Ученик узнал что память компьютера имеет различный объем

Обновлено: 03.07.2024

Минимальной единицей информации является бит или кратные ему единицы: килобит (1 кб = 1024 бита), мегабит (1Мб = 1024кбит), гигабит (1Гб = 1024Мбит). Но чаще пользуются единицей байт (1 байт = 8 бит), или же кратными ему единицами: килобайт (1 КБ = 1024 байта), мегабайт (1МБ = 1024кБ), гигабайт (1ГБ = 1024МБ). Для измерения больших объемов памяти используются терабайты и петабайты.

Компьютерную память можно классифицировать по типу доступа:

  • последовательный доступ (магнитные ленты)
  • произвольный доступ (оперативная память)
  • прямой доступ (жесткие магнитные диски);
  • ассоциативный;

по типу электропитания:

  • буферная;
  • временная;
  • кэш-память;
  • корректирующая;
  • управляющая;
  • коллективная.

по типу носителя и способу записи информации:

  • акустическая;
  • голографическая;
  • емкостная;
  • криогенная;
  • лазерная;
  • магнитная;
  • магнитооптическая;
  • молекулярная;
  • полупроводниковая;
  • ферритовая;
  • фазоинверсная;
  • электростатическая.

Оперативная память компьютера

Оперативная память современного компьютера разделена на несколько типов. Хотя в основе всех типов памяти лежит обычная ячейка памяти, представляющий собой комбинацию из транзистора и конденсатора, благодаря различным внешним интерфейсам и устройствам взаимодействия с компьютером модули памяти они все же отличаются друг от друга.

Это наиболее дешевый способ производства ячеек памяти. Состояние конденсатора определяет, содержит ячейка «0» или «1», но само наличие конденсатора является причиной некоторых ограничений динамической памяти.

Таким образом, каждый раз при считывании информации должна проводиться и его запись. В результате увеличивается время циклического доступа, и повышается латентность.

Массовое распространение получили следующие виды оперативной памяти DDR (уже не пользуется большим спросом), DDR2, DDR3, DDR4.

Внешний вид модулей памяти DDR, DDR2, DDR3

Внешний вид модулей памяти DDR, DDR2, DDR3

В каждом модуле оперативной памяти содержится также специальная микросхема SPD. В этой микросхеме хранятся данные о модуле памяти: дата изготовления модуля, основные характеристики модуля и тому подобное.

Кэш память

Персональные компьютеры также имеют скрытую память. Фактически, из-за разницы в скорости процессоров и схем основной памяти, большинство персональных компьютеров имеют два разных типа кэша, известных как «Уровень 1» (уровень 1 или L1) и «Уровень 2». Уровень 2 или L2 кэш).

L1 кэш-память

Кэш L1 содержит адреса памяти, которые соответствуют данным и машинным командам. Он часто делится на два раздела для этих двух типов адресов. Машинные команды, выполняемые внутри процессора, особенно полезно кэшировать, когда процессор имеет конвейерную архитектуру, которая обрабатывает несколько команд одновременно.

Кэш-память второго уровня

Кэш уровня 2 больше по размеру, чем L1, но не так быстр, и находится на материнской плате компьютера. Как мы уже говорили, его схемы в основном состоят из статической памяти. Кэш-память уровня 2 обычно имеет размер до 1 Мб, но его максимальный размер также зависит от материнской платы.

Память DDR

Память DDR2

Память этого стандарта использовалась в платформе Socket 775. По сути DDR2 память не имеет кардинальных отличий от DDR. Однако в то время как DDR осуществляет две передачи данных по шине за такт, DDR2 выполняет четыре таких передачи. При этом, построена DDR2 из таких же ячеек памяти, как и DDR, а для удвоения пропускной способности используется техника мультиплексирования.

Память DDR3

Передача данных по-прежнему осуществляется по обоим полупериодах синхросигнала на удвоенной «эффективной» частоте относительно собственной частоты шины памяти. Только рейтинги производительности выросли в 2 раза, по сравнению с DDR2. Типичными скоростными категориями памяти нового стандарта DDR3 являются разновидности от DDR3-800 до DDR3-1600 и выше. Очередное увеличение теоретической пропускной способности компонентов памяти в 2 раза вновь связано со снижением их внутренней частоты функционирования во столько же раз. Поэтому отныне, для достижения темпа передачи данных со скоростью 1 бит / такт по каждой линии внешней шины данных с «эффективной» частотой в 1600 МГц используемые 200-МГц микросхемы должны передавать по 8 бит данных за каждый свой такт. То есть,

Однако у данного типа памяти есть свои недостатки:

  • наряду с ростом пропускной способности выросла также и латентность памяти;
  • высокая цена модулей памяти.

Память DDR 4

На сегодня это основной тип памяти, который приобрел массовое применение. Первые тестовые образцы DDR4 были представлены в середине 2012 года фирмами Hynix, Micron и Samsung.

Благодаря 30 нм техпроцессу память DDR4 от Samsung имела объем 8 и 16ГБ и тактовую частоту 2133 МГц. 16 ГБ планки имеют два ряда чипов памяти, в отличие от привычного одного ряда. К тому же, они располагаются на печатной плате ближе друг к другу, что позволяет вместить ее два дополнительных чипа памяти с каждой стороны. Samsung обещает, что с переходом на передовой 20 нм техпроцесс, появится возможность создания модулей памяти объемом 32 ГБ. Модули памяти DDR4 от Samsung, работают с напряжением 1,2 В, в отличие от DDR3 планок, которые работают на 1,35 В. Это небольшая разница, позволяет экономить энергию на 40%.

Рекомендации по выбору модулей памяти:

При производстве модулей памяти, как правило, одна фирма выпускает микросхемы (чипы), а другая делает сами модули (монтаж и пайка). Производителей чипов в мире насчитывается не более 10. Крупные производители чипов: Samsung, Mиcron, LG, Hynиx, Toshиba, Nec, Texas Instruments проводят тщательное тестирование готовой продукции, но полный цикл тестирования проходят далеко не все чипы. Исходя из этого, продукцию этих компаний можно условно разделить на три категории: класса А, В и С.

Третья (чипы класса C), которые вообще не тестировались производителем на скорость и надежность. Понятно, что на рынке такая продукция имеет наименьшую стоимость, поскольку вся ответственность за тестирование ложится на производителей модулей. Именно такие микросхемы используют производители дешевой памяти класса noname, а стабильность работы этих изделий вызывает большие сомнения. Надежность готового модуля памяти определяется совокупностью многих факторов. В частности, это количество слоев печатной платы (PCB), качество электронных компонентов, грамотное разведение цепей, а также технология производственного процесса. Мелкие производители модулей для снижения цены готовых изделий экономят на мелких компонентах, зачастую просто не впаянных на модуль.

Память для хранения информации: жесткий диск, твердотельные накопители

За счет вращения создается своеобразный подпор воздуха, благодаря которому считывающие головки не касаются поверхности пластин, хотя и находятся очень близко к ним (всего несколько микрометров). Это гарантирует надежность записи / считывания данных. При остановке пластин, головки перемещаются за пределы их поверхности, поэтому механический контакт между головками и пластинами практически исключен. Такая конструкция обеспечивает долговечность запоминающих устройств этого типа.

Основные характеристики жестких дисков:

Параметры жестких дисков

Классический жесткий диск имеет форм-фактор 3,5 дюйма. В ноутбуках, нетбуках и других портативных устройствах чаще всего используются устройства 2,5 или 1,8 дюйма, хотя встречаются и другие варианты.

Объем буфера специальной внутренней быстрой памяти диска, предназначенная для временного хранения данных с целью сглаживания перебоев при считывании и записи информации на носитель и ее передачи по интерфейсу. В современных запоминающих устройствах буфер может достигать размеров до 64 МБ. Чем этот показатель больше, тем лучше.

В последнее время начался выпуск жестких дисков со встроенной флэш-памятью в качестве кэша, что значительно улучшает скоростные показатели дисков.

Фирмы производители: IBM , Hitachi , Seagate , Samsung , Western Digital .


Запись магнитной информации продольного (а) и перпендикулярного (б) типа

Накопители SSD

Существует всего 2 типа SSD накопителей: SSD диски на основе флэш-памяти (самые популярные и распространенные), и SSD на основе оперативной памяти.

Основополагающим принципом организации работы флеш-памяти является хранение ею 1 бита данных в массиве транзисторов с плавающим затвором (элементарными ячейками), путем изменения и регистрации электрического заряда в изолированной области полупроводниковой структуры. Главной особенностью полевого транзистора, которая позволила ему получить всеобщее признание, как носителя информации, стала способность удерживать электрический разряд на плавающем затворе до 120 месяцев. Сам плавающий затвор изготовлен из поликристаллического кремния и со всех сторон окружен слоем диэлектрика, что исключает возможность контакта его с элементами транзистора. Располагается он между диэлектрической подкладкой и управляющим затвором. Управляющий электрод полевого транзистора и называется затвором.

Запись и стирание информации происходит за счет изменения приложенного заряда между затвором и истоком большим потенциалом, пока напряженность электрического поля в диэлектрике между каналом транзистора и изолированной областью не станет достаточной для возникновения туннельного эффекта. Таким образом электроны переходят через слой диэлектрика на плавающий затвор, обеспечивая его зарядом, а, значит, и наполнение элементарной ячейки битом информации. Также, для усиления эффекта туннелирования электронов при записи, применяется слабое ускорение электронов путем пропускания тока через канал полевого транзистора.

Для удаления информации управляющий затвор обеспечивается отрицательным напряжением высокой мощности с тем, чтобы позволить электронам переходить с плавающего затвора на исток. Подобная организация элементарных ячеек, объединенных в страницы, блоки и массивы и составляет твердотельный накопитель.

Преимущества SSD накопителей:

Недостатки SSD накопителей:

RAID массивы

RAID имеет две цели:

  1. увеличение надежности хранения информации;
  2. увеличение скорости записи / считывания.

Наиболее популярными видами RAID является RAID 0, 1 и 0 + 1.


Схема записи информации в массиве RAID 1 (отражение)

RAID 3 и 4 используют массив дисков с чередованием и выделенным диском четности.


Схема массива RAID 5

RAID 6. Все различия сводятся к тому, что используются две схемы четности. Система устойчива к отказам двух дисков. Основной сложностью является то, что для реализации этого приходится делать больше операций при выполнении записи. Из-за этого скорость записи чрезвычайно низкой.

Комбинация RAID 0 + 1, которая является массивом RAID 1, собранным на базе массивов RAID 0. Как и в массиве RAID 1, доступным будет только половина объема дисков. Но, как и в RAID 0, скорость будет выше, чем с одним диском. Для реализации такого решения необходимо минимум 4 диска.


Схематическое изображение массива RAID 0 + 1 (а) и RAID1 + 0 (б)

RAID 0 + 1 имеет высокую скорость работы и повышенную надежность, поддерживается даже дешевыми RAID контроллерами и является недорогим решением.

Выводы


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности



2. Раздавайте видеоуроки в личные кабинеты ученикам.


3. Смотрите статистику просмотра видеоуроков учениками.

Конспект урока "Оперативная память. Долговременная память"

Что же такое компьютерная память?


Само понятие «память» ассоциируется у нас с памятью человека. Так и есть - память компьютера похожа на нашу память.


Мы способны помнить какие-то события всю жизнь, например, такие как дата рождения, порода любимой собаки, таблица умножения, а есть такие события, которые мы помним всего лишь некоторое время, например, когда звоним в справочную службу, чтобы узнать нужный номер телефона.


Так же и у компьютера есть две памяти:

Долговременная память - это память, где информация хранится долго. И только сам пользователь, если решит, что эта информация ему больше не нужна - может удалить.

И оперативная память, где информация хранится только до тех пор, пока компьютер включен.

Но все же понятия «память человека» и «память компьютера» отличаются между собой. Потому что работа компьютера зависит от заложенной в нем программы, а человек - сам управляет своими действиями.

Давайте разберемся с этими видами памяти более подробно, и начнем мы с оперативной памяти.

Данная память представляет собой последовательность ячеек, в которых может находиться (храниться) двоичный код, состоящий из восьми знаков.

Что касается нумерации ячеек, то она начинается с нуля.


Если же мы хотим, вычислить объем оперативной памяти компьютера, то для этого нам нужно количество информации, которая хранится в каждой ячейке, умножить на количество ячеек.


Количество информации, которая хранится в одной ячейке, равно. Если мы будем знать количество ячеек оперативной памяти, то с легкость можем рассчитать объем оперативной памяти компьютера. Например:



Тогда объем оперативной памяти компьютера равен количество информации, хранящейся в каждой ячейке, умноженное на количество ячеек, т.е.:


Оперативную память строят на модулях памяти. Эти модули представляют собой плоские пластины, на которых расположены электрические контакты. По бокам пластины размещаются большие интегральные схемы памяти, которые еще называют БИС.


Модули такой памяти устанавливаются в специальные разъемы, которые располагаются на системной плате.


Современные модули памяти имеют информационную емкость 2 или 4 Гигабайта.

С оперативной памятью мы немного разобрались, теперь давайте поговорим о долговременной памяти.

Как уже говорилось, долговременная память - это такая память, где информация хранится до тех пор, пока пользователь сам ее не удалит. Иногда эту память называют внешней.

Такая память может храниться на различных устройствах. К таким устройствам относятся:

- винчестер, еще его называют жесткий магнитный диск;

- оптические диски, например DVD;

- а также дискеты, которые иначе называют гибкие магнитные диски. Но они уже не используются в современных технологиях, т.к. у них маленькая информационная емкость.


Винчестер представляет собой несколько десятков тонких металлических дисков, которые помещены в металлический корпус и вращаются вокруг одной оси, и притом очень быстро.


Что касается информации, то она хранится в сегментах дисковой памяти, так называемых дорожках. Они состоят из нескольких участков, которые либо намагниченные, либо не намагниченные.


Если сравнить эти участки с компьютерным двоичным кодом, то намагниченному участку соответствует компьютерная единица, а не намагниченному - компьютерный ноль.

Если же мы записываем или считываем информацию с винчестера, то сверхминиатюрная магнитная головка устанавливается на определенную дорожку и начинает запись или считывание нужной нам информации. Такие головки могут считывать или записывать информацию более чем с сотни тысяч концентрических дорожек. Именно поэтому, емкость жестких дисков может достигать нескольких терабайт.

Так в процессе считывания информации с оптического диска луч лазера, который находится в дисководе, попадает на поверхность вращающегося диска и отражается.


Следовательно, поверхность диска на каждом участке отражается по-разному, если отражает - то это у нас намагниченный участок и ему соответствует компьютерная единица, и если не отражает - то это не намагниченный участок и ему соответствует компьютерный ноль.

И как вы уже поняли, то на диске информация хранится на одной дорожке, которая начинается от центра и идет к периферии, если внимательно посмотреть, то можно заметить, что дорожка по своей форме похожа на раковину улитки.


Рассмотрим устройство оптических дисков.

Оптические диски бывают различных типов, например, СD, CD-RW, DVD, DVD-RW и Blu-ray.


Как вы уже знаете, информационная емкость СD и CD-RW дисков небольшая, всего лишь 700 Мегабайт. А вот DVD и DVD-RW имеют гораздо больше памяти для записи, чем СD и CD-RW диски. Их информационный объем достигает до 4,7 Гигабайт.

На СD-RW и DVD-RW информацию можно перезаписывать, а на CD-R и DVD-R - нельзя.

Но что касается Blu-ray дисков, то у них информационная емкость огромная, по сравнению с предыдущими дисками. Информационная емкость Blu-ray диска зависит от количества слоев на диске. Он может быть однослойный, двухслойным, трехслойном и т.д.

Например, если же у нас Blu-ray диск - однослойный, то его память равна 25 Гигибайт, если же двухслойный, то 50 Гигабайт, трехслойный - 100 Гигабайт и т.д.

Это мы рассмотрели устройства, относящиеся к магнитной долговременной памяти и к оптической долговременной памяти, Но существует еще одна память - это энергонезависимая долговременная память. К такой памяти относятся карты flash-памяти и flash-диски.


Карты flash-памяти и flash-диски называют энергонезависимыми, потому что они используют энергию только для записи и считывания информации, а для хранения - нет.

Также данные устройства по своему строению немного проще, чем предыдущие, они не имеют никаких движущихся частей, поэтому они более надежны и компактны.

За счет своей компактности и низкому потреблению энергии flash-память используется в цифровых фото- и видеокамерах, MP3-плеерах, мобильных телефонах и т.д.


Т.к. современные технологии развиваются, то на смену дискетам и CD дискам пришли USB-диски, именно поэтому некоторые фирмы перестали выпускать компьютеры с дисководом гибких дисков.

На данный момент ассортимент USB flash-накопителей очень велик. Они отличаются между собой формой, емкостью и быстродействием.

Раздел программы: Компьютер и программное обеспечение

Тип урока: комбинированный, проверка знаний - тест.

Цель: сформировать представления о типах устройств памяти компьютера, их назначении и принципах работы, знакомство с их основными характеристиками.

Задачи:

  • Повторить устройства компьютера.
  • Закрепить знания учащихся об основном предназначении компьютера.
  • Изучить понятие памяти компьютера, ее виды и назначение
  • Усвоить понятия “оперативная память”, “видеопамять”, “носитель информации”, “устройство внешней памяти”
  • Изучить устройства внутренней и внешней памяти.
  • Развивать коммуникативные навыки учащихся
  • Развивать информационную культуру школьников, любознательность.
  • Развивать логическое мышление, память, внимание учащихся.
  • Развивать навыки самостоятельной работы на компьютере
  • Способствовать формированию познавательного интереса
  • Способствовать формированию культуру общения
  • Способствовать развитию навыков самоконтроля учащихся в процессе учебной работы
  • Способствовать формированию ответственности за результаты учебной работы
  • Ноутбуки, проектор, интерактивная доска, презентация к уроку (PowerPoint), дискеты, различные CD и DVD-диски, флэш-карты, флэш-брелоки, модули оперативной памяти

Ход урока

1. Организационный момент

Учитель: Здравствуйте, ребята. Я вижу, вы готовы приступить к работе. Давайте вспомним, о чем же мы говорили на предыдущих уроках. (об устройстве компьютера)

2. Повторение изученного материала

Учитель: Прежде чем мы продолжим говорить об устройстве компьютера, каждый из вас выполнит тест по пройденной теме. Ответы на тест заполняете в двух экземплярах, один сдадите мне, второй оставите себе для самопроверки. (приложение 1)

Результаты своей работы на уроке будете записывать в бланк самооценки. (приложение 2)

Выполнение теста (7 минут)

Самопроверка теста (1-2 минуты) (приложение 3, слайд 1)

3. Подведение к теме

Учитель: А сейчас возьмите листочки с кроссвордом и решите его (раздается кроссворд – один на парту, работают парами, на доску выводится заготовка для кроссворда)

Решение кроссворда (приложение 4)

  1. Устройство обработки информации
  2. Устройство ввода графической информации
  3. Устройство вывода информации, является основным устройством ПК
  4. Знания человека, по другому это ….
  5. Устройство для вывода информации на печать
  6. Манипулятор

Учитель:

Какое слово получилось в закрашенных ячейках? (память) (приложение 3, слайд 2)

Ребята, а что это такое – память? Какие функции выполняет память? (позволяет хранить информацию о происходящем, накапливать знания)

Посмотрите на доску и выберите все то, что связно с памятью (выбирают устройства, словосочетания, связанные с памятью) (приложение 3, слайд 3)

Оцените свою работу в листе самооценки

Учитель:

Мозг человека не может запомнить все, что хотелось бы запомнить. Поэтому еще с древнейших времен человек использовал различные приспособления, помогающие ему сохранять информацию и передавать ее следующим поколениям. (каменные стены, глиняные дощечки, папирус, бумага и др.)

Технический прогресс принес с собой и новые носители информации, такие как перфокарты, перфоленты, магнитные ленты.

Появление компьютера привело к появлению новых информационных носителей, которые позволяют хранить информацию, которую понимает машина.

Как вы думаете, какова же тема нашего урока? (Память компьютера)

4. Изучение новой темы

Итак, тема урока ПАМЯТЬ КОМПЬЮТЕРА. По ходу изучения новой темы заполняйте схему, которую затем вклеите в тетрадь

Изучение новой темы идет с использованием презентации (приложение 6)

В итоге у ребят должна быть заполнена схема (приложение 5)

5. Закрепление изученного, компьютерный практикум

В текстовом редакторе заполнить таблицу с использованием презентации к уроку (приложение 6, приложение 7)

  • О чем мы говорили сегодня на уроке?
  • Какие виды памяти есть у компьютера?
  • Что входит во внутреннюю память компьютера?
  • Назовите устройства компьютера, которые относятся к внешним запоминающим устройствам.

Сдаем свои бланки самооценки. Оценки за урок будут выставлены в электронном журнале.

Работая с информацией, человек пользуется не только своими знаниями , но и книгами , справочниками и другими внешними источниками . В главе 1 «Человек и информация » было отмечено , что информация хранится в памяти человека и на в нешних носителях . Заученную информацию человек может забыть, а записи сохраняются надежнее .

У компьютера тоже есть два вида памяти: внутренняя (оперативная) и внешняя (долговременная) память.

Внутренняя память — это электронное устройство, ко­торое хранит информацию, пока питается электроэнергией . При отключении компьютера от сети информация из опера­тивной памяти исчезает. Программа во время ее выполнения хранится во внутренней памяти компьютера. Сформулиро­ванное правило относится к принципам Неймана. Его назы­вают принципом хранимой программы.

Внешняя памят ь — это различные магнитные носители (ленты, диски), оптические диски . Сохранение информации на них не требует постоянного электропитания .

image021

На рис. 2 ,3 показана схема устройства компьютера с уче­том двух видов памяти. Стрелки указывают напра вления ин­формационного обмена .

Структура внутренней памяти компьютера

Все устройства компьютера производят определенную ра­боту с информацией (данными и программами). А как ж е представляется в компьютере сама информация? Для ответа на этот вопрос «загляне м» внутрь машинной памяти. Струк ­туру внутренней памяти компьютера можно условно изобра ­зить так, как показано на ри с. 2.4.

image022

В современных компьютерах имеется еще один вид внутренней па­мяти , который называется постоянным запоминающ им устройст ­вом — ПЗУ . Это энергонезависимая память, информация из кото ­рой может только читаться .

Наименьший элемент памяти компьютера называется би­том памяти . На рис. 2 .4 каждая клетка изображает бит. Вы видите , что у слова «бит» есть два значени я: единица измере­ния количества информации и частица памяти компьютера. Покажем , как связаны между собой эти понятия .

В каждом бите памяти может храниться в данный момент одно из двух значений: нуль или единица . Использование двух знаков для представления информации назы вается двоичной кодировко й.

Данные и программы в памяти компьютера хранятся в виде двоичного кода.

Один символ двухсимвольного алфавита несет 1 бит ин ­формации.

В одном бите памяти содержится один бит информации.

Битовая структура определяет первое свойство внутрен­ней памяти компьютера — дискретност ь . Дискретные объ­екты составлены из отдельных частиц. Например , песок ди­скретен, так как состоит из песчинок, «Песчинкам и» ком ­пьютерной памяти являются биты.

Второе свойство внутренней памяти компьютера — адресуе­мост ь. Восемь расположенных подряд битов памяти образуют байт. Вы знает е, что это слово также обозначает единицу коли­чества информации, равную восьми битам. Следовательно » в одном байте памяти хранится один байт информации.

Во внутре нней памяти компьютера все байты про пумеро ваны. Нумерация начинается с нуля.

Порядковый номер байта на зывается его адресом ,

Принцип адресуемости означает, что:

Запись информации в память, а также чтение ее из памяти пр оизводится по адреса м.

Память можно представить как многоквартирный дом, в котором каждая квартира — это байт , а номер квартиры — адрес . Для того чтобы почта дошла по назначению, необхо­димо указать правильный адрес . Именно так , по адресам, об­ращается процессор к внутренней памяти компьютера.

Носители и устройства внешней памяти

Устройства внешней памяти — это устройства чтения и записи информации на внешние носители. Информация на внешних носителях хранится в виде файлов. Что это такое, подробнее вы узнаете позже .

Важнейшими устройствами внешней памяти на современ­ных компь ютерах являются накопители на магнитных ди­сках (НМД) , или дисковод ы.

Кто не знает, что такое магнитофон? На магнитофон мы привыкли записывать речь, музыку, а затем прослушивать за писи . Звук записывается на дорожках магнитной ленты с помощью магнитной головки , с помощью этого же устройст ­ва магнитная запись снова превращается в звук.

НМД действует аналогично магнитофону. На дорожки диска записываетс я все тот же двоичный код: намагничен ­ный участок — единица, не намагниченный — нуль. При чте ­нии с диска эта запись превращается в нули и единицы в би­тах внутренней памяти .

К магнитной поверхности диска подводится записываю­щая головка (рис. 2.5), которая может перемещаться по ра ­диусу. Во время работы НМД диск вращается . В каждом фиксированном положении головка взаимодействует с кру­говой дорожкой. На эти концентрические дорожки и произ­водится запись двоичной информации.

image023

Другим видом внешних носителей являются оптич еские диски (другое их название — лазерные диски) , На них ис­пользуется не магнитный, а оптико -механический способ за­писи и чтения информаци и.

Сначала появились лазерные диски, на которые информа­ция записывается только один раз. Стереть или перезаписать ее невозможно. Такие диски называются CD-ROM — Co m­pact Disk-Read Only Memory , что в переводе значит «ком ­пактный диск — только для чтения ». Позже были изобрете ­ны перезаписываемые лазерные диски — CD-RW . На них , как и на магнитных носителях , хранимую информацию можно стирать и записывать заново.

Носители, которые пользователь может извлекать из дис­ковода, называют сменными.

Наибольшей информационной емкостью из сменных но­сителей обладают лазерные диски типа DVD-ROM — видео­диски . Объем информации , хранящейся на них, может до­стигать десятков гигабайтов. На видеодисках записываются полноформатные видеофильмы, которые можно просматри­вать с помощью компьютера, как по телевизору .

Коротко о главном

В состав компьютера входят внутренняя память и внеш­няя память.

Исполняемая программа хранится во внутренней памяти (принцип хранимой программы ).

Информация в памяти компьютера имеет двоичную форм у.

Наименьшим элементом внутренней памяти компьютера является бит . Один бит памяти хранит один бит информа­ции: значение 0 или 1.

Восемь подряд расположенных битов образуют байт памя­ти. Байты пронумерован ы, начиная с нуля. Порядковый но­мер байта называется его адресом.

Во внутренней памяти запись и чтение информации про­исходят по адресам.

Внешняя память : магнитные диски, оптические (лазер­ные) диски — CD -ROM , CD-RW , DVD-RO M.

Вопросы и задания

1.Постарайтесь объяснить, зачем компьютеру нужны два вида па­мяти : внутренняя и внешняя .

Читайте также: