Виды памяти компьютера реферат

Обновлено: 03.07.2024

Минимальной единицей информации является бит или кратные ему единицы: килобит (1 кб = 1024 бита), мегабит (1Мб = 1024кбит), гигабит (1Гб = 1024Мбит). Но чаще пользуются единицей байт (1 байт = 8 бит), или же кратными ему единицами: килобайт (1 КБ = 1024 байта), мегабайт (1МБ = 1024кБ), гигабайт (1ГБ = 1024МБ). Для измерения больших объемов памяти используются терабайты и петабайты.

Компьютерную память можно классифицировать по типу доступа:

  • последовательный доступ (магнитные ленты)
  • произвольный доступ (оперативная память)
  • прямой доступ (жесткие магнитные диски);
  • ассоциативный;

по типу электропитания:

  • буферная;
  • временная;
  • кэш-память;
  • корректирующая;
  • управляющая;
  • коллективная.

по типу носителя и способу записи информации:

  • акустическая;
  • голографическая;
  • емкостная;
  • криогенная;
  • лазерная;
  • магнитная;
  • магнитооптическая;
  • молекулярная;
  • полупроводниковая;
  • ферритовая;
  • фазоинверсная;
  • электростатическая.

Оперативная память компьютера

Оперативная память современного компьютера разделена на несколько типов. Хотя в основе всех типов памяти лежит обычная ячейка памяти, представляющий собой комбинацию из транзистора и конденсатора, благодаря различным внешним интерфейсам и устройствам взаимодействия с компьютером модули памяти они все же отличаются друг от друга.

Это наиболее дешевый способ производства ячеек памяти. Состояние конденсатора определяет, содержит ячейка «0» или «1», но само наличие конденсатора является причиной некоторых ограничений динамической памяти.

Таким образом, каждый раз при считывании информации должна проводиться и его запись. В результате увеличивается время циклического доступа, и повышается латентность.

Массовое распространение получили следующие виды оперативной памяти DDR (уже не пользуется большим спросом), DDR2, DDR3, DDR4.

Внешний вид модулей памяти DDR, DDR2, DDR3

Внешний вид модулей памяти DDR, DDR2, DDR3

В каждом модуле оперативной памяти содержится также специальная микросхема SPD. В этой микросхеме хранятся данные о модуле памяти: дата изготовления модуля, основные характеристики модуля и тому подобное.

Кэш память

Персональные компьютеры также имеют скрытую память. Фактически, из-за разницы в скорости процессоров и схем основной памяти, большинство персональных компьютеров имеют два разных типа кэша, известных как «Уровень 1» (уровень 1 или L1) и «Уровень 2». Уровень 2 или L2 кэш).

L1 кэш-память

Кэш L1 содержит адреса памяти, которые соответствуют данным и машинным командам. Он часто делится на два раздела для этих двух типов адресов. Машинные команды, выполняемые внутри процессора, особенно полезно кэшировать, когда процессор имеет конвейерную архитектуру, которая обрабатывает несколько команд одновременно.

Кэш-память второго уровня

Кэш уровня 2 больше по размеру, чем L1, но не так быстр, и находится на материнской плате компьютера. Как мы уже говорили, его схемы в основном состоят из статической памяти. Кэш-память уровня 2 обычно имеет размер до 1 Мб, но его максимальный размер также зависит от материнской платы.

Память DDR

Память DDR2

Память этого стандарта использовалась в платформе Socket 775. По сути DDR2 память не имеет кардинальных отличий от DDR. Однако в то время как DDR осуществляет две передачи данных по шине за такт, DDR2 выполняет четыре таких передачи. При этом, построена DDR2 из таких же ячеек памяти, как и DDR, а для удвоения пропускной способности используется техника мультиплексирования.

Память DDR3

Передача данных по-прежнему осуществляется по обоим полупериодах синхросигнала на удвоенной «эффективной» частоте относительно собственной частоты шины памяти. Только рейтинги производительности выросли в 2 раза, по сравнению с DDR2. Типичными скоростными категориями памяти нового стандарта DDR3 являются разновидности от DDR3-800 до DDR3-1600 и выше. Очередное увеличение теоретической пропускной способности компонентов памяти в 2 раза вновь связано со снижением их внутренней частоты функционирования во столько же раз. Поэтому отныне, для достижения темпа передачи данных со скоростью 1 бит / такт по каждой линии внешней шины данных с «эффективной» частотой в 1600 МГц используемые 200-МГц микросхемы должны передавать по 8 бит данных за каждый свой такт. То есть,

Однако у данного типа памяти есть свои недостатки:

  • наряду с ростом пропускной способности выросла также и латентность памяти;
  • высокая цена модулей памяти.

Память DDR 4

На сегодня это основной тип памяти, который приобрел массовое применение. Первые тестовые образцы DDR4 были представлены в середине 2012 года фирмами Hynix, Micron и Samsung.

Благодаря 30 нм техпроцессу память DDR4 от Samsung имела объем 8 и 16ГБ и тактовую частоту 2133 МГц. 16 ГБ планки имеют два ряда чипов памяти, в отличие от привычного одного ряда. К тому же, они располагаются на печатной плате ближе друг к другу, что позволяет вместить ее два дополнительных чипа памяти с каждой стороны. Samsung обещает, что с переходом на передовой 20 нм техпроцесс, появится возможность создания модулей памяти объемом 32 ГБ. Модули памяти DDR4 от Samsung, работают с напряжением 1,2 В, в отличие от DDR3 планок, которые работают на 1,35 В. Это небольшая разница, позволяет экономить энергию на 40%.

Рекомендации по выбору модулей памяти:

При производстве модулей памяти, как правило, одна фирма выпускает микросхемы (чипы), а другая делает сами модули (монтаж и пайка). Производителей чипов в мире насчитывается не более 10. Крупные производители чипов: Samsung, Mиcron, LG, Hynиx, Toshиba, Nec, Texas Instruments проводят тщательное тестирование готовой продукции, но полный цикл тестирования проходят далеко не все чипы. Исходя из этого, продукцию этих компаний можно условно разделить на три категории: класса А, В и С.

Третья (чипы класса C), которые вообще не тестировались производителем на скорость и надежность. Понятно, что на рынке такая продукция имеет наименьшую стоимость, поскольку вся ответственность за тестирование ложится на производителей модулей. Именно такие микросхемы используют производители дешевой памяти класса noname, а стабильность работы этих изделий вызывает большие сомнения. Надежность готового модуля памяти определяется совокупностью многих факторов. В частности, это количество слоев печатной платы (PCB), качество электронных компонентов, грамотное разведение цепей, а также технология производственного процесса. Мелкие производители модулей для снижения цены готовых изделий экономят на мелких компонентах, зачастую просто не впаянных на модуль.

Память для хранения информации: жесткий диск, твердотельные накопители

За счет вращения создается своеобразный подпор воздуха, благодаря которому считывающие головки не касаются поверхности пластин, хотя и находятся очень близко к ним (всего несколько микрометров). Это гарантирует надежность записи / считывания данных. При остановке пластин, головки перемещаются за пределы их поверхности, поэтому механический контакт между головками и пластинами практически исключен. Такая конструкция обеспечивает долговечность запоминающих устройств этого типа.

Основные характеристики жестких дисков:

Параметры жестких дисков

Классический жесткий диск имеет форм-фактор 3,5 дюйма. В ноутбуках, нетбуках и других портативных устройствах чаще всего используются устройства 2,5 или 1,8 дюйма, хотя встречаются и другие варианты.

Объем буфера специальной внутренней быстрой памяти диска, предназначенная для временного хранения данных с целью сглаживания перебоев при считывании и записи информации на носитель и ее передачи по интерфейсу. В современных запоминающих устройствах буфер может достигать размеров до 64 МБ. Чем этот показатель больше, тем лучше.

В последнее время начался выпуск жестких дисков со встроенной флэш-памятью в качестве кэша, что значительно улучшает скоростные показатели дисков.

Фирмы производители: IBM , Hitachi , Seagate , Samsung , Western Digital .


Запись магнитной информации продольного (а) и перпендикулярного (б) типа

Накопители SSD

Существует всего 2 типа SSD накопителей: SSD диски на основе флэш-памяти (самые популярные и распространенные), и SSD на основе оперативной памяти.

Основополагающим принципом организации работы флеш-памяти является хранение ею 1 бита данных в массиве транзисторов с плавающим затвором (элементарными ячейками), путем изменения и регистрации электрического заряда в изолированной области полупроводниковой структуры. Главной особенностью полевого транзистора, которая позволила ему получить всеобщее признание, как носителя информации, стала способность удерживать электрический разряд на плавающем затворе до 120 месяцев. Сам плавающий затвор изготовлен из поликристаллического кремния и со всех сторон окружен слоем диэлектрика, что исключает возможность контакта его с элементами транзистора. Располагается он между диэлектрической подкладкой и управляющим затвором. Управляющий электрод полевого транзистора и называется затвором.

Запись и стирание информации происходит за счет изменения приложенного заряда между затвором и истоком большим потенциалом, пока напряженность электрического поля в диэлектрике между каналом транзистора и изолированной областью не станет достаточной для возникновения туннельного эффекта. Таким образом электроны переходят через слой диэлектрика на плавающий затвор, обеспечивая его зарядом, а, значит, и наполнение элементарной ячейки битом информации. Также, для усиления эффекта туннелирования электронов при записи, применяется слабое ускорение электронов путем пропускания тока через канал полевого транзистора.

Для удаления информации управляющий затвор обеспечивается отрицательным напряжением высокой мощности с тем, чтобы позволить электронам переходить с плавающего затвора на исток. Подобная организация элементарных ячеек, объединенных в страницы, блоки и массивы и составляет твердотельный накопитель.

Преимущества SSD накопителей:

Недостатки SSD накопителей:

RAID массивы

RAID имеет две цели:

  1. увеличение надежности хранения информации;
  2. увеличение скорости записи / считывания.

Наиболее популярными видами RAID является RAID 0, 1 и 0 + 1.


Схема записи информации в массиве RAID 1 (отражение)

RAID 3 и 4 используют массив дисков с чередованием и выделенным диском четности.


Схема массива RAID 5

RAID 6. Все различия сводятся к тому, что используются две схемы четности. Система устойчива к отказам двух дисков. Основной сложностью является то, что для реализации этого приходится делать больше операций при выполнении записи. Из-за этого скорость записи чрезвычайно низкой.

Комбинация RAID 0 + 1, которая является массивом RAID 1, собранным на базе массивов RAID 0. Как и в массиве RAID 1, доступным будет только половина объема дисков. Но, как и в RAID 0, скорость будет выше, чем с одним диском. Для реализации такого решения необходимо минимум 4 диска.


Схематическое изображение массива RAID 0 + 1 (а) и RAID1 + 0 (б)

RAID 0 + 1 имеет высокую скорость работы и повышенную надежность, поддерживается даже дешевыми RAID контроллерами и является недорогим решением.

Выводы

Память компьютера лучше всего представить себе в виде последовательности ячеек. Количество информации в каждой ячейке – один байт.

Любая информация сохраняется в памяти компьютера в виде последовательности байтов. Байты (ячейки) памяти пронумерованы один за другим, причем номер первого от начала памяти байта приравнивается к нулю. Каждая конкретная информация, которая сохраняется в памяти, может занимать один или несколько байтов. Количество байтов, которые занимает та или иная информация в памяти, являются размером этой информации в байтах.

Например, целое плюсовое число от 0 до 2 8 -1=255 занимает 1 байт памяти. Для хранения целого плюсового числа от 2 8= 256 до 2 16 -1=65536 нужно уже два последовательных байта.

Основная задача при работе с памятью состоит в том, чтобы найти место в памяти, где находится необходимая информация.

Для того, чтобы найти человека в большом городе, необходимо знать его точный адрес. Так же, чтобы найти место той или иной информации в памяти, введено понятие адреса в памяти.

Например, если слово "информатика", которое состоит из 11 букв, занимает байты с номерами от 1234 до 1244 (всего 11 байтов), то адрес этого слова равняется 1234.

Чем больше объем памяти, тем больше файлов и программ она может вместить, тем больше задач можно развязать с помощью компьютера.

Чем же определяется объем доступной памяти компьютера или какое наибольшее число можно использовать для указания адреса?

Адрес, как и любая информация в компьютере, подается в двоичном виде. Значит, наибольшее значение адреса определяется количеством битов, которые используются для его двоичной подачи.

Глава 1. ВИДЫ ПАМЯТИ

1.1 Оперативная память

Оперативная память (ОЗУ или англ.RAM от RandomAccessMemory – память с произвольным доступом) – это быстро запоминающее устройство не очень большого объема, которое непосредственно связанное с процессором и предназначенное для записи, считывания и хранения выполняемых программ и данных, которые обрабатываются этими программами.

Оперативная память используется только для временного хранения данных и программ, так как, когда машина выключается то все, что находилось на ОЗУ, пропадает. Доступ к элементам оперативной памяти прямой – это значит, что каждый байт памяти имеет свой индивидуальный адрес.

Объем ОЗУ обычно составляет от 32 до 512 Мбайт. Для не сложных административных задач бывает достаточно и 32 Мбайт ОЗУ, но сложные задачи компьютерного дизайна могут потребовать от 512 Мбайт до 2 Гбайт ОЗУ.

Обычно ОЗУ исполняется из интегральных микросхем памяти SDRAM (синхронное динамическое ОЗУ). Каждый информационный бит в SDRAM запоминается в виде электрического заряда крохотного конденсатора, образованного в структуре полупроводникового кристалла. Из-за утечки токов такие конденсаторы быстро разряжаются и их периодически (примерно каждые 2 миллисекунды) подзаряжают специальные устройства. Этот процесс называется регенерацией памяти (RefreshMemory). Микросхемы SDRAM имеют емкость от 16 до 256 Мбит и более. Они устанавливаются в корпусе и собираются в модули памяти. Большинство современных компьютеров комплектуются модулями типа DIMM (Dual-In-lineMemoryModule - модуль памяти с двухрядным расположением микросхем). В компьютерных системах на самых современных процессорах используются

Высокоскоростные модули Rambus DRAM (RIMM) и DDR DRAM.

Сразу после включения компьютера начинают "тикать" электронные "часы" основной шины. Их импульсы расталкивают заспавшийся процессор, и тот может начинать работу. Но для работы процессора нужны команды.

Точнее говоря, нужны программы, потому что программы — это и есть упорядоченные наборы команд. Таким образом, где-то в компьютере должна быть заранее, заготовлена пусковая программа, а процессор в момент пробуждения должен твердо знать, где она лежит (Рисунок 1).

hello_html_6ad8e552.jpg

Хранить эту программу на каких-либо носителях информации нельзя, потому что в момент включения процессор ничего не знает ни о каких устройствах. Чтобы он о них узнал, ему тоже нужна какая-то программа, и мы возвращаемся к тому, с чего начали. Хранить ее в оперативной памяти тоже нельзя, потому что в ней в обесточенном состоянии ничего не хранится.

Выход здесь существует один-единственный. Такую программу надо создать аппаратными средствами. Для этого на материнской плате имеется специальная микросхема, которая называется постоянным запоминающим устройством — ПЗУ. Еще при производстве в нее "зашили" стандартный комплекс программ, с которых процессор должен начинать работу. Этот комплекс программ называется базовой системой ввода-вывода.

По конструкции микросхема ПЗУ отличается от микросхем оперативной памяти, но логически это те же самые ячейки, в которых записаны какие-то числа, разве что не стираемые при выключении питания. Каждая ячейка имеет свой адрес.

После запуска процессор обращается по фиксированному адресу (всегда одному и тому же), который указывает именно на ПЗУ. Отсюда и поступают первые данные и команды. Так начинается работа процессора, а вместе с ним и компьютера. На экране в этот момент мы видим белые символы на черном фоне.

Одной из первых исполняется подпрограмма, выполняющая самотестирование компьютера. Она так и называется: Тест при включении (по-английски — POST — Power-OnSelfTest). В ходе ее работы проверяется многое, но на экране мы видим только, как мелькают цифры, соответствующие проверенным ячейкам оперативной памяти.

Рисунок 2 - CMOS-память.

Однако долго работать лишь только со стандартными устройствами компьютер не может. Ему пора бы узнать о том, что у него есть на самом деле. Истинная информация об устройствах компьютера записана на жестком диске, но и его еще надо научиться читать. У каждого человека может быть свой жесткий уникальный диск, не похожий на другие. Спрашивается, откуда программы BIOS узнают, как работать именно с вашим жестким диском?

Для этого на материнской плате есть еще одна микросхема — CMOS-память. В ней сохраняются настройки, необходимые для работы программ BIOS. В частности, здесь хранятся текущая дата и время, параметры жестких дисков и некоторых других устройств. Эта память не может быть ни оперативной (иначе она стиралась бы), ни постоянной (иначе в нее нельзя было бы вводить данные с клавиатуры). Она сделана энергонезависимой и постоянно подпитывается от небольшой аккумуляторной батарейки, тоже размещенной на материнской плате. Заряда этой батарейки хватает, чтобы компьютер не потерял настройки, даже если его не включать несколько лет.

Настройки CMOS, в частности, необходимы для задания системной даты и системного времени, при установке или замене жестких дисков, а также при выходе из большинства аварийных ситуаций. Настройкой BIOS можно, например, задать пароль, благодаря которому посторонний человек не сможет запустить компьютер. Впрочем, эта защита эффективна только от очень маленьких детей.

Для изменения настроек, хранящихся в CMOS-памяти, в ПЗУ содержится специальная программа — SETUP. Чтобы ее запустить, надо в самый первый момент после запуска компьютера нажать и удерживать клавишу DELETE. Навигацию в системе меню программы SETUP выполняют с помощью клавиш управления курсором. Нужные пункты меню выбирают клавишей ENTER, а возврат в меню верхнего уровня — клавишей ESC. Для изменения установленных значений служат клавиши PageUp и PageDown.

1.4 Кэш-память

Кэш-память - это высокоскоростная память произвольного доступа, используемая процессором компьютера для временного хранения информации. Она увеличивает производительность, поскольку хранит наиболее часто используемые данные и команды "ближе" к процессору, откуда их можно быстрей получить (Рисунок 3).

hello_html_187a15dc.jpg

Рисунок 3 - Кэш-память

Кэш-память напрямую влияет на скорость вычислений и помогает процессору работать с более равномерной загрузкой. Представьте себе массив информации, используемой в вашем офисе. Небольшие объемы информации, необходимой в первую очередь, скажем список телефонов подразделений, висят на стене над вашим столом. Точно так же вы храните под рукой информацию по текущим проектам. Реже используемые справочники, к примеру, городская телефонная книга, лежат на полке, рядом с рабочим столом. Литература, к которой вы обращаетесь совсем редко, занимает полки книжного шкафа. Компьютеры хранят данные в аналогичной иерархии. Когда приложение начинает работать, данные и команды переносятся с медленного жесткого диска в оперативную память произвольного доступа, откуда процессор может быстро их получить. Оперативная память играет роль КЭШа для жесткого диска. Для достаточно быстрых компьютеров необходимо обеспечить быстрый доступ к оперативной памяти, иначе микропроцессор будет простаивать, и быстродействие компьютера уменьшится. Для этого такие компьютеры могут оснащаться кэш-памятью, т.е. "сверхоперативной" памятью относительно небольшого объема (обычно от 64 до 256 Кбайт), в которой хранятся наиболее часто используемые участки оперативной памяти. Кэш-память располагается "между" микропроцессором и оперативной памятью, и при обращении микропроцессора к памяти сначала производится поиск нужных данных в кэш-памяти. Поскольку время доступа к кэш-памяти в несколько раз меньше, чем к обычной памяти, а в большинстве случаев необходимые микропроцессору данные содержаться в кэш-памяти, среднее время доступа к памяти уменьшается. Для компьютеров на основе intel-80386dx или 80486sx размер кэш-памяти в 64 кбайт является удовлетворительным, 128 кбайт - вполне достаточным. Компьютеры на основе intel-80486dx и dx2 обычно оснащаются кэш-памятью емкостью 256 Кбайт.

Глава 2. Видеопамять

Графическая плата (известна также как графическая карта, видеокарта, видеоадаптер) (англ. videocard) — устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора.

Обычно видеокарта является платой расширения и вставляется в специальный разъём (ISA, VLB, PCI, AGP, PCI-Express) для видеокарт на материнской плате, но бывает и встроенной.

Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный микропроцессор, который может производить дополнительную обработку, разгружая от этих задач центральный процессор компьютера.

Современная графическая плата состоит из следующих частей:

1. Графический процессор (GPU) — занимается расчетами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчеты для обработки команд трехмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало, чем уступают центральному процессору компьютера, и зачастую превосходят их по числу транзисторов. Архитектура современного GPU обычно предполагает наличие нескольких блоков обработки информации, а именно: блок обработки 2D графики, блок обработки 3D графики, в свою очередь, обычно разделяющийся на геометрическое ядро (плюс кэш вершин) и блок растеризации (плюс кэш текстур) и др(Рисунок 4).

hello_html_2bbdd2a7.jpg

Рисунок 4 - Графический процессор (GPU).

2. Видеоконтроллер — отвечает за формирование изображения в видеопамяти, дает команды RAMDAC на формирование сигналов развертки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина внутренней шины и шины видеопамяти обычно шире внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается еще и RAMDAC. Современные графические адаптеры (ATI, NVIDIA) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый. Видеопамять — играет роль кадрового буфера, в котором хранится в цифровом формате изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR, DDR2 или GDDR3. Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину AGP или PCIE.

3. Цифро-аналоговый преобразователь ЦАП (RAMDAC) — служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Возможный диапазон цветности изображения определяется только параметрами RAMDAC. Чаще всего RAMDAC имеет четыре основных блока — три цифроаналоговых преобразователя, по одному на каждый цветовой канал (красный, синий, зеленый, RGB), и SRAM для хранения данных о гаммах коррекции. Большинство ЦАП имеют разрядность 8 бит на канал — получается, по 256 уровней яркости на каждый основной цвет, что в сумме дает 16.7 млн. цветов (и за счет гамма коррекции есть возможность отображать исходные 16.7 млн. цветов в гораздо большее цветовое пространство). Некоторые RAMDAC имеют разрядность по каждому каналу 10bit (1024 уровня яркости), что позволяет сразу отображать более 1 млрд. цветов, но эта возможность практически не используется. Для поддержки второго монитора часто устанавливают второй ЦАП. Стоит отметить, что мониторы и видеопроекторы подключаемые к цифровому DVI выходу видеокарты для преобразования потока цифровых данных используют собственные цифроаналоговые преобразователи и от характеристик ЦАП видеокарты не зависят (Рисунок 5).

hello_html_m2b9006d0.jpg

Рисунок 5 - Цифро-аналоговый преобразователь ЦАП (RAMDAC)

4. Видео-ПЗУ (Video ROM) — постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы ПЗУ не используется видеоконтроллером напрямую — к нему обращается только центральный процессор. Хранящийся в ПЗУ видео-BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, а также содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы (в зависимости от применяемого метода разделения ответственности между драйвером и BIOS). На многих современных картах устанавливаются электрически перепрограммируемые ПЗУ, допускающие перезапись видео-BIOS самим пользователем при помощи специальной программы (Рисунок 6).

hello_html_m69939b8e.jpg

Рисунок 6 - Видео-ПЗУ (Video ROM)

5. IB — предназначена для сохранения температурного режима видеопроцессора и видеопамяти в допустимых значениях.

Правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеочипа и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым идет через соответствующую шину.

Оперативная память является одним из основных элементов любой электронно-вычислительной машины, т.к. именно от оперативной памяти зависит скорость работы ПК, а также возможность работы с тем или иным программным обеспечением. Не нужно забывать, что быстродействие оперативной памяти зависит скорее от структуры, а не напрямую от ее частоты

В наше время разработано огромное количество видов оперативной памяти разной скоростной и ценовой категории, поэтому пользователь должен сам решать какую память следует устанавливать на компьютер, в зависимости от того, какие возможности ему нужны. Но следует помнить, что быстроразвивающаяся компьютерная отрасль, в том числе программное обеспечение, предъявляют все большие требования к компьютерам, в том числе и к оперативной памяти.

Сравнивая оперативную память можно выделить основные преимущества и недостатки:

Преимущества: малое число элементов на одну ячейку, откуда высокая плотность упаковки, большой объем памяти на одном кристалле, малое потребление мощности.

Недостатки: необходимость периодического перезаряда элементов памяти, а это: уменьшает быстродействие, усложняет схемы обслуживания памяти, при отсутствии питания стирается вся информация.

Преимущества: высокое быстродействие, отсутствие регенерации;

Недостатки: в связи с дороговизной память типа SRAM используется, в основном только как КЭШ-память L1 и L2, маленькая плотность упаковки.

СПИСОК ЛИТЕРАТУРЫ

1.В .Долженков, Ю .Колесников. Excel 2012. Спб. ВНV,2012.

2. Кузьмин Владислав. MicrosoftOfficeExcel 2003: Учебный курс.-

3. Пасько В . MicrosoftOffice 2013.- К .: ВН V, 19 ХР .

4. Гебхардт Р. Excel 2013:Справочник. - М.: Бином, 19ХР.

5. Уокенбах Д. Excel 2013. Библия пользователя. - К.: Диалектика,2012.

6. Уокенбах Д. MicrosoftExcel. Библия пользователя. - М.: Издательский дом

История появления первых вычислительных машин уходит в далекое пошлое. Так, еще в XVII веке немецким ученым В.Шиккардом была изобретена вычислительная машина, которая выполняла четыре вычислительных действия, а также накапливала промежуточные результаты вычислений. В 1834 году английский ученый Ч.Беббедж создал вычислительную машину, названную им аналитической, которая имела вычислительное устройство, память и элементы автоматического управления вычислительным процессором.

В конце XIX века американский изобретатель Г.Голле Рит сконструировал первые перфорационные машины, которые выполняли сортировальные и некоторые вычислительные операции.

В нашей стране в 1930-1950 гг. были достигнуты значительные успехи в области разработки средств вычислительной техники. В этот период были созданы полные комплекты перфорационных вычислительных машин, а также различные аналоговые вычислительные машины и моделирующие устройства.

Перспективы развития ОП

Память компьютера организована в виде множества ячеек, в которых могут храниться значения; каждая ячейка обозначается адресом. Размеры этих ячеек и, собственно, типы значений, которые могут в них храниться, отличаются у разных компьютеров. Некоторые старые компьютеры имели очень большой размер ячеек, иногда до 64К бит в каждой ячейке. Эти большие ячейки назывались "словами". Супер-компьютеры Крей и компьютер Юниварк ориентированы на работу со словами.

Трудность работы со словами большой длины заключается в том, что обычно программы работают не с целыми словами, а с их частями. Поэтому большинство современных компьютеров, и в том числе все персональные компьютеры, используют значительно меньшей размер ячейки памяти, состоящей всего из 8 бит или "байта": байт - это очень удобная единица информации, отчасти потому, что он позволяет хранить код одной буквы алфавита или одного символа. Поскольку символ занимает в точности один байт, термин "байт" и "символ" часто используются в одном и том же смысле.

Так как IBM/PC использует ячейки памяти длиной 8 бит или 1 байт, в памяти могут храниться значения, которые можно выразить восемью битами. Это значение до двух в восьмой степени или 256. Смысл величины, записанной в ячейку памяти, зависит от способа ее использования> Можно считать, что байт содержит код алфавитного символа - так называемый код ASCII. В то же время его можно рассматривать и как число. Все 256 положительные числа от 0 до 255, либо как числа со знаками в диапазоне от -128 до + 127. Кроме того, байт может как часть большого объема данных, например, строки символов или двухбайтного числа.

Для удобства манипулирования символьными данными компьютеру необходимо чтобы коды символов преобразовались в байтовые величины. Большинство компьютеров, включая IBM/PC, используют код ASCII, американский стандартный код для обмена информации. Большинство компьютеров фирмы "IBM" используют другую схему кодирование символов, называющуюся EBCDIC; системы ASCII и EBSDIC организованы по-разному, но перекодировка из одной системы в другую большого труда не составляет.

Всем компьютерам требуется память нескольких видов. Память требуется на каждом шагу выполнения программ. Память нужна как для использования данных, так и для хранения результатов. Она необходима для взаимодействия с периферией компьютера и даже для поддержания образа, видимого на экране. В компьютерных системах работа с памятью основывается на очень простых концепциях. В принципе, все, что требуется от компьютерной памяти, - это сохранять один бит информации так, чтобы потом он мог быть извлечен оттуда.

Одним из основных элементов компьютера, позволяющим ему нормально функционировать, является память. Внутренняя память компьютера - это место хранения информации, с которой он работает. Внутренняя память компьютера является временным рабочим пространством; в отличие от нее внешняя память, такая как файл на дискете, предназначена для долговременного хранения информации. Информация во внутренней памяти не сохраняется при выключении питания.

Каждая ячейка памяти имеет адрес, который используется для ее нахождения. Адреса - это числа, начиная с нуля для первой ячейки, увеличивающиеся по направлению к последней ячейке памяти. Поскольку адреса - это те же числа, компьютер может использовать арифметические операции для вычисления адресов памяти.

Архитектура каждого компьютера накладывает собственные ограничения на величину адресов. Наибольший возможный адрес определяет объем адресного пространства компьютера или то, какой объем памяти он может использовать. Обычно компьютер использует память меньшего объема, чем допускается его возможностями адресации. Если архитектура компьютера предусматривает наибольшее адресное пространство, это накладывает суровые ограничения на возможности такого компьютера

IBM/PC использует возможности адресации микропроцессора 8088 полностью. Адреса в 8088 имеют длину 20 бит, следовательно, процессор позволяет адресовать два в двадцатой степени байта или 1024 К.

Такое большое адресное пространство позволяет свободно использовать ресурсы памяти для специальных целей. Большая часть арифметических операций, которые может выполнять микропроцессор 8088, ограничивается манипуляцией с 16-разрядными числами, что дает диапазон значений от 0 до 64 К. Поскольку полный адрес должен состоять из 20 разрядов, необходимо было разработать способ управления 20 разрядами. Решение было найдено путем использования принципа сегментированной адресации.

Для работы с сегментированными адресами микропроцессор 8088 имеет специальные регистры сегментов, предназначенные для хранения сегментной части адресов. Загрузив в регистр сегмента некоторое значение, можно адресовать следующие за ним 64К ячеек памяти. Без изменения значения в регистре сегмента компьютер может работать только с 64К байтами из общего адресного пространства в 1.024К. Путем изменения значения в регистре сегмента можно адресовать любую ячейку памяти.

Чтобы иметь возможность в каждый момент времени работать более чем с 64К памяти, в микропроцессоре 8088 предусмотрены четыре различных регистра сегмента, каждый из которых имеет особое назначение. Память компьютера используется для различных целей - часть ее занимает программа, другая часть используется для хранения данных, с которыми в данный момент работает программа. Поэтому два регистра сегмента выделены для программы и для данных. Для указания базового адреса программного или кодового сегмента используется регистр DC. Еще одна область памяти, используемая для специальных целей, называется стеком, и ее адрес указывается регистром стека SS. Для обеспечения дополнительных возможностей адресации имеется регистр дополнительного сегмента (или сегмента расширения), ES.

Когда программа подготавливается к выполнению, операционная система, такая как DOS, выбирает ячейки каких разделов будут использоваться для размещения кодовой части программ, данных и стека в регистры сегментов CS, DS и SS заносятся адреса этих ячеек. При выполнении программы адреса в этих регистрах позволяют находить нужные ячейки памяти.

DOS и языковые процессоры используют программные соглашения, которые позволяют увеличить объем программ практически неограниченно, в то время как их адресуемая область данных ограничена 64К. Вы легко заметите это ограничение, работая с Паскалем или компилятором Бейсика. Для "встроенного" интерпретатора Бейсика для IBM/PC собственно выполняемой программой является сам интерпретатор, а то, что мы считаем своей программой, на Бейсике фактически является частью данных интерпретатора. Таким образом, для интерпретатора Бейсика суммарный объем кодовой части и данных Вашей программы не должен превышать 64К, которые позволяет адресовать регистр данных DS.

Как Бейсик, так и Паскаль, лишь до определенной степени позволяют манипулировать сегментированными адресами. Вы можете непосредственно изменять содержимое регистров CS, DS, SS и ES - языковой процессор должен управлять этими регистрами, иначе все может совершенно запутаться. Однако, определенный способ использования в программах сегментированной адресации все же имеется.

Паскаль разрешает использование сегментированной адресации, правда, в более унифицированном и гибком виде, чем Бейсик. На Паскале можно определить переменную как сегментированный адрес, например:

Var пример_адреса : adasmem,

а затем непосредственно задать его сегментную и относительную части ('.s' и '.r', соответственно):

Когда все эти присваивания выполнены, можно осуществлять доступ к памяти с помощью указателя сегментированного адреса:

Цель теоретической части курсовой работы - выяснить, как устроена современная компьютерная память, какие виды памяти существуют и чем они характеризуются.
Для достижения цели необходимо решить следующие задачи:
- изучить теоретические и практические материалы;
- изучить примеры и т.д.
Цель практической части курсовой работы - составить решение поставленной задачи с помощью Office Excel.
Для этого необходимо:
- построить определенные таблицы;
- произвести ряд вычислительных расчетов для заполнения таблиц;
- представить результаты расчетов в графическом виде.

Файлы: 1 файл

Курсовая по информатике 15 теор, 16 практ 1.docx

Компьютеры довольно давно и прочно вошли в нашу жизнь. Они кардинально поменяли мир и возможности людей. Если первые компьютеры могли лишь вычислять нехитрые задачки, то современные могут практически всё. Они представляют из себя мультимедийный центр, рабочее место и место отдыха одновременно; помогают развиваться детям, узнавать окружающий мир, не выходя из дома. Области применения ЭВМ непрерывно расширяются.

Для того, чтобы умещать в себя такое разнообразие функций, компьютерам требуется память нескольких видов. Память требуется на каждом шагу выполнения программ, нужна как для использования данных, так и для хранения результатов, необходима для взаимодействия с периферией компьютера и даже для поддержания образа, видимого на экране.

Исходя из этого, можно сказать, что тема "Память современных компьютеров" является очень актуальной на сегодняшний день и должна входить в курс изучения информатики.

Цель теоретической части курсовой работы - выяснить, как устроена современная компьютерная память, какие виды памяти существуют и чем они характеризуются.

Для достижения цели необходимо решить следующие задачи:

- изучить теоретические и практические материалы;

- изучить примеры и т.д.

Цель практической части курсовой работы - составить решение поставленной задачи с помощью Office Excel.

Для этого необходимо:

- построить определенные таблицы;

- произвести ряд вычислительных расчетов для заполнения таблиц;

- представить результаты расчетов в графическом виде.

1. Теоретическая часть

1.1. Устройство памяти компьютера.

Компьютерная память - это устройство или совокупность устройств для хранения информации (запоминающее устройство). Она является одним из основных компонентов компьютера и предполагает использование нескольких запоминающих устройств.[5].

Основными операциями, которые выполняют запоминающие устройства являются запись и считывание информации. Они называются обращением к памяти. Запись - это процесс размещения данных по указанному адресу и хранение его там определенное время. Процесс выдачи информации называется чтением. При этом информация остается в памяти, а его копия передается в требуемое устройство. Таким образом, к ячейке можно обращаться сколько угодно раз. [4, с. 26].

В основе работы запоминающего устройства лежит любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям.[8]. В современной компьютерной технике обычно используют физические свойства полупроводников. В этом случае прохождение тока через полупроводник или его отсутствие трактуются как наличие логических сигналов 0 или 1. Благодаря устойчивым состояниям, которые определяются направлением намагниченности, для хранения данных можно использовать разнообразные магнитные материалы. В основу системы хранения также может быть положено наличие или отсутствие заряда в конденсаторе.

Система хранения информации в современном цифровом компьютере базируется на двоичной системе счисления, т.е. разнообразные формы данных (числа, текстовая информация, изображения, видео, звук и др.) изображаются в виде последовательностей битовых строк или бинарных чисел. При этом каждое из них состоит из значений 0 и 1, что позволяет компьютеру легко манипулировать ими, если имеется достаточная емкость системы хранения.

Множество современных устройств, предназначенных для хранения данных, основано на использовании самых разных физических эффектов. Каждое из них имеет свои недостатки, поэтому универсального решения не существует. Как правило, компьютерные системы оснащаются несколькими видами систем хранения, основные свойства которых обуславливают их использование и назначение. Самыми известными средствами хранения информации, используемыми в персональных компьютерах являются модули оперативной памяти, жесткие диски (винчестеры), дискеты (устарели), CD или DVD диски, а также устройства флэш-памяти.[9].

Главной задачей компьютерной памяти является хранение информации.

1.2. Виды памяти и их характеристика

Классифицировать компьютерную память можно по самым разнообразным критериям.

По доступным операциям с данными выделяют память только для чтения (ROM) и память для чтения/записи.

По энергозависимости (использованию питания): энергонезависимую память и энергозависимую память. [5]. В свою очередь, энергозависимая память разделяется на динамическую (DRAM) и статическую (SRAM).[6].

По назначению выделяется:

Буферная память - память, которая хранит временную информацию в виде файлов, папок, картинок, отрывков текста, скопированную либо вырезанную из одного места и предназначенную для вставки в другое.[10].

Временная (промежуточная) память – память для хранения промежуточных результатов обработки;[5].

Кэш-память - промежуточный буфер с быстрым доступом, содержащий информацию, которая может быть запрошена с наибольшей вероятностью.[7].

Корректирующая память – часть памяти ЭВМ, предназначенная для хранения адресов неисправных ячеек основной памяти и др.

Разделяемая память или память коллективного доступа — память, доступная одновременно нескольким пользователям, процессам или процессорам и др.

По удаленности и доступности для центрального процессора:

Первичная память. Она доступна центральному процессору без какого-либо обращения к внешним устройствам. Это регистры процессора (процессорная или регистровая память) и кэш процессора (если есть);

Вторичная память доступна центральному процессору путем прямой адресацией через шину адреса (адресуемая память) или через другие выводы.

Третичная память - доступна только путём нетривиальной последовательности действий и включает все виды внешней памяти, доступной через устройства ввода-вывода.[9].

Все же по общепринятой классификации выделяют два вида компьютерной памяти: внутреннюю и внешнюю. Которые так же разделяются на подвиды, описанные ниже.

1.2.1. Внутренняя память

Внутренняя память компьютера предназначена для оперативной обработки данных. Она быстрее, чем внешняя память.

Внутреннюю память составляют микроскопические ячейки. Каждая из них имеет собственный уникальный адрес или номер. Элемент информации сохраняется в памяти с назначением ему определенного адреса. Для того чтобы отыскать эту информацию, компьютер «заглядывает» в ячейку и копирует ее содержимое в «командный» пункт.

Емкость отдельной ячейки памяти называется словом. Объем внутренней памяти (количество ячеек) зависит от разрядности слова. Длина слова для персонального компьютера составляет 16 двоичных цифр, или битов. Длина в 8 бит называется байтом.[5].

Большинство внутренних ЗУ энергозависимы. Исключение составляет постоянная память, где хранятся программы, настройки, тестирования и первоначальной загрузки компьютера (BIOS), а также программы вычисления стандартных функций. [4, с. 27].

Внутренняя память компьютера делится на оперативную (ОЗУ), постоянную (ПЗУ) и сверхоперативную (кэш-память).

1.2.1.1. Оперативное запоминающее устройство (ОЗУ).

ОЗУ (Random Access Memory (RAM))- память с произвольным доступом - область памяти, в которой сохраняются данные в процессе работы компьютера.[2, c. 62].

Информация в ней может быть как записана, так и считана.

Основная (оперативная) память в компьютере размещается на стандартных панельках, называемых модулями. Модули ОП вставляются в соответствующие разъемы на материнской плате.[3, с.117].

В современных компьютерах оперативная память присоединена к центральному процессору. Она использует шину памяти или, как её еще называют, адресную шину. Шина адреса состоит из проводов и схем сопряжения и необходима для параллельной передачи кода адреса ячейки основной памяти. [1, c. 73]. Запись в память данных осуществляется подачей на шину адреса сигналов, соответствующих адресам ячеек. В них помещаются данные из шины записи. При чтении данных из памяти по шине адреса передаются адреса читаемых ячеек. Сами данные из ячеек передаются по шине чтения. Возможность произвольного доступа к любой ячейке памяти и позволяет называть оперативную память как память с произвольным доступом (RAM).[1, c. 60].

В устойчивом виде информация в данном виде памяти хранится несколько миллисекунд. При выключении питания содержимое ОЗУ очищается, поэтому перед выключением все данные, подвергнутые изменениям во время работы, нужно сохранить на запоминающем устройстве, которое может хранить информацию постоянно (например, жесткий диск). При новом включении питания сохраненная информация вновь может быть загружена в память.[11].

Объем оперативной памяти является одной из основных характеристик компьютера. Он определяется объемом информации, обрабатываемой без обращения к внешним ЗУ, что существенно сокращает время вычислений.

Конечно, чем больше оперативная память компьютера, тем больше его возможности для размещения и использования в своей работе программ и данных. Для того, чтобы увеличить объем оперативной памяти, можно использовать дополнительную память (Expanded Memory) на дополнительных платах. В этом случае процессор обращается к данным так, будто они находятся в обычной оперативной памяти объемом до 1 Мб, но при этом происходит переадресация в дополнительную память на дополнительной плате, которая может иметь емкость несколько мегабайт. Так же для увеличения объема оперативной памяти используют расширенную память (Extended Memory). Обычно она размещается на материнской плате. Для работы с расширенной памятью процессор должен переходить из реального режима в защищенный (protected mode).[5].

В ОЗУ хранятся все открытые документы, страницы, мультимедийные файлы.

ОЗУ выполняют миллиарды операций, потребляя при этом довольно мало энергии. Для некоторых из них достаточно маленькой батарейки, чтобы активизировать или поддерживать память после отключения основного источника энергии. Эти ОЗУ часто используются в небольших портативных компьютерах и калькуляторах. [5].

Оперативная память является динамической (DRAM). Ее содержимое периодически обновляется. Для хранения разряда (бита или трита) динамической памяти используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два).[4, с. 27]. Это наиболее распространенный и экономически доступный тип памяти (один конденсатор и один транзистор дешевле нескольких транзисторов). Но он имеет и некоторые недостатки. Во-первых, при зарядке и разрядке конденсаторов неизбежны переходные процессы, т. е. запись происходит сравнительно медленно. Во-вторых, со временем конденсаторы разряжаются. Причём, чем меньше их ёмкость, тем быстрее они разряжаются. За то, что разряды в ней хранятся не статически, а «стекают» динамически во времени, память на конденсаторах получила своё название динамическая память. В связи с этим, чтобы не потерять содержимое памяти, заряд конденсаторов для восстановления необходимо «регенерировать» через определённый интервал времени. Регенерация выполняется центральным микропроцессором или контроллером памяти.[6].

Динамическую память(DRAM) можно представить двумя типами: асинхронным и синхронным. Асинхронная динамическая память имеет недостаточное быстродействие, что приводит к простою процессора. Синхронная память является предпочтительнее по цене и производительности. [3, с. 116].

1.2.1.2. Постоянное запоминающее устройство (ПЗУ)

ПЗУ- память, в которой хранятся данные при выключенном питании. ПЗУ часто называют энергонезависимой памятью, потому что любые данные, записанные в нее, сохраняются при выключении питания. Энергообеспечение в данном случае производится за счет батареек, которые установлены на материнской плате.

В ПЗУ хранятся данные об архитектуре и настройках: дата, время, сетевые подключения и т.д. В английском варианте постоянная память называется ROM (Read Only Memory).[10].

BIOS проверяет работоспособность устройств, задает низкоуровневые параметры их работы, а после этого ищет загрузчик операционной системы (Boot Loader) на доступных носителях информации и передает управление операционной системе.

Кроме обычной оперативной и постоянной памяти, в компьютере имеется небольшой участок памяти для хранения параметров конфигурации компьютера. Специально для хранения информации об оборудовании конкретного компьютера, на материнской плате есть микросхема энергонезависимой памяти, называемая CMOS. Ее содержимое не стирается во время выключения компьютера, а данные в нее можно заносить и изменять с помощью программы Setup, в соответствии с тем, какое оборудование входит в состав системы. В микросхеме CMOS хранятся данные о гибких и жестких дисках, о процессоре, о некоторых других устройствах на материнской плате. То, что компьютер четко отслеживает время и календарь даже и в выключенном состоянии, тоже связан с тем, что показания системных часов постоянно хранятся и изменяются в CMOS.

Читайте также: