В каком году появилась память ddr3

Обновлено: 04.07.2024

Электромагнитные реле стояли в самых первых компьютерах, а их жизнь на рынке автоматизированных вычислений была недолгой. Однако видоизмененные катушки используют в технике и по сей день.

В стародревние времена — дело было почти 80 лет назад, на заре становления вычислительной техники — память вычислительных устройств было принято делить на три типа. На первичную, вторичную и внешнюю. Сейчас этой терминологией уже никто не пользуется, хотя сама классификация существует и по сей день. Только первичную память теперь называют оперативной, вторичную — внутренними жесткими дисками, ну а внешняя маскируется под всевозможные оптические диски и флэш-накопители.

Прежде чем начать путешествие в прошлое, давайте разберемся в обозначенной выше классификации и поймем, для чего нужен каждый из типов памяти. Компьютер представляет информацию в виде последовательности бит — двоичных цифр со значениями 1 или 0. Общепринятой универсальной единицей информации считают байт, как правило, состоящий из 8 бит. Все используемые компьютером данные занимают некоторое количество байт. К примеру, типичный музыкальный файл занимает 40 миллионов бит — 5 миллионов байт (или 4,8 мегабайта). Центральный процессор не сможет функционировать без элементарного запоминающего устройства, ведь вся его работа сводится к получению, обработке и записи обратно в память. Именно поэтому легендарный Джон фон Нейман (мы не раз упоминали его имя в цикле статей про мейнфреймы) придумал размещать внутри компьютера независимую структуру, где хранились бы все необходимые данные.

Классификация внутренней памяти разделяет носители еще и по скоростному (и энергетическому) принципу. Быстрая первичная (оперативная) память в наше время используется для хранения критичной информации, к которой ЦП обращается наиболее часто. Это ядро операционной системы, исполняемые файлы запущенных программ, промежуточные результаты вычислений. Время доступа — минимально, всего несколько наносекунд.

Первичная память общается с контроллером, размещенным либо внутри процессора (у последних моделей ЦП), либо в виде отдельной микросхемы на материнской плате (северный мост). Цена на оперативку относительно высока, к тому же она энергозависима: выключили компьютер или случайно выдернули шнур из розетки — и вся информация потерялась. Поэтому все файлы хранятся во вторичной памяти — на пластинах жестких дисков. Информация здесь не стирается после отключения питания, а цена за мегабайт очень низкая. Единственный недостаток винчестеров — низкая скорость реакции, она измеряется уже в миллисекундах.

Кстати, интересный факт. На заре развития компьютеров первичную память не отделяли от вторичной. Главный вычислительный блок был очень медленным, и память не давала эффекта бутылочного горлышка. Оперативные и постоянные данные хранились в одних и тех же компонентах. Позже, когда скорость компьютеров подросла, появились новые типы носителей информации.

Компьютер Bendix G15 с барабанной памятью. Оператор в костюме прилагается.

Одним из основных компонентов первых компьютеров были электромагнитные переключатели, разработанные известным американским ученым Джозефом Хенри еще в 1835 году, когда ни о каких компьютерах никто даже не помышлял. Простой механизм состоял из обмотанного проводом металлического сердечника, подвижной железной арматуры и нескольких контактов. Разработка Хенри легла в основу электрического телеграфа Сэмюеля Морзе и Чарльза Витстоуна.

Первый компьютер, построенный на переключателях, появился в Германии в 1939 году. Инженер Конрад Зюс использовал их при создании системной логики устройства Z2. К сожалению, прожила машина недолго, а ее планы и фотографии были утеряны во время бомбардировок Второй мировой войны. Следующее вычислительное устройство Зюса (под именем Z3) увидело свет в 1941 году. Это был первый компьютер, управляемый программой. Основные функции машины реализовывались при помощи 2000 переключателей. Конрад собирался перевести систему на более современные компоненты, но правительство прикрыло финансирование, посчитав, что идеи Зюса не имеют будущего. Как и ее предшественница, Z3 была уничтожена во время бомбардировок союзников.

Электромагнитные переключатели работали очень медленно, но развитие технологий не стояло на месте. Вторым типом памяти для ранних компьютерных систем стали линии задержки. Информацию несли электрические импульсы, которые преобразовывались в механические волны и на низкой скорости перемещались через ртуть, пьезоэлектронный кристалл или магниторезистивную катушку. Есть волна — 1, нет волны — 0. В единицу времени по проводящему материалу могли путешествовать сотни и тысячи импульсов. По завершении своего пути каждая волна трансформировалась обратно в электрический импульс и отсылалась в начало — вот вам и простейшая операция обновления.

Линии задержки разработал американский инженер Джон Преспер Экерт. Компьютер EDVAC, представленный в 1946 году, содержал два блока памяти по 64 линии задержки на основе ртути (5,5 Кб по современным меркам). На тот момент этого было более чем достаточно для работы. Вторичная память также присутствовала в EDVAC — результаты вычислений записывались на магнитную пленку. Другая система, UNIVAC 1, увидевшая свет в 1951 году, использовала 100 блоков на основе линий задержки, а для сохранения данных у нее была сложная конструкция со множеством физических элементов.

Блок памяти на основе линий задержки больше похож на гиперпространственный двигатель космического корабля. Сложно представить, но подобная махина могла сохранить всего несколько бит данных!

За кадром нашего исследования осталось два довольно значимых изобретения в области носителей данных. Оба сделал талантливый сотрудник Bell Labs Эндрю Бобек. Первая разработка — так называемая твисторная память — могла стать прекрасной альтернативой памяти на основе магнитных сердечников. Она во многом повторяла последнюю, но вместо ферритовых колец для хранения данных использовала магнитную пленку. У технологии были два важных преимущества. Во-первых, твисторная память могла одновременно записывать и считывать информацию с целого ряда твисторов. Плюс к этому, было легко наладить ее автоматическое производство. Руководство Bell Labs надеялось, что это позволит существенно снизить цену твисторной памяти и занять перспективный рынок. Разработку финансировали ВВС США, а память должна была стать важной функциональной ячейкой ракет Nike Sentinel. К сожалению, работа над твисторами затянулась, а на первый план вышла память на основе транзисторов. Захват рынка не состоялся.

«Не повезло в первый раз, так повезет во второй»,— подумали в Bell Labs. В начале 70-х годов Эндрю Бобек представил энергонезависимую пузырьковую память. В ее основе лежала тонкая магнитная пленка, которая удерживала небольшие намагниченные области (пузырьки), хранящие двоичные значения. Спустя какое-то время появилась первая компактная ячейка емкостью 4096 бит — устройство размером один квадратный сантиметр обладало емкостью целой планки с магнитными сердечниками.

Изобретением заинтересовались многие компании, и в середине 70-х разработками в области пузырьковой памяти занялись все крупные игроки рынка. Энергонезависимая структура делала пузырьки идеальной заменой как первичной, так и вторичной памяти. Но и тут планам Bell Labs не удалось сбыться — дешевые винчестеры и транзисторная память перекрыли кислород пузырьковой технологии.

Вакуум — наше все

Вакуумные трубки сохранились в технике и по сей день. Особенной любовью они пользуются среди аудиофилов. Считается, что усилительный тракт на основе вакуумных трубок по качеству звука на голову выше современных аналогов.

К концу 40-х годов системная логика компьютеров переехала на вакуумные трубки (они же электронные трубки или термионные шахты). Вместе с ними новый толчок в развитии получили телевидение, устройства для воспроизведения звука, аналоговые и цифровые компьютеры.

Под загадочным словосочетанием «вакуумная трубка» скрывается довольно простой по строению элемент. Он напоминает обычную лампу накаливания. Нить заключена в безвоздушное пространство, при нагреве она испускает электроны, которые попадают на положительно заряженную металлическую пластину. Внутри лампы под напряжением образуется поток электронов. Вакуумная трубка умеет или пропускать, или блокировать (фазы 1 и 0) проходящий через нее ток, выступая в роли электронного компонента компьютеров. Во время работы вакуумные трубки сильно нагреваются, их надо интенсивно охлаждать. Зато они намного быстрее, чем допотопные переключатели.

Первичная память на основе этой технологии появилась в 1946-1947 годы, когда изобретатели Фредди Вильямс и Том Килберн представили трубку Вильямса — Килберна. Метод сохранения данных был весьма остроумным. На трубке при определенных условиях появлялась световая точка, которая слегка заряжала занимаемую поверхность. Зона вокруг точки приобретала отрицательный заряд (ее называли «энергетическим колодцем»). В «колодец» можно было поместить новую точку или оставить его без внимания — тогда первоначальная точка быстро исчезала. Эти превращения истолковывались контроллером памяти как двоичные фазы 1 и 0. Технология была очень популярна. Память на трубках Вильямса — Килберна устанавливали в компьютеры Ferranti Mark 1, IAS, UNIVAC 1103, IBM 701, IBM 702 и Standards Western Automatic Computer (SWAC).

Параллельно свою трубку, именуемую селектрон, разрабатывали инженеры из компании Radio Corporation of America под управлением ученого Владимира Зворыкина. По задумке авторов селектрон должен был вмещать до 4096 бит информации, что в четыре раза больше, чем у трубки Вильямса — Килберна. Предполагалось, что к концу 1946 года будет произведено около 200 селектронов, но производство оказалось очень дорогим.

Наравне с вакуумными трубками в некоторых компьютерах того времени использовалась барабанная память, изобретенная Густавом Таусчеком в 1939 году. Простая конструкция включала большой металлический цилиндр, покрытый сплавом из ферромагнетика. Считывающие головки, в отличие от современных винчестеров, не перемещались по поверхности цилиндра. Контроллер памяти ждал, пока информация самостоятельно пройдет под головками. Барабанная память использовалась в компьютере Атанасова — Берри и некоторых других системах. К сожалению, ее производительность была очень низкой.

Селектрону не было суждено завоевать рынок вычислительных машин — опрятные на вид электронные компоненты так и остались пылиться на свалке истории. И это несмотря на выдающиеся технические характеристики.

В данный момент рынком первичной памяти правит стандарт DDR. Точнее, второе его поколение. Переход на DDR3 состоится уже совсем скоро — осталось дождаться появления недорогих чипсетов с поддержкой нового стандарта. Повсеместная стандартизация сделала сегмент памяти слишком скучным для описания. Производители перестали изобретать новые, уникальные продукты. Все труды сводятся к увеличению рабочей частоты и установке навороченной системы охлаждения.

Технологический застой и робкие эволюционные шаги будут продолжаться до тех пор, пока производители не доберутся до предела возможностей кремния (именно из него изготавливают интегрированные микросхемы). Ведь частоту работы нельзя повышать бесконечно.

Правда, здесь кроется один подвох. Производительности существующих чипов DDR2 достаточно для большинства компьютерных приложений (сложные научные программы не в счет). Установка модулей DDR3, работающих на частоте 1066 МГц и выше, не ведет к ощутимому приросту скорости.

Звездный путь в будущее

Странная текстура на фотографии — это память на основе магнитных сердечников. Перед вами наглядная структура одного из массивов с проводами и ферритовыми кольцами. Представляете, сколько времени приходилось потратить, чтобы найти среди них нерабочий модуль?

Главным недостатком памяти, да и всех остальных компонентов на основе вакуумных трубок было тепловыделение. Трубки приходилось охлаждать при помощи радиаторов, воздуха и даже воды. К тому же постоянный нагрев существенно уменьшал время работы — трубки самым натуральным образом деградировали. Под конец срока эксплуатации их приходилось постоянно настраивать и в конечном итоге менять. Можете представить, скольких усилий и средств стоило сервисное обслуживание вычислительных систем?!

Потом наступило время массивов с близко расположенными ферритовыми кольцами — изобретение американских физиков Эн Вэнг и Вэй-Донг Ву, доработанное студентами под управлением Джея Форрестера из Массачусетского технологического университета (MIT). Через центры колец под углом 45 градусов проходили соединительные провода (по четыре на каждое кольцо в ранних системах, по два в более совершенных). Под напряжением провода намагничивали ферритовые кольца, каждое из которых могло сохранить один бит данных (намагничено — 1, размагничено — 0).

Джей Форрестер разработал систему, при которой управляющие сигналы для многочисленных сердечников шли всего по нескольким проводам. В 1951 году вышла память на основе магнитных сердечников (прямой аналог современной оперативной памяти). В дальнейшем она заняла достойное место во многих компьютерах, включая первые поколения мейнфреймов компаний DEC и IBM. По сравнению с предшественниками у нового типа памяти практически отсутствовали недостатки. Ее надежности хватало для функционирования в военных и даже космических аппаратах. После крушения шаттла «Челленджер», которое привело к смерти семи членов его экипажа, данные бортового компьютера, записанные в памяти с магнитными сердечниками, остались в полной целости и сохранности.

Технологию постепенно совершенствовали. Ферритовые кольца уменьшались в размерах, скорость работы росла. Первые образцы функционировали на частоте порядка 1 МГц, время доступа составляло 60 000 нс — к середине 70-х годов оно сократилось до 600 нс.

Дорогая, я уменьшил нашу память

Производители памяти в наше время больше заботятся о внешнем виде своих продуктов — все равно стандарты и характеристики заранее определены в комиссиях вроде JEDEC.

Следующий скачок в развитии компьютерной памяти произошел, когда были придуманы интегральные микросхемы и транзисторы. Индустрия пошла по пути миниатюризации компонентов с одновременным повышением их производительности. В начале 1970-х полупроводниковая промышленность освоила выпуск микросхем высокой степени интеграции — на сравнительно малой площади теперь умещались десятки тысяч транзисторов. Появились микросхемы памяти емкостью 1 Кбит (1024 бит), небольшие чипы для калькуляторов и даже первые микропроцессоры. Случилась самая настоящая революция.

Особый вклад в развитие первичной памяти внес доктор Роберт Деннард, сотрудник компании IBM. Он разработал первый чип на транзисторе и небольшом конденсаторе. В 1970 году рынок подстегнула компания Intel (которая появилась всего двумя годами раньше), представив чип памяти i1103 емкостью 1 Кбит. Спустя два года этот продукт стал самым продаваемым полупроводниковым чипом памяти в мире.

Во времена первых Apple Macintosh блок оперативной памяти занимал огромную планку (на фото сверху), тогда как объем не превышал 64 Кб.

Микросхемы высокой степени интеграции быстро вытеснили старые типы памяти. С переходом на следующий уровень развития громоздкие мейнфреймы уступили место настольным компьютерам. Основная память в то время окончательно отделилась от вторичной, оформилась в виде отдельных микрочипов емкостью 64, 128, 256, 512 Кбит и даже 1 Мбит.

Наконец, микросхемы первичной памяти переехали с материнских плат на отдельные планки, это сильно облегчило установку и замену неисправных компонентов. Частоты начали расти, время доступа уменьшаться. Первые синхронные динамические чипы SDRAM появились в 1993 году, их представила компания Samsung. Новые микросхемы работали на частоте 100 МГц, время доступа равнялось 10 нс.

С этого момента началось победоносное шествие SDRAM, а к 2000 году этот тип памяти вытеснил всех конкурентов. Определением стандартов на рынке оперативки занялась комиссия JEDEC (Joint Electron Device Engineering Council). Ее участники сформировали спецификации, единые для всех производителей, утвердили частотные и электрические характеристики.

Дальнейшая эволюция не так интересна. Единственное значимое событие произошло в 2000 году, когда на рынке появилась оперативная память стандарта DDR SDRAM. Она обеспечила удвоенную (по сравнению с обычной SDRAM) пропускную способность и создала задел для будущего роста. Вслед за DDR в 2004 году появился стандарт DDR2, который до сих пор пользуется наибольшей популярностью.

В современном IT-мире фразой Patent Troll (патентный тролль) называют фирмы, которые зарабатывают деньги на судебных исках. Они мотивируют это тем, что другие компании нарушили их авторские права. Целиком и полностью под это определение попадает разработчик памяти Rambus.

С момента основания в 1990 году Rambus занималась лицензированием своих технологий сторонним компаниям. К примеру, ее контроллеры и микросхемы памяти можно найти в приставках Nintendo 64 и PlayStation 2. Звездный час Rambus настал в 1996 году, когда Intel заключила с ней соглашение на использование в своих продуктах памяти RDRAM и разъемов RIMM.

Сначала все шло по плану. Intel получила в свое распоряжение продвинутую технологию, а Rambus довольствовалась партнерством с одним из крупнейших игроков IT-индустрии. К сожалению, высокая цена модулей RDRAM и чипсетов Intel поставили крест на популярности платформы. Ведущие производители материнских плат использовали чипсеты VIA и платы с разъемами под обычную SDRAM.

Rambus поняла, что на этом этапе она проиграла рынок памяти, и начала свои затяжные игры с патентами. Первым делом ей под руку попалась свежая разработка JEDEC — память стандарта DDR SDRAM. Rambus накинулась на нее, обвинив создателей в нарушении авторских прав. В течение некоторого времени компания получала денежные отчисления, однако уже следующее судебное разбирательство с участием Infineon, Micron и Hynix расставило все по своим местам. Суд признал, что технологические наработки в области DDR SDRAM и SDRAM не принадлежат Rambus.

С тех пор общее количество исков со стороны Rambus к ведущим производителям оперативки превысило все мыслимые пределы. И, похоже, такой образ жизни компанию вполне устраивает.

Эффективная частота работы модулей DDR3-памяти составляет от 1066 до 1600 МГц (также выпускаются и более скоростные модули для энтузиастов, работающие на частоте 1800 МГц и выше). Кроме увеличенной пропускной способности, память DDR3 также характеризуется пониженным энергопотреблением (экономия до 40%) по сравнению с памятью DDR2, что обусловлено пониженным (1,5 В, по сравнению с 1,8 В для DDR2 и 2,5 В для DDR) напряжением питания ячеек памяти. Это позволяет повысить энергоэкономичность и снизить теплообразование. Снижение напряжения питания достигается за счёт использования более тонкого техпроцесса (в начале 90-нм, в дальнейшем 65, 50, 40 нм) при производстве микросхем памяти и применения транзисторов с двойным затвором Dual-gate (что способствует снижению токов утечки).

Другими нововведениями, реализованными в памяти DDR3, являются технология динамического термини­рования сигналов (dynamic On-Die Termination, ODT) и новая технология калиб­ровки сигналов. Технология ODT позволяет гибко оптимизировать значения терминальных сопротивлений в зависимости от условий загрузки памяти

DDR3 4.jpg

Таким образом основными преимуществами по сравнению с DDR2 является:

  • более высокая полоса пропускания (до 2400 МГц)
  • увеличенная эффективность при малом энергопотреблении
  • улучшенная конструкция, способствующая охлаждению

На рис.1 приведена микрофотография кристалла микросхемы памяти DDR3, выполненной по технологии 78 нм на заводе компании Micron, а на рис.2 — ее блок-схема. В табл. 1 приведены характеристики микросхем памяти трех поколений DDR SDRAM.


Рис.1 Микрофотография кристалла микросхемы памяти DDR3, выполненной по технологии 78 нм на заводе компании Micron


Рис.2 Блок-схема микросхемы памяти DDR3 объемом 1 Гбайт разработки компании Micron

Таблица 1. Характеристики микросхем памяти
Характеристика DDR SDRAM DDR2 SDRAM DDR3 SDRAM
Частота, МГц 200,266,333,400 400,533,667,800 800,1066,1333,1600
Напряжение, В 2,5+- 0,2 1,8+-0,1 1,5+-0,075
Интерфейс SSTL_2 SSTL_2 SSTL_15
Синхронизация данных Single ended Single ended/ Differential Differential Default
Длительность импульса, тактов FSB 2, 4, 8 4, 8 4 (Burst Shop), 8 ячейки
Предвыбор 2 4 8
Количество банков 4 4/8 8
Сброс Нет Нет Да
Нагрузка на кристалле Нет Да Да
Калибровка - Off-Chip Driver Calibration Self Calibration with ZQ Pin
Корпус ТTSOP II FBGA FBGA

Содержание

История появления DDR3 на рынке ОЗУ

Модули памяти DDR3 SDRAM появились на рынке в начале третьего квартала 2007 г. одновременно с серийными платами на НМС Intel P35 Express — первыми наборами системной логики, совместимыми с модулями памяти нового поколения. Пропускная способность подсистемы памяти для самых распространенных на тот момент модулей ОЗУ, удовлетворяющих спецификации PC2-6400, составляла 6,4 Гбайт/с. Для DDR3-памяти PC3-8500 эта характеристика была несколько выше — 8,5 Гбайт/с. Применительно к двухканальному режиму работы теоретическая пиковая пропускная способность возросла с 12,8 до 17,1 Гбайт/с для ОЗУ DDR2 и DDR3 соответственно.

Латентность первых DDR3-модулей не позволяла обеспечить преимущество более скоростного ОЗУ над доминирующими на рынке модулями DDR2 SDRAM, массовый выпуск которых с лихвой перекрывал все запросы индустрии. Ситуация усугублялась еще и тем, что цены на новый тип памяти, как это нередко бывает с новыми продуктами, оказались не по карману рядовым пользователям. Не слишком большое преимущество, которое демонстрировали ПК, укомплектованные модулями DDR3-1066 SDRAM, вынудило основных поставщиков компьютерной техники ограничиться малым тиражом DDR3-систем. Иными словами, на первых порах рынок встретил память DDR3 довольно прохладно.

Сложившаяся ситуация сохранялась ровно до тех пор, пока не были анонсированы (а затем и доступны для заказа) DDR3-модули, устойчиво работающие на частоте 1333 МГц и 1666 МГц. Осенью 2007 г. появились первые системные платы на НМС Intel X38 Express. Новый контроллер памяти (в терминах Intel концентратор Memory Controller Hub, микросхема Intel 82X38) обеспечивал взаимодействие платформы с модулями ОЗУ DDR2 и DDR3 SDRAM, оснащенными функцией контроля четности, гарантируя пиковую пропускную способность в двухканальном режиме 21,2 Гбайт/с. Постепенно снижалась до приемлемых значений латентность, однако цена 1 Мбайт памяти еще долго оставалась довольно высокой.

Перелом наступил весной 2008, когда в рамках выставки CeBIT’2008 был официально анонсирован набор системной логики Intel X48 Express. Среди его особенностей были фирменные технологии Intel Fast Memory Access и Intel Flex Memory. Первая увеличивала производительность системы за счет возросшей пропускной способности и сокращения временных задержек на основных операциях доступа к памяти благодаря усовершенствованной архитектуре шинных магистралей контроллера Intel 82X48 MCH. Вторая упрощала модернизацию подсистемы памяти, допуская установку в систему DRAM-модулей различного объема. Разумеется, набор обеспечивал возможность организации двухканального режима работы памяти (пиковая пропускная способность 25,6 Гбайт/c для модулей DDR3-1600 SDRAM) и заполнение до 8 Гбайт адресного пространства ОЗУ, что обуславливало быстрый отклик системы, столь необходимый для 64-разрядных вычислений.

Основные отличия DDR3 SDRAM от DDR2 SDRAM

8n-Prefetch

На рис.3 показаны частотные принципы работы микросхем SDRAM различных поколений.

Приветствую. Понятие энергозависимой памяти знакомо тем, кто так или иначе сталкивался с компьютерным "железом". Для "молодых" эти планки ОЗУ означают не больше чем комплектующая, работающая на конкретной частоте и с конкретным объёмом памяти, а для "олдскулов" это цепь эволюции. Те кто начинал с 8 мегабайт(Simm) знают и ценят каждый гигабайт подаренный наукой нынешним компьютерщикам. Предлагаю окунуться в прошлое и пройти вместе, по шагам эволюции оперативной памяти.

Начну с той которая мало знакома: SIPP.

Признайтесь, что даже те кто помнил память SIMM, вря тли слышали о памяти "Single In-line Pin Package". Печатная плата с однорядными контактами(30 штук). Использовались 80-90-е годы с "80286" (шестнадцати битном микропроцессоре Intel).

Эти платы гнулись, а в отдельных случаях и ломались , в момент установки в материнскую плату поэтому компьютерщики были счастливы, без меры, когда на рынок поступили модули SIMM(установка не вызывала проблем).

С началом 90-х годов появились не только видеомагнитофоны и жвачки "Турбо", но и новый тип ОЗУ: SIMM(односторонний).

Честно говоря SIMM стали появляться еще во времена популярности SIPP, но обширное применение получили в 90-е, хоть и запатентованы еще в 1983 году. Первый выпуск сделан из керамики, со штырьками и не фиксировались на плате, но позже это доработали и появились ZIF-слоты и защёлки.

Объём памяти не превышал 16 мегабайт, однако честно скажу такой плашки было не найти, а если и по знакомству найдется, то стоимость слишком запредельная. Минимальные составляли 64 Кбайт, но такие никто не использовал по этому в стандартных домашних ПК стояли банальные планки на 8 мегабайт. Этого хватало поиграть в "ДУМ 2" и погонять в "Квагу". С этими играми вспомнился момент из прошлого, дома стоял компьютер с 8 мб ОЗУ, с игрой "ДУМ 2", личная жизнь и подростковые гормоны "били ключом", поэтому с первой девушкой был уговор, что за каждый уровень игры ДУМ 2, буду выполнять одно желание, девушка прошла игру на 100%, разумеется и желания выполнены на 100%, так автор канала "Бабушкам PRO компьютер" познал Дзен и понял, что девушки еще "порченее" и развратнее чем юноши . Вернёмся к нашей эволюции, SIMM устанавливались в IBM PC Intel 286, 386, 486. Даже в Пентиумы 90 ставили этот тип памяти. Впрочем, далеко во времени заглядывать незачем, SIMM используют и в 2021 году, но уже не в стационарных ПК, а в контроллерах. Слабая производительность памяти толкала научный прогресс в объятья DIMM(микросхемы на обеих сторонах).

Этот шаг эволюции превратил ОЗУ в планку с двухсторонними контактами, работающими независимо. Кто не понял, то в SIMM такие контакты замыкались между собой и передавали одинаковые сигналы. Так же новый тип памяти научился самодиагностике и исправлению ошибок в линиях передач. Работала память на напряжении 3.3 В. Первые модели устанавливали в сервера и рабочие станции, только потом этот тип поступил на потребительский рынок где и вытеснил, старый тип, SIMM. Появились новые форм-факторы SO-DIMM, которые ставили на портативные ПК(нетбуки, ультрабуки, ноутбуки и т.д). Спецификация памяти такова: DDR200 с частотой 100 МГц, DDR266 на частоте 133 МГц, DDR333 на 166 МГц и DDR400 на частоте 200 МГц. Думаю "молодые сборщики" оценят вклад научного прогресса с момента выхода DDR5, на фоне DDR.

Итак, в 2004 году, в отставку отправляется Михаил Касьянов, а пользователи ПК получают подарок, в виде DDR2 которая задержится на рынке семь лет.

Этот тип с повышенной частотой шины и понеженным напряжением в 1,8 В. Типы DDR2 и DDR несовместимы.

В конце 2008 года ситуация на рынке оперативной памяти кардинально поменялась. Во-первых, это выражается в серьезном падении цен на модули памяти стандарта DDR3. Во-вторых, в широком ассортименте появились модули памяти DDR3 с номинальной частотой 1600 МГц. Однако воспользоваться преимуществами такой памяти сможет лишь небольшая часть покупателей. В частности, если начинающий пользователь купит комплект типа DDR3-1600, то вряд ли получит выигрыш от такой скоростной оперативной памяти. И вот почему. Как правило, материнские платы устанавливают режим работы таких модулей как DDR3-1333 и, в результате, производительность подсистемы памяти в большинстве приложений будет на уровне системы с памятью DDR2-800 или DDR2-1066. Причем по цене память стандарта DDR2 заметно дешевле. Конечно, можно зайти в BIOS и принудительно установить нужную частоту. Но пользователя с таким навыком уже трудно назвать начинающим. Если человек разбирается в настройках материнской платы, то он сможет понизить множитель процессора и повысить частоту FSB до 400 МГц (речь идет о платформе Intel). В итоге процессор будет работать приблизительно на штатной частоте, но общая производительность системы (FSB 1600 МГц QPB, память DDR3-1600) будет заметно выше. Начинающему пользователю такая конфигурация системы недоступна, поскольку в магазинах отсутствуют широко разрекламированные процессоры Intel с штатной частотой FSB равной 400 МГц (1600 МГц QPB).

Вторая категория пользователей памяти DDR3-1600 - это оверклокеры, которые разгоняют процессоры до частот FSB более 500 МГц. Сейчас уже не проблема найти оперативную память DDR2-1000 МГц, которая необходима для такой конфигурации. Но при серьезном разгоне (до FSB

550-600 МГц) требования к характеристикам памяти DDR2 возрастают настолько, что гораздо выгоднее использовать DDR3. Да, она несколько дороже, но зато не имеет ограничений в нужном частотном диапазоне. Например, в синхронном режиме память DDR3-1333 позволяет установить шину FSB=667 МГц, а память DDR3-1600 - уже FSB, равную 800 МГц!

И, наконец, третьей категорией пользователей памяти DDR3 являются профессионалы, которые работают со специфическим программным обеспечением. Если скорость работы такого ПО имеет прямую зависимость от пропускной способности памяти, и DDR3 с частотами 1333 МГц или 1600 МГц дает реальный выигрыш в скорости, то такие пользователи переходят на DDR3-1600 практически моментально, как только она становится доступной.

В сегодняшнем обзоре мы протестируем все комплекты памяти DDR3, которые есть в наличии в нашей лаборатории. И начнем с модулей A-Data AD31600X001GU.

A-Data AD31600X001GU


A-Data DDR3-1600 упаковка

Упаковка модулей самая красивая и солидная из всех, с которыми мы встречались.

A-Data DDR3-1600 упаковка 2

Внешний вид самих модулей под стать коробке:


A-Data DDR3-1600 модули

Наклейка на упаковке и на модулях содержит информацию о штатной частоте, диапазоне рабочего напряжения и таймингах.


A-Data DDR3-1600 наклейка 1

A-Data DDR3-1600 наклейка 2

Переходим к тестированию и смотрим на информацию SPD:


A-Data DDR3-1600 SPD

Итак, SPD сообщает, что для штатного напряжения 1,5 В максимальная (стабильная) частота модуля равна DDR3-1333 МГц. И действительно, попытки запустить данные модули на частоте DDR3-1600 при Vmem=1,5 В успехом не увенчались. Следовательно, пользователю необходимо установить рекомендуемый диапазон напряжения памяти (фактически, это санкционированный производителем разгон). При напряжении Vmem = 1,75 В данная память A-Data заработала на частоте DDR3-1600, причем с вполне приличными таймингами:


A-Data DDR3-1600 частота 1600

Более того, мы смогли понизить тайминги до значений 7-7-7-20, без какого-либо ущерба для стабильности системы.


A-Data DDR3-1600 частота 1600 низкие тайминги

Что касается разгонного потенциала модулей A-Data AD31600X001GU, то он относительно невелик: максимальная частота равна DDR3-1800 МГц при напряжении 1,85 В.


A-Data DDR3-1600 частота 1800

Два модуля памяти Samsung

Рассмотрим следующую пару модулей DDR3, на этот раз - производства компании Samsung.


Samsung DDR3

Впрочем, в нашем тестировании они выступают вне зачета, поскольку являются непарными (один модуль - 1 Гб, другой - 2 Гб), тогда как остальные комплекты парные, и работали в двухканальном режиме.

На обеих планках установлены одинаковые чипы:


Samsung DDR3 чип

Первоначальную информацию о модулях можно узнать из наклеек:


Samsung DDR3 наклейка 1

Samsung DDR3 наклейка 2

Итак, наклейки гласят, что память соответствует стандарту PC3-8500, иными словами, штатная частота равна DDR3-1066 МГц.

Кстати, приведем расшифровку индексов DDR3:

Индекс Частота (DDR3), МГц
PC3-8500 1066
PC3-10664 1333
PC3-12800 1600
PC3-14400 1800
PC3-16000 2000


Samsung DDR3 SPD

Что касается разгона, то при штатном напряжении модуль памяти осилил частоту DDR3-1600 МГц. Впрочем, это стало возможным при значительном увеличении таймингов.


Samsung DDR3 частота 1600

Затем мы протестировали двухгигабайтный модуль Samsung, характеристики которого оказались полностью идентичными.


Samsung DDR3 SPD 1

Samsung DDR3 частота 1600 1

И, наконец, мы протестировали систему с двумя "разнокалиберными" модулями Samsung, и не обнаружили никакого ухудшения результатов. В частности, при повышении напряжения Vmem до 1,8 В память заработала на частоте DDR2-1800:


Samsung DDR3 частота 1800


Samsung DDR3 частота 1600 низкие тайминги

Qimonda PC3-8500

Теперь переходим к модулям памяти Qimonda PC3-8500, которые появились в нашем тестлабе практически сразу после появления памяти стандарта DDR3.


Qimonda PC3-8500

Объем каждого модуля равен одному гигабайту, причем чипы памяти собственного производства Qimonda:


Qimonda PC3-8500 чип

Наклейка на модуле:


Qimonda PC3-8500 наклейка


Qimonda PC3-8500 SPD

Как вы видите, заявленные частоты и тайминги полностью соответствуют параметрам модулей Samsung. Однако разгонный потенциал модулей Qimonda оказался несколько иным. В частности, при штатном напряжении (Vmem=1,5 В) максимальная стабильная частота равна DDR3-1333 МГц (с небольшим запасом).


Qimonda PC3-8500 частота 1333

Далее, если пользователь не боится повысить напряжение Vmem до значения 1,8 В, то он может увеличить производительность подсистемы памяти путем увеличения частоты до DDR3-1400 МГц:


Qimonda PC3-8500 частота 1400


Qimonda PC3-8500 частота 1333 низкие тайминги

В данном случае, наиболее эффективным направлением является снижение таймингов, поскольку частотный запас у модулей Qimonda невелик.

Итак, сведем все результаты в одну таблицу и подведем итоги:

Конфигурация тестового стенда:

Выводы

Подводя итоги, отметим следующее. За год с момента появления в продаже памяти стандарта DDR3 ее технические характеристики возросли, а цена значительно упала. В частности, розничная цена гигабайтного модуля Samsung PC3-8500 находится в районе $45, а стоимость модуля Samsung PC3-10600 того же объема - в районе $55. И, как нам кажется, все бюджетные модули Samsung производятся из одних и тех же чипов (по аналогии с чипами памяти стандарта DDR2). Поэтому, если предполагаемые рабочие частоты памяти не будут превышать DDR3-1600 МГц, то можно взять более дешевые модули со штатными частотами DDR3-1066 или DDR3-1333 МГц. Благодаря отлаженному техпроцессу, разгонный потенциал таких модулей вполне достаточен для достижения требуемой частоты.

Если же у покупателя нет финансовых ограничений, и ему требуются модули с гарантированной рабочей частотой DDR3-1600 МГц, то он имеет широкий выбор. Одним из вариантов является комплект гигабайтных модулей A-Data AD31600X001GU, который стоит приблизительно в два раза дороже (

$200). При этом пользователю все равно придется совершать операции по разгону, а именно - повышать напряжение на модулях памяти.

Также нужно иметь в виду, что несмотря на гарантии производителя памяти и гарантии производителя материнской платы по работоспособности системы на частоте 1600 МГц, некоторые комбинации могут не достигать данную частоту. В частности, в нашей тестовой лаборатории есть две-три материнские платы, на которых модули A-Data AD31600X001GU попросту не работают. Поэтому важно запомнить, что каждая комбинация (ревизия материнской платы + версия BIOS + степпинг процессора + модули памяти) имеет свой собственный потенциал разгона, который однозначно не определяется и никем не гарантируется.

Читайте также: