения

В январе 2019 года IBM объявила о выпуске Quantrum System One, первой в мире модели квантового компьютера для бизнеса. Устройство помещено в гладкий стеклянный корпус объемом 9 кубических футов.

Q System One

Осенью 2020 года IBM представила дорожную карту развития своих квантовых компьютеров. Компания собирается в 2023 году создать квантовый компьютер с 1121-кубитовым процессором. Долгосрочная цель — построить квантовую систему на миллион кубитов. Компания считает, что появление систем с 1000 кубитами снимет ограничения для коммерческого использования квантовых систем.

Дорожная карта

В 2021 году IBM запустила первый Q System One за пределами США, в Германии. Это самый мощный коммерческий квантовый компьютер в Европе, который имеет процессор в 27 кубитов. Систему будет использовать научно-исследовательский институт Фраунгофера.

Контролируемые кубиты

Intel в январе 2018 года объявила о поставке тестового квантового процессора с 49 кубитами под названием Tangle Lake. Но более интересна работа другого подразделения компании, которое пытается разработать кубиты из традиционного кремния. Толщина таких кубитов составляет всего около 50 нанометров, или 1/1500 ширины человеческого волоса. Это открывает возможности для производства крошечных квантовых процессоров с миллионами кубитов, которые можно охлаждать почти до абсолютного нуля. Кстати, компания работает и над этим. Инженеры Intel совместно с компанией QuTech разрабатывают систему контроля «горячих» кубитов с температурой чуть больше –272,15ºC. Кроме того, Intel в 2019 году показала контроллер кубитов Horse Ridge, который может работать даже при очень низких температурах и выдерживает охлаждение до −269 ºC. Horse Ridge в будущем поможет масштабировать многокубитовые квантовые системы.

Horse Ridge

Дешевые системы

В 2020 году специалист по квантовой физике Алессандро Бруно и выпускник технологического университета TU Delft Маттейс Райлаарсдам основали компанию QuantWare. Она занялась выпуском общедоступных 5-кубитных чипов. Они могут работать с современными электронными устройствами, но лишь в условиях сверхнизких температур.

А в Китае стартап Shenzhen SpinQ Technology в 2021 году представил квантовый компьютер стоимостью всего около $ 5 тысяч. По размеру он почти такой же, как системный блок обычного ПК.

SpinQ

Система разработана для школ и колледжей и умеет оперировать только двумя кубитами. Поставки первых SpinQ уже идут в Тайвань, Гонконг и Осло. Разработчики надеются, что системы позволят ученикам понять базовые принципы работы квантовых вычислителей.

Амбициозные стартапы

Инвесторы верят в будущее квантовых систем. Летом 2021 года калифорнийский стартап PsiQuantum смог привлечь $ 450 млн на создание квантового компьютера с миллионом кубитов, даже не имея рабочего прототипа. Эта сумма больше, чем все инвестиции в область квантовых вычислений в 2019 году в США. PsiQuantum планирует разработать и наладить производство квантовых компьютеров на базе фотонов. А другой стартап под названием Rigetti уже собрал 19-кубитный сверхпроводниковый процессор, который доступен онлайн через свою среду разработки под названием Forest.

Фото:Reuters

Российские разработки

Руслан Юнусов, руководитель проектного офиса по квантовым технологиям госкорпорации «Росатом», рассказал, что в 2016 году при поддержке Фонда перспективных исследований стартовал первый в России проект по созданию квантовых информационных систем на основе сверхпроводящих кубитов. А в 2018 году начался пилотный проект по развитию двух других платформ квантовых вычислений: нейтральных атомов в оптических ловушках и интегральных оптических чипов.

Специалисты Национальной квантовой лаборатории в 2021 году сообщили о создании прототипа квантового компьютера совместно с РКЦ и ФИАНом. Он работает на платформе из 20 ионов, захваченных электромагнитной ловушкой. Сейчас ученые пытаются проводить на ионной платформе прикладные вычисления, моделируют и тестируют алгоритмы.

Учебная лаборатория квантовой оптики РКЦ

Они планируют создать действующий образец квантового процессора на сверхпроводниках к концу 2024 года.

Пятикубитный прототип процессора продемонстрировали также в Лаборатории искусственных квантовых систем МФТИ. Она уже прошла ряд испытаний. Тесты показали, что элементы схемы работают с заданными параметрами.

В июне 2021 года Российский квантовый центр, НИТУ «МИСиС», Университет ИТМО, МГТУ им. Баумана, Росатом и Институт Иоффе создали квантовый симулятор на основе массива из 11 сверхпроводящих кубитов.

Кроме того, ученые из Национальной квантовой лаборатории и Российского квантового центра совместно с исследователями из Федеральной политехнической школы Лозанны разработали миниатюрные источники оптических гребенок. Их применение может произвести революцию во многих областях, где на данный момент используются лазеры: в медицине, здравоохранении, безопасности, телекоммуникациях и даже в умных городах.

Российские ученые работают и над специализированным облачным софтом. В апреле 2021 года Российский квантовый центр запустил универсальную облачную платформу квантовых вычислений, которая позволяет решать прикладные бизнес-задачи на квантовых процессорах без специальных знаний в квантовой механике. Свою собственную платформу представил и Центр квантовых технологий МГУ им. М.В. Ломоносова.

«На сегодняшний день основным заказчиком квантовых технологий в России является государство — во многом это объясняется стратегической важностью квантов. Тем не менее, квантовые вычисления будут полезны бизнесу, обрабатывающему большое количество данных и решающему сложные расчетные задачи. Например, в области финансов и инвестиций, энергетики, транспорта, логистики, химии и фармацевтики», — подчеркивает Юнусов.

Читайте также: