Виды компьютеров по размерам и функциональным возможностям

Обновлено: 02.07.2024

Вычислительная техника - одна из наиболее быстро и динамично развивающихся областей науки и техники. Ее динамика, с одной стороны, связана с широким проникновением вычислительной техники во все сферы человеческой деятельности, с другой стороны - с бурным ростом технических характеристик вычислительных машин и систем. С начала шестидесятых годов прошлого века период удвоения основных характеристик компьютеров не превышает двух лет. Такой стремительный рост приводит к неоднозначности используемой терминологии, к субъективной оценке сфер применения конкретных ЭВМ.

Современная вычислительная машина представляет собой сложную аппаратно-программную систему, состоящую из большого числа взаимосвязанных элементов. Каждый из этих элементов имеет свои характеристики, совокупность которых определяет технико-эксплуатационные характеристики всей вычислительной машины.

К технико-эксплуатационным характеристикам ЭВМ, определяющим их функциональные возможности, относят:

  • быстродействие;
  • разрядность;
  • формы представления чисел;
  • номенклатура и характеристики запоминающих устройств;
  • номенклатура и характеристики устройств ввода-вывода информации;
  • типы и характеристики внутренних и внешних интерфейсов;
  • наличие многопользовательских режимов и поддержка многопро-граммности;
  • типы и характеристики, используемых ОС;
  • система команд и их структура;
  • функциональные возможности программного обеспечения и его наличие;
  • программная совместимость с другими типами ЭВМ;
  • срок эксплуатации;
  • условия эксплуатации;
  • характеристики надежности;
  • состав и объем профилактических работ;
  • стоимостные характеристики;
  • совокупная стоимость владения.

Несмотря на сравнительно короткую историю современной вычислительной техники, до настоящего времени было предложено достаточно много подходов к систематизации всего многообразия средств вычислительной техники [40]. Работы в этом направлении продолжаются.

Любая классификация относительна и отражает только ограниченное многообразие свойств классифицируемых объектов или процессов. Но, как показал опыт , нахождение удачной классификации может предопределить успех развития целых научных и технических направлений. Характерный пример - периодическая таблица элементов Менделеева.

При разработке любой классификации важно понимать, для кого она создается и на решение каких задач направлена.

Используемый классификационный признак должен быть измеряемым и позволять относить классифицируемого объекта к единственному классу.

На практике эти требования часто удовлетворяются с допущениями. Примером служат большинство применяемых классификаций ЭВМ и вычислительных систем.

Для классификации компьютеров использовались следующие классификационные признаки:

  • принцип действия;
  • используемая элементная база;
  • назначение;
  • размеры и вычислительная мощность;
  • особенности архитектуры.
  1. По принципу действия вычислительные машины делятся на цифровые, аналоговые и гибридные.

В основу классификации по этому признаку положена форма представления информации, с которой работают вычислительные машины.

По этому признаку вычислительные машины можно разделить на три группы: специализированные, универсальные и проблемно-ориентированные.

Универсальные ЭВМ позволяют решать задачи различных классов: математических, инженерно-технических, экономических, информационных и др.

Проблемно-ориентированные ЭВМ предназначены для решения круга задач более узкого: управление технологическими процессами; выполнение расчетов по сравнительно несложным алгоритмам; регистрация, накопление и обработка не очень больших объемов небольших данных. Они имеют более скромные по сравнению с универсальными ЭВМ программные и аппаратные ресурсы. Примером проблемно-ориентированным вычислительных систем могут служить и различные управляющие вычислительные комплексы. Специализированные вычислительные машины предназначены для решения узкого круга задач.

Характеристики и архитектура машин этого класса определяются спецификой тех задач, для решения которых они используются. Это обеспечивает их более высокую эффективность в соответствующем применении по сравнению с универсальными ЭВМ. К специализированным ЭВМ относятся контроллеры, управляющие несложными техническими устройствами и процессами и микропроцессоры специального назначения.

В соответствии с этой классификации вычислительные машины делятся на суперЭВМ, большие, малые, сверхмалые. Эта классификация потеряла свою актуальность. Можно говорить только о существовании класса суперЭВМ (суперкомпьютеров).

В качестве классификационных признаков используются: характеристики системы команд компьютера (количество команд, структура адресной части команд), разрядность машинных слов, организация обработки данных и команд процессором.

Классификация Флинна

Классификация М. Флинна [38, 303] является одной из самых ранних и наиболее известных классификацией архитектур вычислительных систем. В основу классификации положено понятие потока. Поток - это последовательность, под которой понимается последовательность данных или команд, обрабатываемых процессором. Рассматривая число потоков данных и потоков команд, М. Флинн предложил рассматривать следующие классы архитектур: MIMD, SIMD, SISD , MISD .

Single Instruction Single Data [stream] - "один поток команд, один поток данных", архитектура SISD ( ОКОД ). Описание архитектуры компьютерной системы, подразумевающее исполнение одним процессором одного потока команд, который обрабатывает данные, хранящиеся в одной памяти (рис. 2.1а.).

Multiple Data stream processing - "один поток команд, много потоков данных", архитектура SIMD ( ОКМД ). Описание архитектуры параллельной компьютерной системы, подразумевающее исполнение одной текущей команды несколькими процессорами. Эта команда выбирается из памяти центральным контроллером SIMD-системы, но работает она над разными элементами данных (чаще всего - элементами массива). Для этого каждый процессор имеет ассоциированную с ним память, где хранятся массивы однородных данных. В эту категорию попадают, в частности, векторные процессоры . (рис. 2.1б.).

Multiple Instruction Single Data [stream] - "много потоков команд, один поток данных", архитектура MISD (МКОД). Одна из четырёх возможных архитектур параллельного компьютера в классификации М. Флинна. В этой архитектуре данные подаются на набор процессоров, каждый из которых исполняет свою программу их обработки. Подобная архитектура ещё никогда не была реализована (рис. 2.1в.).

Multiple Instructions - Multiple Data [stream] - "много потоков команд, много потоков данных", архитектура MIMD (МКМД). Одна из четырёх возможных архитектур параллельного компьютера. В этой архитектуре набор процессоров независимо выполняет различные наборы команд, обрабатывающих различные наборы данных. Системы в архитектуре MIMD делятся на системы с распределённой памятью (слабо связанные системы), к которым относятся кластеры, и системы с совместно используемой памятью ( shared-memory multiprocessors ). К последним относятся симметричные мультипроцессорные системы.

В класс SISD входят однопроцессорные последовательные компьютеры. Векторно-конвейерные компьютеры также могут быть отнесены к этому классу, если рассматривать вектор как одно неделимое данное для машинной команды. Это отмечают критики этой классификации.

К классу SIMD относятся классические процессорные матрицы. В них множество процессорных элементов контролируется общим управляющим устройством. Все процессорные элементы одновременно получают от устройства одинаковые команды и обрабатывают свои локальные данные. Если рассматривать каждый элемент вектора как отдельный элемент потока данных, то к этому классу можно отнести и векторно-конвейерные компьютеры .

Класс MIMD включает в себя все многообразие многопроцессорных систем. Если рассматривать конвейерную обработку как выполнение множества команд не над одиночным векторным потоком данных, а над

множественным скалярным потоком, то в этот класс могут быть включены векторно-конвейерные компьютеры .

Классификация Флинна широко используется и сегодня для начального описания вычислительных систем.

У этой классификации есть очевидные недостатки:

  • в нее четко не вписываются отдельные нашедшие применение архитектуры. Например, векторно-конвейерные компьютеры и компьютеры, управляемые потоками данных;
  • класс MIMD очень перегружен: в него вошли все многопроцессорные системы. При этом они существенно отличаются по ряду признаков (числом процессоров, природе и топологией и видами связей между ними, способами организации памяти и технологиями программирования).

Несколько классификаций, предложенных позже, расширяют классификацию М. Флинна. Примером такой классификации может служить классификация Ванга и Бригса.

Классификация Ванга и Бриггса

Эта классификация по сути, является дополнением к классификации Флинна. В ней сохранены четыре базовых класса ( SISD , SIMD, MISD , MIMD), К. Ванг и Ф. Бриггс [42, 303] внесли следующие изменения.

В классе MIMD выделяются:

  • вычислительные системы со слабо связанными процессорами,
  • вычислительные системы с сильной связанными процессорами.

К первой группе относятся системы с распределенной памятью , ко второй - системы с общей памятью.

Класс SISD делится на два подкласса:

  • архитектуры, имеющие одно функциональное устройство;
  • архитектуры, в состав которых входит несколько функциональных устройств.

Класс SIMD с учетом способа обработки данных делится на два подкласса:

  • архитектуры с разрядно-последовательной обработкой данных;
  • архитектуры с пословно-последовательной обработкой данных.

Классификация Фенга

Т. Фенг предложил в основу классификации вычислительных систем положить две простые характеристики [42, 303]:

  • число бит в машинном слове, которые обрабатываются параллель но при выполнении машинных команд;
  • числу слов , одновременно обрабатываемых вычислительной системой. Используя эту терминологию работу любого компьютера можно интерпретировать как параллельную обработку n битовых слоев. В каждом слое независимо преобразуются бит. При такой интерпретации, вторую характеристику называют шириной битового слоя.

Иcпользуя предельные верхние значения числа бит n и числа слов m, вычислительную систему можно охарактеризовать двумя числами ( ). Величина определяет интегральную характеристику потенциала параллельности P архитектуры. Эта характеристика называется максимальной степенью параллелизма вычислительной системы: . По сути, это значение характеризует пиковую производительность. Рассматривая в качестве классификационного признака вычислительных систем способ обработки информации, заложенный в их архитектуру, введенные понятия позволяют разделить все вычислительные системы на следующие классы.

m

Эта классификация имеет ограничения. Они связаны со способом вычисления ширины битового слоя .

В соответствии с этой классификацией отсутствуют различия между многопроцессорными системами, векторно-конвейерными компьютерами и процессорными матрицами.

Данная классификация не позволяет понять специфику той или иной высокопроизводительной вычислительной системы.

Достоинством классификации Фенга является введение единой числовой характеристики для всех типов вычислительных систем, которая позволяет сравнивать их между собой.

Из интересных видов классификации можно отметить подход Базу, который строит классификацию по последовательности решений, принимаемых на этапе проектирования архитектуры. Согласно А. Базу (A. Basu), любую параллельную вычислительную систему можно однозначно описать последовательностью решений, принятых на этапе ее проектирования, а сам процесс проектирования представить в виде дерева [42].

В корне "дерева Базу" размещается вычислительная система, последующие ярусы дерева служат для описания иерархии принятия решений

при проектировании вычислительной системы. В итоге формируется описание проектируемой системы, представляемое значениями классификационных признаков в системе Базу.

По размерам и функциональным возможностям ЭВМ можно разделить на:

· сверхмалые (мини и микроЭВМ).

Классификация по назначению — один из наиболее ранних методов классификации. Он связан с тем, как компьютер применяется. По этому принципу различают сверхбольшие и большие ЭВМ (электронно-вычислительные машины), мини-ЭВМ, микро-ЭВМ, и персональные компьютеры, которые, в свою очередь, подразделяют на массовые, деловые, портативные, развлекательные и рабочие станции.


Большие ЭВМ – это очень мощные компьютеры. Их применяют для обслуживания очень крупных организаций и даже целых отраслей народного хозяйства. За рубежом компьютеры этого класса называют мэйнфреймами (mainfram). В СССР за ними закрепился термин большие ЭВМ. Штат обслуживания большой ЭВМ включает много десятков человек. На базе таких суперкомпьютеров создают вычислительные центры, включающие в себя несколько отделов или групп.

Первая большая ЭВМ ЭНИАК (Electronic Numerical Integrator and Computer) была создана в 1946 г. (в 1996 г. отмечалось 50-летие создания первой ЭВМ). Эта машина имела массу более 50 т, быстродействие несколько сотен операций в секунду, оперативную память емкостью 20 чисел; занимала огромный зал площадью около 100кв.м.

Производительность больших ЭВМ оказалась недостаточной для ряда задач: прогнозирования метеообстановки, управления сложными оборонными комплексами, моделирования экологических систем и др. Это явилось предпосылкой для разработки и создания суперЭВМ, интенсивно развивающихся и в настоящее время.
К суперЭВМ относятся мощные многопроцессорные вычислительные машины с быстродействием сотни миллиардов операций в секунду.

Суперкомпьютер Titan – лидер среди самых мощных компьютеров планеты 2014 г. Эта мощная и дорогостоящая счётная машинка была создана при участии компаний Cray и Nvidia. Суперкомпьютер находится в Национальной лаборатории Оук-Ридж (Теннеси). Известно, что за одну секунду этот суперкомпьютер может выполнить до 17.58 квадриллиона операций с плавающей точкой. Его производительность ориентировочно эквивалентна 17.59 петафлопсам. Этот суперкомпьютер используется для проектирования энергоэффективных двигателей, моделирования последствий климатических изменений.


Основные направления эффективного применения мэйнфреймов — это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами. Последнее направление — использование мэйнфреймов в качестве больших серверов вычислительных сетей часто отмечается специалистами среди наиболее актуальных.

Несмотря на широкое распространение персональных компьютеров, значение больших ЭВМ не снижается. Из-за высокой стоимости их обслуживания при работе больших ЭВМ принято планировать и учитывать каждую минуту. Для экономии времени работы больших ЭВМ малопроизводительные операции ввода, вывода и первичной подготовки данных выполняют с помощью персональной техники. Подготовленные данные передают на большую ЭВМ для выполнения наиболее ресурсоемких операций.

Большие ЭВМ отличаются высокой стоимостью оборудования и обслуживания, поэтому работа таких суперкомпьютеров организована по непрерывному циклу. Наиболее трудоемкие и продолжительные вычисления планируют на ночные часы, когда количество обслуживающего персонала минимально. В дневное время ЭВМ исполняет менее трудоемкие, но более многочисленные задачи. При этом для повышения эффективности компьютер работает одновременно с несколькими задачами и, соответственно, с несколькими пользователями. Он поочередно переключается с одной задачи на другую и делает это настолько быстро и часто, что у каждого пользователя создается впечатление, будто компьютер работает только с ним. Такое распределение ресурсов вычислительной системы носит название принципа разделения времени.

Структура современного вычислительного центра на базе большой ЭВМ

Появление в 70-х гг. малых ЭВМ обусловлено, с одной стороны, прогрессом в области электронной элементной базы, а с другой — избыточностью ресурсов больших ЭВМ ряда приложений. Малые ЭВМ используются чаще всего для управления технологическими процессами. Они более компактны и значительно дешевле больших ЭВМ.

Мини-ЭВМ – от больших ЭВМ компьютеры этой группы отличаются уменьшенными размерами и, соответственно, меньшей производительностью и стоимостью. Такие компьютеры используются крупными предприятиями, научными учреждениями, банками и некоторыми высшими учебными заведениями, сочетающими учебную деятельность с научной.

На промышленных предприятиях мини-ЭВМ управляют производственными процессами, но могут сочетать управление производством с другими задачами. Например, они могут помогать экономистам в осуществлении контроля себестоимости продукции, нормировщикам в оптимизации времени технологических операций, конструкторам в автоматизации проектирования станочных приспособлений, бухгалтерии в осуществлении учета первичных документов и подготовки регулярных отчетов для налоговых органов. Для организации работы с мини-ЭВМ тоже требуется специальный вычислительный центр, хотя и не такой многочисленный, как для больших ЭВМ.

Изобретение в 1969 г. микропроцессора (МП) привело к появлению в 70-х гг. еще одного класса ЭВМ — микро ЭВМ. Именно наличие МП служило первоначально определяющим признаком микро ЭВМ. Сейчас микропроцессоры используются во всех без исключения классах ЭВМ.

Микро-ЭВМ – компьютеры данного класса доступны многим предприятиям. Организации, использующие микро-ЭВМ, обычно не создают вычислительные центры. Для обслуживания такого компьютера им достаточно небольшой вычислительной лаборатории в составе нескольких-человек. В число сотрудников вычислительной лаборатории обязательно входят программисты, хотя напрямую разработкой программ они не занимаются. Необходимые системные программы обычно покупают вместе с компьютером, а разработку нужных прикладных программ заказывают более крупным вычислительным центрам или специализированным организациям.

Несмотря на относительно невысокую производительность по сравнению с большими ЭВМ, микро-ЭВМ находят применение и в крупных вычислительных центрах. Там им поручают вспомогательные операции, для которых нет смысла использовать дорогие суперкомпьютеры.

· универсальные (многопользовательские, однопользовательские (персональные))

· специализированные (многопользовательские (серверы), однопользовательские (рабочие станции))

Многопользовательские микроЭВМ – это мощные микроЭВМ, оборудованные несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать на них сразу нескольким пользователям.
Рабочие станции (work station) представляют собой однопользовательские мощные микроЭВМ, специализированные для выполнения определенного вида работ (графических, инженерных, издательских и др.).
Серверы (server) – многопользовательские мощные микроЭВМ в вычислительных сетях, выделенные для обработки запросов от всех станций сети.

Персональные компьютеры (ПК) – однопользовательские микроЭВМ, удовлетворяющие требованиям общедоступности и универсальности применения.

Персональные компьютеры (ПК) – эта категория компьютеров получила особо бурное развитие в течение последних двадцати лет. Из названия видно, что такой компьютер предназначен для обслуживания одного рабочего места. Как правило, с персональным компьютером работает один человек. Несмотря на свои небольшие размеры и относительно невысокую стоимость, современные персональные компьютеры обладают немалой производительностью. Многие современные персональные модели превосходят большие ЭВМ 70-х годов, мини-ЭВМ 80-х годов и микро-ЭВМ первой половины 90-х годов. Персональный компьютер (Personal Computer, РС) вполне способен удовлетворить большинство потребностей малых предприятий и отдельных лиц.

Персональный компьютер для удовлетворения требованиям общедоступности и универсальности должен иметь следующие характеристики:

· малую стоимость, находящуюся в пределах доступности для индивидуального покупателя;

· автономность эксплуатации без специальных требований к условиям окружающей среды;

· гибкость архитектуры, обеспечивающую ее адаптивность к разнообразным применениям в сфере управления, науки, образования, в быту;

· «дружественность» операционной системы и прочего программного обеспечения, обусловливающую возможность работы с ней пользователя без специальной профессиональной подготовки;

· высокую надежность работы (более 5000 ч наработки на отказ).

Особенно широкую популярность персональные компьютеры получили после 1995 г. в связи с бурным развитием Интернета. Персонального компьютера вполне достаточно для использования всемирной сети в качестве источника научной, справочной, учебной, культурной и развлекательной информации. Персональные компьютеры являются также удобным средством автоматизации учебного процесса по любым дисциплинам, средством организации дистанционного (заочного) обучения и средством организации досуга. Они вносят большой вклад не только в производственные, но и в социальные отношения. Их нередко используют для организации надомной трудовой деятельности, что особенно важно в условиях ограниченной трудозанятости.

До последнего времени модели персональных компьютеров условно рассматривали в двух категориях: бытовые ПК и профессиональные ПК.

Бытовые модели, как правило, имели меньшую производительность, но в них были приняты особые меры для работы с цветной графикой и звуком, чего не требовалось для профессиональных моделей. В связи с достигнутым в последние годы резким удешевлением средств вычислительной техники границы между профессиональными и бытовыми моделями в значительной степени стерлись, и сегодня в качестве бытовых нередко используют высокопроизводительные профессиональные модели, а профессиональные модели, в свою очередь, комплектуют устройствами для воспроизведения мультимедийной информации, что ранее было характерно для бытовых устройств. Под термином мультимедиа подразумевается сочетание нескольких видов данных в одном документе (текстовые, графические, музыкальные и видеоданные) или совокупность устройств для воспроизведения этого комплекса данных.

Начиная с 1999 г. в области персональных компьютеров начал действовать международный сертификационный стандарт — спецификация РС99. Он регламентирует принципы классификации персональных компьютеров и оговаривает минимальные и рекомендуемые требования к каждой из категорий. Новый стандарт устанавливает следующие категории персональных компьютеров:

- Сonsumer РС (массовый ПК);

- Оffice РС (деловой ПК);

- Мobilе РС (портативный ПК);

- Workstation РС (рабочая станция);
- Entertaimemt РС (развлекательный ПК).

Согласно спецификации РС99 большинство персональных компьютеров, присутствующих в настоящее время на рынке, попадают в категорию массовых ПК. Для деловых ПК минимизированы требования к средствам воспроизведения графики, а к средствам работы со звуковыми данными требования вообще не предъявляются. Для портативных ПК обязательным является наличие средств для создания соединений удаленного доступа, то есть средств компьютерной связи. В категории рабочих станций повышены требования к устройствам хранения данных, а в категории развлекательных ПК – к средствам воспроизведения графики и звука.

Персональные компьютеры можно также классифицировать по типоразмерам. Так, различают настольные (desktop), портативные (notebook), карманные (palmtop) модели. Совсем недавно появились устройства, сочетающие возможности карманных персональных компьютеров и устройств мобильной связи. По-английски они называются РDА, Personal Digital Assistant. Пользуясь тем, что в русском языке за ними пока не закрепилось какое-либо название, их можно называть мобильными вычислительными устройствами (МВУ).

Настольные модели распространены наиболее широко. Они являются принадлежностью рабочего места. Эти модели отличаются простотой изменения конфигурации за счет несложного подключения дополнительных внешних приборов или установки дополнительных внутренних компонентов. Достаточные размеры корпуса в настольном исполнении позволяют выполнять большинство подобных работ без привлечения специалистов, а это позволяет настраивать компьютерную систему оптимально для решения именно тех задач, для которых она была приобретена.

Карманные модели выполняют функции «интеллектуальных записных книжек». Они позволяют хранить оперативные данные и получать к ним быстрый доступ. Некоторые карманные модели имеют жестко встроенное программное обеспечение, что облегчает непосредственную работу, но снижает гибкость в выборе прикладных программ,

Мобильные вычислительные устройства сочетают в себе функции карманных моделей компьютеров и средств мобильной связи (сотовых телефонов). Их отличительная особенность — возможность мобильной работы с Интернетом. Дополнительно МВУ комплектуют средствами связи по инфракрасному лучу, благодаря которым эти карманные устройства могут обмениваться данными с настольными ПК и друг с другом.

Конечно, вышеприведенная классификация весьма условна, ибо мощная современная ЭВМ, оснащенная проблемно-ориентированным программным и аппаратным обеспечением, может использоваться и как полноправная рабочая станция, и как многопользовательская микроЭВМ, и как хороший сервер, по своим характеристикам почти не уступающий малым ЭВМ.

5. Классификация по уровню специализации.

По уровню специализации компьютеры делят на универсальные и специализированные.

На базе универсальных компьютеров можно собирать вычислительные системы произвольного состава (состав компьютерной системы называется конфигурацией). Так, например, один и тот же персональный компьютер можно использовать для работы с текстами, музыкой, графикой, фото- и видеоматериалами.

Специализированные компьютеры предназначены для решения конкретного круга задач. К таким компьютерам относятся, например, бортовые компьютеры автомобилей, судов, самолетов, космических аппаратов. Компьютеры, интегрированные в бытовую технику, например в стиральные машины, СВЧ-плиты и видеомагнитофоны, тоже относятся к специализированным. Бортовые компьютеры управляют средствами ориентации и навигации, осуществляют контроль состояния бортовых систем, выполняют некоторые функции автоматического управления и связи, а также большинство функций оптимизации параметров работы систем объекта (например, оптимизацию расхода топлива объекта в зависимости от конкретных условий движения). Специализированные мини-ЭВМ, ориентированные на работу с графикой, называют графическими станциями. Их используют при подготовке кино- и видеофильмов, а также рекламной продукции. Специализированные компьютеры, объединяющие компьютеры предприятия в одну сеть, называют файловыми серверами. Компьютеры, обеспечивающие передачу информации между различными участниками всемирной компьютерной сети, называют сетевыми серверами.

Во многих случаях с задачами специализированных компьютерных систем могут справляться и обычные универсальные компьютеры, но считается, что использование специализированных систем все-таки эффективнее. Критерием оценки эффективности выступает отношение производительности оборудования к величине его стоимости.

Вычислительная техника - одна из наиболее быстро и динамично развивающихся областей науки и техники. Ее динамика, с одной стороны, связана с широким проникновением вычислительной техники во все сферы человеческой деятельности, с другой стороны - с бурным ростом технических характеристик вычислительных машин и систем. С начала шестидесятых годов прошлого века период удвоения основных характеристик компьютеров не превышает двух лет. Такой стремительный рост приводит к неоднозначности используемой терминологии, к субъективной оценке сфер применения конкретных ЭВМ.

Современная вычислительная машина представляет собой сложную аппаратно-программную систему, состоящую из большого числа взаимосвязанных элементов. Каждый из этих элементов имеет свои характеристики, совокупность которых определяет технико-эксплуатационные характеристики всей вычислительной машины.

К технико-эксплуатационным характеристикам ЭВМ, определяющим их функциональные возможности, относят:

  • быстродействие;
  • разрядность;
  • формы представления чисел;
  • номенклатура и характеристики запоминающих устройств;
  • номенклатура и характеристики устройств ввода-вывода информации;
  • типы и характеристики внутренних и внешних интерфейсов;
  • наличие многопользовательских режимов и поддержка многопро-граммности;
  • типы и характеристики, используемых ОС;
  • система команд и их структура;
  • функциональные возможности программного обеспечения и его наличие;
  • программная совместимость с другими типами ЭВМ;
  • срок эксплуатации;
  • условия эксплуатации;
  • характеристики надежности;
  • состав и объем профилактических работ;
  • стоимостные характеристики;
  • совокупная стоимость владения.

Несмотря на сравнительно короткую историю современной вычислительной техники, до настоящего времени было предложено достаточно много подходов к систематизации всего многообразия средств вычислительной техники [40]. Работы в этом направлении продолжаются.

Любая классификация относительна и отражает только ограниченное многообразие свойств классифицируемых объектов или процессов. Но, как показал опыт , нахождение удачной классификации может предопределить успех развития целых научных и технических направлений. Характерный пример - периодическая таблица элементов Менделеева.

При разработке любой классификации важно понимать, для кого она создается и на решение каких задач направлена.

Используемый классификационный признак должен быть измеряемым и позволять относить классифицируемого объекта к единственному классу.

На практике эти требования часто удовлетворяются с допущениями. Примером служат большинство применяемых классификаций ЭВМ и вычислительных систем.

Для классификации компьютеров использовались следующие классификационные признаки:

  • принцип действия;
  • используемая элементная база;
  • назначение;
  • размеры и вычислительная мощность;
  • особенности архитектуры.
  1. По принципу действия вычислительные машины делятся на цифровые, аналоговые и гибридные.

В основу классификации по этому признаку положена форма представления информации, с которой работают вычислительные машины.

По этому признаку вычислительные машины можно разделить на три группы: специализированные, универсальные и проблемно-ориентированные.

Универсальные ЭВМ позволяют решать задачи различных классов: математических, инженерно-технических, экономических, информационных и др.

Проблемно-ориентированные ЭВМ предназначены для решения круга задач более узкого: управление технологическими процессами; выполнение расчетов по сравнительно несложным алгоритмам; регистрация, накопление и обработка не очень больших объемов небольших данных. Они имеют более скромные по сравнению с универсальными ЭВМ программные и аппаратные ресурсы. Примером проблемно-ориентированным вычислительных систем могут служить и различные управляющие вычислительные комплексы. Специализированные вычислительные машины предназначены для решения узкого круга задач.

Характеристики и архитектура машин этого класса определяются спецификой тех задач, для решения которых они используются. Это обеспечивает их более высокую эффективность в соответствующем применении по сравнению с универсальными ЭВМ. К специализированным ЭВМ относятся контроллеры, управляющие несложными техническими устройствами и процессами и микропроцессоры специального назначения.

В соответствии с этой классификации вычислительные машины делятся на суперЭВМ, большие, малые, сверхмалые. Эта классификация потеряла свою актуальность. Можно говорить только о существовании класса суперЭВМ (суперкомпьютеров).

В качестве классификационных признаков используются: характеристики системы команд компьютера (количество команд, структура адресной части команд), разрядность машинных слов, организация обработки данных и команд процессором.

Классификация Флинна

Классификация М. Флинна [38, 303] является одной из самых ранних и наиболее известных классификацией архитектур вычислительных систем. В основу классификации положено понятие потока. Поток - это последовательность, под которой понимается последовательность данных или команд, обрабатываемых процессором. Рассматривая число потоков данных и потоков команд, М. Флинн предложил рассматривать следующие классы архитектур: MIMD, SIMD, SISD , MISD .

Single Instruction Single Data [stream] - "один поток команд, один поток данных", архитектура SISD ( ОКОД ). Описание архитектуры компьютерной системы, подразумевающее исполнение одним процессором одного потока команд, который обрабатывает данные, хранящиеся в одной памяти (рис. 2.1а.).

Multiple Data stream processing - "один поток команд, много потоков данных", архитектура SIMD ( ОКМД ). Описание архитектуры параллельной компьютерной системы, подразумевающее исполнение одной текущей команды несколькими процессорами. Эта команда выбирается из памяти центральным контроллером SIMD-системы, но работает она над разными элементами данных (чаще всего - элементами массива). Для этого каждый процессор имеет ассоциированную с ним память, где хранятся массивы однородных данных. В эту категорию попадают, в частности, векторные процессоры . (рис. 2.1б.).

Multiple Instruction Single Data [stream] - "много потоков команд, один поток данных", архитектура MISD (МКОД). Одна из четырёх возможных архитектур параллельного компьютера в классификации М. Флинна. В этой архитектуре данные подаются на набор процессоров, каждый из которых исполняет свою программу их обработки. Подобная архитектура ещё никогда не была реализована (рис. 2.1в.).

Multiple Instructions - Multiple Data [stream] - "много потоков команд, много потоков данных", архитектура MIMD (МКМД). Одна из четырёх возможных архитектур параллельного компьютера. В этой архитектуре набор процессоров независимо выполняет различные наборы команд, обрабатывающих различные наборы данных. Системы в архитектуре MIMD делятся на системы с распределённой памятью (слабо связанные системы), к которым относятся кластеры, и системы с совместно используемой памятью ( shared-memory multiprocessors ). К последним относятся симметричные мультипроцессорные системы.

В класс SISD входят однопроцессорные последовательные компьютеры. Векторно-конвейерные компьютеры также могут быть отнесены к этому классу, если рассматривать вектор как одно неделимое данное для машинной команды. Это отмечают критики этой классификации.

К классу SIMD относятся классические процессорные матрицы. В них множество процессорных элементов контролируется общим управляющим устройством. Все процессорные элементы одновременно получают от устройства одинаковые команды и обрабатывают свои локальные данные. Если рассматривать каждый элемент вектора как отдельный элемент потока данных, то к этому классу можно отнести и векторно-конвейерные компьютеры .

Класс MIMD включает в себя все многообразие многопроцессорных систем. Если рассматривать конвейерную обработку как выполнение множества команд не над одиночным векторным потоком данных, а над

множественным скалярным потоком, то в этот класс могут быть включены векторно-конвейерные компьютеры .

Классификация Флинна широко используется и сегодня для начального описания вычислительных систем.

У этой классификации есть очевидные недостатки:

  • в нее четко не вписываются отдельные нашедшие применение архитектуры. Например, векторно-конвейерные компьютеры и компьютеры, управляемые потоками данных;
  • класс MIMD очень перегружен: в него вошли все многопроцессорные системы. При этом они существенно отличаются по ряду признаков (числом процессоров, природе и топологией и видами связей между ними, способами организации памяти и технологиями программирования).

Несколько классификаций, предложенных позже, расширяют классификацию М. Флинна. Примером такой классификации может служить классификация Ванга и Бригса.

Классификация Ванга и Бриггса

Эта классификация по сути, является дополнением к классификации Флинна. В ней сохранены четыре базовых класса ( SISD , SIMD, MISD , MIMD), К. Ванг и Ф. Бриггс [42, 303] внесли следующие изменения.

В классе MIMD выделяются:

  • вычислительные системы со слабо связанными процессорами,
  • вычислительные системы с сильной связанными процессорами.

К первой группе относятся системы с распределенной памятью , ко второй - системы с общей памятью.

Класс SISD делится на два подкласса:

  • архитектуры, имеющие одно функциональное устройство;
  • архитектуры, в состав которых входит несколько функциональных устройств.

Класс SIMD с учетом способа обработки данных делится на два подкласса:

  • архитектуры с разрядно-последовательной обработкой данных;
  • архитектуры с пословно-последовательной обработкой данных.

Классификация Фенга

Т. Фенг предложил в основу классификации вычислительных систем положить две простые характеристики [42, 303]:

  • число бит в машинном слове, которые обрабатываются параллель но при выполнении машинных команд;
  • числу слов , одновременно обрабатываемых вычислительной системой. Используя эту терминологию работу любого компьютера можно интерпретировать как параллельную обработку n битовых слоев. В каждом слое независимо преобразуются бит. При такой интерпретации, вторую характеристику называют шириной битового слоя.

Иcпользуя предельные верхние значения числа бит n и числа слов m, вычислительную систему можно охарактеризовать двумя числами ( ). Величина определяет интегральную характеристику потенциала параллельности P архитектуры. Эта характеристика называется максимальной степенью параллелизма вычислительной системы: . По сути, это значение характеризует пиковую производительность. Рассматривая в качестве классификационного признака вычислительных систем способ обработки информации, заложенный в их архитектуру, введенные понятия позволяют разделить все вычислительные системы на следующие классы.

m

Эта классификация имеет ограничения. Они связаны со способом вычисления ширины битового слоя .

В соответствии с этой классификацией отсутствуют различия между многопроцессорными системами, векторно-конвейерными компьютерами и процессорными матрицами.

Данная классификация не позволяет понять специфику той или иной высокопроизводительной вычислительной системы.

Достоинством классификации Фенга является введение единой числовой характеристики для всех типов вычислительных систем, которая позволяет сравнивать их между собой.

Из интересных видов классификации можно отметить подход Базу, который строит классификацию по последовательности решений, принимаемых на этапе проектирования архитектуры. Согласно А. Базу (A. Basu), любую параллельную вычислительную систему можно однозначно описать последовательностью решений, принятых на этапе ее проектирования, а сам процесс проектирования представить в виде дерева [42].

В корне "дерева Базу" размещается вычислительная система, последующие ярусы дерева служат для описания иерархии принятия решений

при проектировании вычислительной системы. В итоге формируется описание проектируемой системы, представляемое значениями классификационных признаков в системе Базу.

По размерам и функциональным возможностям ЭВМ можно разделить (рис.5.3.) на сверхбольшие (суперЭВМ), большие, малые, сверхмалые (микроЭВМ).

Рис. 5. 3. Классификация ЭВМ по размерам и функциональным возможностям

Функциональные возможности ЭВМ обусловливают важнейшие технико-эксплуатационные характеристики:

§ быстродействие, измеряемое усредненным количеством операций, выполняемых машиной за единицу времени;

§ разрядность и формы представления чисел, с которыми оперирует ЭВМ;

§ номенклатура, емкость и быстродействие всех запоминающих устройств;

§ номенклатура и технико-экономические характеристики внешних устройств хранения, обмена и ввода-вывода информации;

§ типы и пропускная способность устройств связи и сопряжения узлов ЭВМ между собой (внутримашинного интерфейса);

§ способность ЭВМ одновременно работать с несколькими пользователями и выполнять одновременно несколько программ (многопрограммность);

§ типы и технико-эксплуатационные характеристики операционных систем, используемых в машине;

§ наличие и функциональные возможности программного обеспечения;

§ способность выполнять программы, написанные для других типов ЭВМ (программная совместимость с другими типами ЭВМ);

§ система и структура машинных команд;

§ возможность подключения к каналам связи и вычислительной сети;

§ эксплуатационная надежность ЭВМ;

§ коэффициент полезного использования ЭВМ во времени, определяемый соотношением времени полезной работы и времени профилактики.

Исторически первыми появились большие ЭВМ, элементная база которых прошла путь от электронных ламп до интегральных схем со сверхвысокой степенью интеграции.

Производительность больших ЭВМ оказалась недостаточной. Это явилось предпосылкой для разработки и создания суперЭВМ, самых мощных вычислительных систем, интенсивно развивающихся и в настоящее время.

Рабочие станции представляют собой однопользовательские мощные микроЭВМ, специализированные для выполнения определенного вида работ (графических, инженерных, издательских и др.).

Конечно, приведенная классификация весьма условна, ибо мощный современный ПК, оснащенный проблемно-ориентированным программным и аппаратным обеспечением, может использоваться и как полноправная рабочая станция, и как многопользовательская микроЭВМ, и как хороший сервер, по своим характеристикам почти не уступающий малым ЭВМ.

В настоящее время с понятием персональный компьютер (ПК, PC) в основном связываются компьютеры, построенные на основе архитектуры микропроцессоров Intel, для которых принят термин IBM-совместимые.

Среди типов ПК (табл. 5. 1.) по совместимости следует отметить компьютеры американской фирмы IBM: IBM PC/XT (микропроцессоры Intel 8086, 8088), IBM PC/AT (Intel 80286 (16-разрядные), 80386 (32-разрядные)), PC на МП ряда Intel 80486 (32-разрядные), PC на МП Pentium, Pentium Pro, Pentium II (64-разрядные), Pentium IV (64-разрядные).

Таблица5.1. Усредненные характеристики современных ПК IBM

Кроме компьютеров IBM широко известны персональные компьютеры, выпускаемые американскими фирмами: Compaq Computer, Hewlett Packard, Dell, DEC и др. За рубежом самыми распространенными моделями компьютеров в настоящее время являются компьютеры типа ПК с микропроцессором Pentium IV. Производство ПК с МП Pentium и ниже практически уже прекращено.

Статьи к прочтению:

Функциональный степ


Похожие статьи:

Читайте также: