В какой знаковой системе необходимо представить текстовую информацию для ее обработки в компьютере

Обновлено: 04.07.2024

Двоичное кодирование текстовой информации в компьютере. Информация, выраженная с помощью естественных и формальных языков в письменной форме, обычно называется текстовой информацией.

Для представления текстовой информации (прописные и строчные буквы русского и латинского алфавитов, цифры, знаки и математические символы) достаточно 256 различных знаков. По формуле можно вычислить, какое количество информации необходимо, чтобы закодировать каждый знак:

N = 2 i => 256 = 2 i => 2 8 = 2 i => I = 8 битов.

Для обработки текстовой информации на компьютере необходимо представить ее в двоичной знаковой системе. Для кодирования каждого знака требуется количество информации, равное 8 битам, т. е. длина двоичного кода знака составляет восемь двоичных знаков. Каждому знаку необходимо поставить в соответствие уникальный двоичный код из интервала от 00000000 до 11111111 (в десятичном коде от 0 до 255) (табл. 3.1).

Человек различает знаки по их начертанию, а компьютер - по их двоичным кодам. При вводе в компьютер текстовой информации происходит ее двоичное кодирование, изображение знака преобразуется в его двоичный код. Пользователь нажимает на клавиатуре клавишу со знаком, и в компьютер поступает определенная последовательность из восьми электрических импульсов (двоичный код знака). Код знака хранится в оперативной памяти компьютера, где занимает одну ячейку.

Таблица 3.1. Кодировки знаков

В процессе вывода знака на экран компьютера производится обратное перекодирование, т. е. преобразование двоичного кода знака в его изображение.

Различные кодировки знаков. Присваивание знаку конкретного двоичного кода - это вопрос соглашения, которое фиксируется в кодовой таблице. В существующих кодовых таблицах первые 33 кода (десятичные коды с 0 по 32) соответствуют не знакам, а операциям (перевод строки, ввод пробела и т. д.).

Десятичные коды с 33 по 127 являются интернациональными и соответствуют знакам латинского алфавита, цифрам, знакам арифметических операций и знакам препинания.

Десятичные коды с 128 по 255 являются национальными, т. е. в различных национальных кодировках одному и тому же коду соответствуют разные знаки. К сожалению, в настоящее время существуют пять различных кодовых таблиц для русских букв (Windows, MS-DOS, КОИ-8, Mac, ISO (табл. 3.1 и 3.2)), поэтому тексты, созданные в одной кодировке, не будут правильно отображаться в другой.

Таблица 3.2. Десятичные коды некоторых символов в различных кодировках

Например, в кодировке Windows последовательность числовых кодов 221, 194, 204 образует слово "ЭВМ", тогда как в других кодировках это будет бессмысленный набор символов.

К счастью, в большинстве случаев пользователь не должен заботиться о перекодировках текстовых документов, так как это делают специальные программы-конверторы, встроенные в операционную систему и приложения.

В последние годы широкое распространение получил новый международный стандарт кодирования текстовых символов Unicode, который отводит на каждый символ 2 байта (16 битов). По формуле можно определить количество символов, которые можно закодировать согласно этому стандарту:

N = 2 i = 2 16 = 65 536.

Такого количества символов оказалось достаточно, чтобы закодировать не только русский и латинский алфавиты, цифры, знаки и математические символы, но и греческий, арабский, иврит и другие алфавиты.


В какой знаковой системе необходимо представить текстовую информацию для её обработки в компьютере:

  • 1) двоичной
  • 2) троичной
  • 3) двоично-троичной
  • 4) десятичной
Вопрос 2

Как называется международный стандарт кодирования текстовых символов:

  • 1) Windows
  • 2) Unicode
  • 3) Microsoft
  • 4) MS-DOS
Вопрос 3

В каких формах может быть представлена графическая информация:

  • 1) аналоговой и непрерывной
  • 2) дискретной и растровой
  • 3) аналоговой и дискретной
  • 4) дискретной и цифровой
Вопрос 4

Разрешение растрового изображения определяется:

  • 1) количеством точек по горизонтали и вертикали на единицу длины изображения
  • 2) по формуле N = 2I
  • 3) глубиной цвета на длину изображения
  • 4) количеством точек
Вопрос 5

Формула, которая связывает количество цветов N в палитре и глубину цвета I растрового изображения:

  • 1) I = 2^N
  • 2) N = 2^I – I
  • 3) N = 2 • I
  • 4) N = 2^I
Вопрос 6

Какие два параметра задают графический режим экрана монитора:

  • 1) величина пространственного разрешения и глубина цвета
  • 2) ширина и глубина цвета
  • 3) величина пространственного разрешения и частота цвета
  • 4) величина пространственного разрешения и яркость цвета
Вопрос 7

Для человеческого восприятия базовыми являются цвета:

  • 1) красный, чёрный, белый
  • 2) зелёный, синий, жёлтый
  • 3) красный, зеленый, синий
  • 4) белый, чёрный, синий
Вопрос 8

Какой цвет в системе цветопередачи RGB задан формулой Color = 0 + Gmax + 0:

  • 1) зеленый
  • 2) синий
  • 3) красный
  • 4) белый
Вопрос 9

Какой цвет в системе цветопередачи RGB задан формулой Color = Rmax + Gmax + Bmax:

Двоичное кодирование текстовой информации в компьютере. Информация, выраженная с помощью естественных и формальных языков в письменной форме, обычно называется текстовой информацией.

Для представления текстовой информации (прописные и строчные буквы русского и латинского алфавитов, цифры, знаки и математические символы) достаточно 256 различных знаков. По формуле можно вычислить, какое количество информации необходимо, чтобы закодировать каждый знак:

N = 2 i => 256 = 2 i => 2 8 = 2 i => I = 8 битов.

Для обработки текстовой информации на компьютере необходимо представить ее в двоичной знаковой системе. Для кодирования каждого знака требуется количество информации, равное 8 битам, т. е. длина двоичного кода знака составляет восемь двоичных знаков. Каждому знаку необходимо поставить в соответствие уникальный двоичный код из интервала от 00000000 до 11111111 (в десятичном коде от 0 до 255) (табл. 3.1).

Человек различает знаки по их начертанию, а компьютер - по их двоичным кодам. При вводе в компьютер текстовой информации происходит ее двоичное кодирование, изображение знака преобразуется в его двоичный код. Пользователь нажимает на клавиатуре клавишу со знаком, и в компьютер поступает определенная последовательность из восьми электрических импульсов (двоичный код знака). Код знака хранится в оперативной памяти компьютера, где занимает одну ячейку.

Таблица 3.1. Кодировки знаков

В процессе вывода знака на экран компьютера производится обратное перекодирование, т. е. преобразование двоичного кода знака в его изображение.

Различные кодировки знаков. Присваивание знаку конкретного двоичного кода - это вопрос соглашения, которое фиксируется в кодовой таблице. В существующих кодовых таблицах первые 33 кода (десятичные коды с 0 по 32) соответствуют не знакам, а операциям (перевод строки, ввод пробела и т. д.).

Десятичные коды с 33 по 127 являются интернациональными и соответствуют знакам латинского алфавита, цифрам, знакам арифметических операций и знакам препинания.

Десятичные коды с 128 по 255 являются национальными, т. е. в различных национальных кодировках одному и тому же коду соответствуют разные знаки. К сожалению, в настоящее время существуют пять различных кодовых таблиц для русских букв (Windows, MS-DOS, КОИ-8, Mac, ISO (табл. 3.1 и 3.2)), поэтому тексты, созданные в одной кодировке, не будут правильно отображаться в другой.

Таблица 3.2. Десятичные коды некоторых символов в различных кодировках

Например, в кодировке Windows последовательность числовых кодов 221, 194, 204 образует слово "ЭВМ", тогда как в других кодировках это будет бессмысленный набор символов.

К счастью, в большинстве случаев пользователь не должен заботиться о перекодировках текстовых документов, так как это делают специальные программы-конверторы, встроенные в операционную систему и приложения.

В последние годы широкое распространение получил новый международный стандарт кодирования текстовых символов Unicode, который отводит на каждый символ 2 байта (16 битов). По формуле можно определить количество символов, которые можно закодировать согласно этому стандарту:

N = 2 i = 2 16 = 65 536.

Такого количества символов оказалось достаточно, чтобы закодировать не только русский и латинский алфавиты, цифры, знаки и математические символы, но и греческий, арабский, иврит и другие алфавиты.

Кодирование текстовой информации — очень распространенное явление. Один и тот же текст может быть закодирован в нескольких форматах. Принято считать, что кодирование текстовой информации появилось с приходом компьютеров. Это и так и не так одновременно. Кодировка в том виде, в котором мы ее знаем, действительно к нам пришла с приходом компьютеров. Но над самим процессом кодирования люди бьются уже много сотен лет. Ведь, по большому счету, сама письменность уже является способом закодировать человеческую речь, для ее дальнейшего использования. Вот и получается, что любая окружающая нас информация никогда не бывает представленной в чистом виде, потому что она уже каким-то образом закодирована. Но сейчас не об этом.

Кодирование текстовой информации

Самый распространенный способ кодирования текстовой информации — это ее двоичное представление, которое сплошь и рядом используется в каждом компьютере, роботе, станке и т. д. Все кодируется в виде слов в двоичном представлении.

Сама технология двоичного представления информации зародилась еще задолго до появления первых компьютеров. Среди первых устройств, которые использовали двоичный метод кодирования, был аппарат Бодо — телеграфный аппарат, который кодировал информацию в 5 битах в двоичном представлении. Суть кодировки заключалась в простой последовательности электрических импульсов:

  • 0 — импульс отсутствует;
  • 1 — импульс присутствует.

В компьютерный мир такая кодировка пришла вместе с персонализацией самих компьютеров. То есть в первых компьютерах не было такой кодировки. Но как только компьютеры стали уходить «в массы», то резко обнаружилась потребность обрабатывать компьютерами большое количество именно текстовой информации, которую нужно было как-то кодировать. Тенденция обрабатывать большое количество текстовой информации сохранилась и в современных устройствах.

Так получилось, что двоичное кодирование в компьютерах связано только с двумя символами «0» и «1», которые выстраиваются в определенной логической последовательности. А сам язык подобной кодировки стал называться машинным.

Кодирование текстовой информации и компьютеры

Если смотреть на текст глазами компьютера, то в тексте нет предложений, абзацев, заголовков и т. д., потому что весь текст просто состоит из отдельных символов. Причем символами будут являться не только буквы, но и цифры, и любые другие специальные знаки (+, -,*,= и т. д.). Что самое интересное, даже пробелы, перенос строки и табуляция — для компьютера это тоже отдельные символы.

Для справки. Есть уникальный язык программирования, который в качестве своих операторов использует только пробелы, табуляции и переносы строки. Практического применения этот язык не имеет, но он есть.

Кодирование текстовой информации в компьютерных устройствах сводится к тому, что каждому отдельному символу присваивается уникальное десятичное значение от 0 и до 255 или его эквивалент в двоичной форме от 00000000 и до 11111111. Люди могут различать символы по их внешнему виду, а компьютерное устройство только по их уникальному коду.

Рассмотрите, как происходит процесс. Мы нажимаем нужный нам символ на клавиатуре, ориентируясь на их внешний вид. В оперативную память компьютера он попадает в двоичном представлении, а когда компьютер его выводит нам на экран, то происходит процесс декодирования, чтобы мы увидели знакомый нам символ.

Кодирование текстовой информации и компьютеры

Кодирование текстовой информации и таблицы кодировок

Таблица кодировки — это место, где прописано какому символу какой код относится. Все таблицы кодировки являются согласованными — это нужно, чтобы не возникало путаницы между документами, закодированными по одной таблице, но на разных устройствах.

На сегодняшний день существует множество таблиц кодировок. Из-за этого часто возникают проблемы с переносом текстовых документов между устройствами. Так получается, что если текстовая информация была закодирована по одной какой-то таблице, то и раскодирована она может быть только по этой таблице. Если попытаться раскодировать другой таблицей, то в результате получим только набор непонятных символов, но никак не читабельный текст.

Читайте также: