Виртуальная память и организация защиты памяти

Обновлено: 04.07.2024

Презентацию к данной лекции Вы можете скачать здесь.

Введение

Виртуальная память – распространенная стратегия распределения памяти , используемая во всех современных операционных системах, основанная на идее расширения физической памяти путем размещения расширенной памяти на диске и использования таблиц страниц (или сегментов) для трансляции адресов . В лекции рассмотрены следующие вопросы:

  • Мотивировка концепции виртуальной памяти;
  • Потребность в страничной организации ;
  • Создание процесса и его пространства виртуальной памяти;
  • Замена страницы;
  • Размещение фреймов;
  • Thrashing ;
  • Примеры организации виртуальной памяти в различных ОС.

Мотивировка концепции виртуальной памяти

Концепция виртуальной памяти основана на идеях отделения логической памяти пользователя от физической памяти и расширения логической памяти путем хранения ее образа на диске.

При исполнении программы только часть ее кода и данных, к которым происходит обращение, в каждый момент требует размещения в физической памяти. Поэтому, естественно, возникает идея расширить пространство логической памяти, которое может быть реализовано намного большего размера, чем физическая память . Это и есть основной принцип организации виртуальной памяти.

Виртуальная память поддерживает совместное использование одного и того же адресного пространства более чем одним процессом, создание и исполнение облегченных процессов в общем пространстве виртуальной памяти.

Виртуальная память допускает более эффективное создание процесса , чем предшествующие схемы организации памяти и процессов.

Заметим, что концепция виртуальной памяти непосредственно не связана ни со страничной, ни с сегментной стратегиями распределения памяти . Виртуальная память может быть реализована различными способами, например, с помощью:

  • страничной организации по требованию (paging on demand);
  • сегментной организации по требованию (segmentation on demand).

В приведенных терминах подчеркивается динамический характер управления виртуальной памятью: термин по требованию означает, что страница или сегмент будут размещены в физической памяти только в случае, если к ним реально происходит обращение из программы пользователя. Причем если размер обрабатываемой области виртуальной памяти (например, массива) очень велик – например, 1000 страниц, то в физической памяти будет размещена только та его страница, к которой обращается пользовательская программа .

Принцип управления виртуальной памятью иллюстрируется рис. 18.1.

Виртуальная память и физическая память.


увеличить изображение
Рис. 18.1. Виртуальная память и физическая память.

Из схемы видно, что виртуальная память , как предполагается, больше, чем физическая память . Взаимодействие между частями виртуальной памяти и физической памяти происходит через отображение памяти – системную таблицу (сегментов, страниц и т.п.). Образ виртуальной памяти процесса хранится на диске.

Страничная организация по требованию

Принцип реализации виртуальной памяти в виде страничной организации по требованию заключается в том, что каждая страница загружается в память , только если она реально требуется при выполнении программы – содержит код или данные, к которым произошло обращение.

Преимущества данного подхода:

  • Меньший объем ввода-вывода: В память подкачивается только минимально необходимый объем данных (например, одна страница большого массива, а не весь многостраничный массив);
  • Меньший объем памяти: При данном способе расходуется минимально необходимый объем физической памяти;
  • Более быстрая реакция системы: Поскольку объем пересылаемых данных меньше, система в среднем быстрее реагирует на каждый запрос к памяти;
  • Система может обслуживать большее число пользователей: Ввиду экономии физической памяти и времени обращения, система в состоянии при данном подходе обслуживать большее число пользовательских процессов .

Основные принципы страничной организации по требованию:

  1. Если страница требуется программе, на нее имеется ссылка из программы.
  2. Если ссылка на страницу неверна (например, страницы с данным номером не существует), происходит прерывание.
  3. Если требуемая страница отсутствует в памяти, то она подкачивается в память. Механизм подкачки реализуется через прерывание (page fault – отказ страницы).

рис. 18.2 иллюстрирует размещение виртуальной памяти на диске и ее откачку и подкачку.

Преобразование страничной памяти в непрерывное дисковое пространство.


Рис. 18.2. Преобразование страничной памяти в непрерывное дисковое пространство.

Из схемы видно, что, с точки зрения каждой программы, пространство ее виртуальной памяти непрерывно. Оно преобразуется в непрерывную область дисковой памяти. С помощью механизма откачки – подкачки в нужный момент страница виртуальной памяти размещается в основной памяти.

С каждым элементом таблицы страниц связывается бит "valid/invalid",однако, в отличие от организации логической памяти, он играет несколько иную роль – он указывает на присутствие или отсутствие страницы в основной памяти. Значение бита равно 1, если страница в памяти, и 0, если страница отсутствует в памяти.

Первоначально для всех элементов таблицы страниц бит valid / invalid полагается равным 0.

Если в процессе трансляции адреса бит " valid / invalid " в таблице страниц оказыется равным 0, то происходит прерывание по отсутствию страницы в памяти (page fault).

На рис. 18.3 приведен пример таблицы страниц , в которой не все страницы присутствуют в основной памяти.

Пример таблицы страниц, в которой не все страницы в памяти.


Рис. 18.3. Пример таблицы страниц, в которой не все страницы в памяти.


Привет, Хабрахабр!

В предыдущей статье я рассказал про vfork() и пообещал рассказать о реализации вызова fork() как с поддержкой MMU, так и без неё (последняя, само собой, со значительными ограничениями). Но прежде, чем перейти к подробностям, будет логичнее начать с устройства виртуальной памяти.

Конечно, многие слышали про MMU, страничные таблицы и TLB. К сожалению, материалы на эту тему обычно рассматривают аппаратную сторону этого механизма, упоминая механизмы ОС только в общих чертах. Я же хочу разобрать конкретную программную реализацию в проекте Embox. Это лишь один из возможных подходов, и он достаточно лёгок для понимания. Кроме того, это не музейный экспонат, и при желании можно залезть “под капот” ОС и попробовать что-нибудь поменять.

Любая программная система имеет логическую модель памяти. Самая простая из них — совпадающая с физической, когда все программы имеют прямой доступ ко всему адресному пространству.
При таком подходе программы имеют доступ ко всему адресному пространству, не только могут “мешать” друг другу, но и способны привести к сбою работы всей системы — для этого достаточно, например, затереть кусок памяти, в котором располагается код ОС. Кроме того, иногда физической памяти может просто не хватить для того, чтобы все нужные процессы могли работать одновременно. Виртуальная память — один из механизмов, позволяющих решить эти проблемы. В данной статье рассматривается работа с этим механизмом со стороны операционной системы на примере ОС Embox. Все функции и типы данных, упомянутые в статье, вы можете найти в исходном коде нашего проекта.

Будет приведён ряд листингов, и некоторые из них слишком громоздки для размещения в статье в оригинальном виде, поэтому по возможности они будут сокращены и адаптированы. Также в тексте будут возникать отсылки к функциям и структурам, не имеющим прямого отношения к тематике статьи. Для них будет дано краткое описание, а более полную информацию о реализации можно найти на вики проекта.

  • Расширение реального адресного пространства. Часть виртуальной памяти может быть вытеснена на жёсткий диск, и это позволяет программам использовать больше оперативной памяти, чем есть на самом деле.
  • Создание изолированных адресных пространств для различных процессов, что повышает безопасность системы, а также решает проблему привязанности программы к определённым адресам памяти.
  • Задание различных свойств для разных участков участков памяти. Например, может существовать неизменяемый участок памяти, видный нескольким процессам.

Аппаратная поддержка

Обращение к памяти хорошо описанно в этой хабростатье. Происходит оно следующим образом:

Процессор подаёт на вход MMU виртуальный адрес
Если MMU выключено или если виртуальный адрес попал в нетранслируемую область, то физический адрес просто приравнивается к виртуальному
Если MMU включено и виртуальный адрес попал в транслируемую область, производится трансляция адреса, то есть замена номера виртуальной страницы на номер соответствующей ей физической страницы (смещение внутри страницы одинаковое):
Если запись с нужным номером виртуальной страницы есть в TLB [Translation Lookaside Buffer], то номер физической страницы берётся из нее же
Если нужной записи в TLB нет, то приходится искать ее в таблицах страниц, которые операционная система размещает в нетранслируемой области ОЗУ (чтобы не было промаха TLB при обработке предыдущего промаха). Поиск может быть реализован как аппаратно, так и программно — через обработчик исключения, называемого страничной ошибкой (page fault). Найденная запись добавляется в TLB, после чего команда, вызвавшая промах TLB, выполняется снова.

Таким образом, при обращении программы к тому или иному участку памяти трансляция адресов производится аппаратно. Программная часть работы с MMU — формирование таблиц страниц и работа с ними, распределение участков памяти, установка тех или иных флагов для страниц, а также обработка page fault, ошибки, которая происходит при отсутствии страницы в отображении.

В тексте статьи в основном будет рассматриваться трёхуровневая модель памяти, но это не является принципиальным ограничением: для получения модели с бóльшим количеством уровней можно действовать аналогичным образом, а особенности работы с меньшим количеством уровней (как, например, в архитектуре x86 — там всего два уровня) будут рассмотрены отдельно.

Программная поддержка

  • Выделение физических страниц из некоторого зарезервированного участка памяти
  • Внесение соответствующих изменений в таблицы виртуальной памяти
  • Сопоставление участков виртуальной памяти с процессами, выделившими их
  • Проецирование региона физической памяти на виртуальный адрес

Виртуальный адрес

Page Global Directory (далее — PGD) — таблица (здесь и далее — то же самое, что директория) самого высокого уровня, каждая запись в ней — ссылка на Page Middle Directory (PMD), записи которой, в свою очередь, ссылаются на таблицу Page Table Entry (PTE). Записи в PTE ссылаются на реальные физические адреса, а также хранят флаги состояния страницы.


То есть, при трёхуровневой иерархии памяти виртуальный адрес будет выглядеть так:

Значения полей PGD, PMD и PTE — это индексы в соответствующих таблицах (то есть сдвиги от начала этих таблиц), а offset — это смещение адреса от начала страницы.

В зависимости от архитектуры и режима страничной адресации, количество битов, выделяемых для каждого из полей, может отличаться. Кроме того, сама страничная иерархия может иметь число уровней, отличное от трёх: например, на x86 нет PMD.

Для обеспечения переносимости мы задали границы этих полей с помощью констант: MMU_PGD_SHIFT, MMU_PMD_SHIFT, MMU_PTE_SHIFT, которые в приведённой выше схеме равны 24, 18 и 12 соответственно их определение дано в заголовочном файле src/include/hal/mmu.h. В дальнейшем будет рассматриваться именно этот пример.

На основании сдвигов PGD, PMD и PTE вычисляются соответствующие маски адресов.


Эти макросы даны в том же заголовочном файле.

Для работы с виртуальной таблицами виртуальной памяти в некоторой области памяти хранятся указатели на все PGD. При этом каждая задача хранит в себе контекст struct mmu_context, который, по сути, является индексом в этой таблице. Таким образом, к каждой задаче относится одна таблица PGD, которую можно определить с помощью mmu_get_root(ctx).

Размер страницы

В реальных (то есть не в учебных) системах используются страницы от 512 байт до 64 килобайт. Чаще всего размер страницы определяется архитектурой и является фиксированным для всей системы, например — 4 KiB.

С одной стороны, при меньшем размере страницы память меньше фрагментируется. Ведь наименьшая единица виртуальной памяти, которая может быть выделена процессу — это одна страница, а программам очень редко требуется целое число страниц. А значит, в последней странице, которую запросил процесс, скорее всего останется неиспользуемая память, которая, тем не менее, будет выделена, а значит — использована неэффективно.

С другой стороны, чем меньше размер страницы, тем больше размер страничных таблиц. Более того, при отгрузке на HDD и при чтении страниц с HDD быстрее получится записать несколько больших страниц, чем много маленьких такого же суммарного размера.

Отдельного внимания заслуживают так называемые большие страницы: huge pages и large pages [вики] .

Платформа Размер обычной страницы Размер страницы максимально возможного размера
x86 4KB 4MB
x86_64 4KB 1GB
IA-64 4KB 256MB
PPC 4KB 16GB
SPARC 8KB 2GB
ARMv7 4KB 16MB

Действительно, при использовании таких страниц накладные расходы памяти повышаются. Тем не менее, прирост производительности программ в некоторых случаях может доходить до 10% [ссылка] , что объясняется меньшим размером страничных директорий и более эффективной работой TLB.

В дальнейшем речь пойдёт о страницах обычного размера.

Устройство Page Table Entry

В реализации проекта Embox тип mmu_pte_t — это указатель.
Каждая запись PTE должна ссылаться на некоторую физическую страницу, а каждая физическая страница должна быть адресована какой-то записью PTE. Таким образом, в mmu_pte_t незанятыми остаются MMU_PTE_SHIFT бит, которые можно использовать для сохранения состояния страницы. Конкретный адрес бита, отвечающего за тот или иной флаг, как и набор флагов в целом, зависит от архитектуры.

  • MMU_PAGE_WRITABLE — Можно ли менять страницу
  • MMU_PAGE_SUPERVISOR — Пространство супер-пользователя/пользователя
  • MMU_PAGE_CACHEABLE — Нужно ли кэшировать
  • MMU_PAGE_PRESENT — Используется ли данная запись директории

Можно установить сразу несколько флагов:

Здесь vmem_page_flags_t — 32-битное значение, и соответствующие флаги берутся из первых MMU_PTE_SHIFT бит.

Трансляция виртуального адреса в физический

Как уже писалось выше, при обращении к памяти трансляция адресов производится аппаратно, однако, явный доступ к физическим адресам может быть полезен в ряде случаев. Принцип поиска нужного участка памяти, конечно, такой же, как и в MMU.

Для того, чтобы получить из виртуального адреса физический, необходимо пройти по цепочке таблиц PGD, PMD и PTE. Функция vmem_translate() и производит эти шаги.
Сначала проверяется, есть ли в PGD указатель на директорию PMD. Если это так, то вычисляется адрес PMD, а затем аналогичным образом находится PTE. После выделения физического адреса страницы из PTE необходимо добавить смещение, и после этого будет получен искомый физический адрес.

Пояснения к коду функции.
mmu_paddr_t — это физический адрес страницы, назначение mmu_ctx_t уже обсуждалось выше в разделе “Виртуальный адрес”.

С помощью функции vmem_get_idx_from_vaddr() находятся сдвиги в таблицах PGD, PMD и PTE.




Работа с Page Table Entry

Для работы с записей в таблице страниц, а так же с самими таблицами, есть ряд функций:

Эти функции возвращают 1, если у соответствующей структуры установлен бит MMU_PAGE_PRESENT

Page Fault

Page fault — это исключение, возникающее при обращении к странице, которая не загружена в физическую память — или потому, что она была вытеснена, или потому, что не была выделена.
В операционных системах общего назначения при обработке этого исключения происходит поиск нужной странице на внешнем носителе (жёстком диске, к примеру).

В нашей системе все страницы, к которым процесс имеет доступ, считаются присутствующими в оперативной памяти. Так, например, соответствующие сегменты .text, .data, .bss; куча; и так далее отображаются в таблицы при инициализации процесса. Данные, связанные с потоками (например, стэк), отображаются в таблицы процесса при создании потоков.

Выталкивание страниц во внешнюю память и их чтение в случае page fault не реализовано. С одной стороны, это лишает возможности использовать больше физической памяти, чем имеется на самом деле, а с другой — не является актуальной проблемой для встраиваемых систем. Нет никаких ограничений, делающих невозможной реализацию данного механизма, и при желании читатель может попробовать себя в этом деле :)

Для виртуальных страниц и для физических страниц, которые могут быть использованы при работе с виртуальной памятью, статически резервируется некоторое место в оперативной памяти. Тогда при выделении новых страниц и директорий они будут браться именно из этого места.
Исключением является набор указателей на PGD для каждого процесса (MMU-контексты процессов): этот массив хранится отдельно и используется при создании и разрушении процесса.
Выделение страниц
Итак, выделить физическую страницу можно с помощью vmem_alloc_page

Функция page_alloc() ищет участок памяти из N незанятых страниц и возвращает физический адрес начала этого участка, помечая его как занятый. В приведённом коде virt_page_allocator ссылается на участок памяти, резервированной для выделения физических страниц, а 1 — количество необходимых страниц.
Выделение таблиц
Тип таблицы (PGD, PMD, PTE) не имеет значения при аллокации. Более того, выделение таблиц производится также с помощью функции page_alloc(), только с другим аллокатором (virt_table_allocator).

После добавления страниц в соответствующие таблицы нужно уметь сопоставлять участки памяти с процессами, к которым они относятся. У нас в системе процесс представлен структурой task, содержащей всю необходимую информацию для работы ОС с процессом. Все физически доступные участки адресного пространства процесса записываются в специальный репозиторий: task_mmap. Он представляет из себя список дескрипторов этих участков (регионов), которые могут быть отображены на виртуальную память, если включена соответствующая поддержка.

brk — это самый большой из всех физических адресов репозитория, данное значение необходимо для ряда системных вызовов, которые не будут рассматриваться в данной статье.
ctx — это контекст задачи, использование которого обсуждалось в разделе “Виртуальный адрес”.
struct dlist_head — это указатель на начало двусвязного списка, организация которого аналогична организации Linux Linked List.

За каждый выделенный участок памяти отвечает структура marea


Поля данной структуры имеют говорящие имена: адреса начала и конца данного участка памяти, флаги региона памяти. Поле mmap_link нужно для поддержания двусвязного списка, о котором говорилось выше.

Ранее уже рассказывалось о том, как происходит выделение физических страниц, какие данные о виртуальной памяти относятся к задаче, и теперь всё готово для того, чтобы говорить о непосредственном отображении виртуальных участков памяти на физические.

Отображение виртуальных участков памяти на физическую память подразумевает внесение соответствующих изменений в иерархию страничных директорий.

Подразумевается, что некоторый участок физической памяти уже выделен. Для того, чтобы выделить соответствующие виртуальные страницы и привязать их к физическим, используется функция vmem_map_region()


В качестве параметров передаётся контекст задачи, адрес начала физического участка памяти, а также адрес начала виртуального участка. Переменная flags содержит флаги, которые будут установлены у соответствующих записей в PTE.

Основную работу на себя берёт do_map_region(). Она возвращает 0 при удачном выполнении и код ошибки — в ином случае. Если во время маппирования произошла ошибка, то часть страниц, которые успели выделиться, нужно откатить сделанные изменения с помощью функции vmem_unmap_region(), которая будет рассмотрена позднее.

Рассмотрим функцию do_map_region() подробнее.

Макросы GET_PTE и GET_PMD нужны для лучшей читаемости кода. Они делают следующее: если в таблице памяти нужный нам указатель не ссылается на существующую запись, нужно выделить её, если нет — то просто перейти по указателю к следующей записи.

В самом начале необходимо проверить, выровнены ли под размер страницы размер региона, физический и виртуальный адреса. После этого определяется PGD, соответствующая указанному контексту, и извлекаются сдвиги из виртуального адреса (более подробно это уже обсуждалось выше).
Затем последовательно перебираются виртуальные адреса, и в соответствующих записях PTE к ним привязывается нужный физический адрес. Если в таблицах отсутствуют какие-то записи, то они будут автоматически сгенерированы при вызове вышеупомянутых макросов GET_PTE и GET_PMD.

После того, как участок виртуальной памяти был отображён на физическую, рано или поздно её придётся освободить: либо в случае ошибки, либо в случае завершения работы процесса.
Изменения, которые при этом необходимо внести в структуру страничной иерархии памяти, производятся с помощью функции vmem_unmap_region().

Все параметры функции, кроме последнего, должны быть уже знакомы. free_pages отвечает за то, должны ли быть удалены страничные записи из таблиц.

try_free_pte, try_free_pmd, try_free_pgd — это вспомогательные функции. При удалении очередной страницы может выясниться, что директория, её содержащая, могла стать пустой, а значит, её нужно удалить из памяти.

Исходный код функций try_free_pte, try_free_pmd, try_free_pgd


нужны как раз для случая двухуровневой иерархии памяти.

Конечно, данной статьи не достаточно, чтобы с нуля организовать работу с MMU, но, я надеюсь, она хоть немного поможет погрузиться в OSDev тем, кому он кажется слишком сложным.

Защищенный режим и виртуальная память

Для того чтобы процессы не мешали друг другу (по недосмотру или умышленно) требуются меры принудительной защиты критических ресурсов. Современные операционные системы используют защищенный режим процессора, в котором эти меры реализуются на аппаратном уровне. Поскольку программа может взаимодействовать с подсистемами компьютера только через пространства памяти и портов ввода-вывода, а также аппаратные прерывания, то защищать нужно эти три типа ресурсов. Самую сложную защиту имеет память. Операционная система выделяет каждому процессу области памяти – сегменты – различного назначения и с разными правами доступа. Из одних сегментов можно только читать данные, в другие возможна и запись. Для программного кода выделяются специальные сегменты, инструкции могут выбираться и исполняться только из них. По отношению к принципу хранимости программы это является искусственным ограничением для фон-неймановской машины, но его целесообразность очевидна. Процессору «безразлично» содержимое ячейки памяти, на которую передалось управление, – он всегда пытается трактовать ее как код инструкции (или префикс). Если ошибочно управление передалось на область данных, то дальнейшее поведение процессора непредсказуемо – это так называемый «вылет». Защита не позволяет передать управление на сегмент данных – сработает исключение защиты, которое обрабатывается операционной системой, и ошибочный процесс будет принудительно завершен. Таким образом вероятность вылета уменьшается. Чтобы выдержать принцип хранимости программы, на время ее загрузки в память или программной модификации ту же область объявляют сегментом данных, в который разрешена запись. Система защиты может полностью контролировать распределение памяти, генерируя исключения в случаях различных нарушений. Конечно же, эффективность защиты (устойчивость компьютера к ошибкам) в значительной мере определяется предусмотрительностью разработчиков операционной системы.
Чем сложнее программа и больше объем обрабатываемых ею данных, тем больше ее потребности в памяти. В первых процессорах семейства память предоставлялась в виде сегментов размером по 64 Кбайт, а суммарный объем программно адресуемой памяти не превышал значения в 1 Мбайт. Потребности решаемых задач довольно быстро переросли эти ограничения, и в процессоры ввели средства организации виртуальной памяти.
Виртуальная память (Virtual Memory) представляет собой программно-аппаратное средство расширения пространства памяти, предоставляемой программе в качестве оперативной. Эта память физически реализуется в оперативной и дисковой памяти под управлением соответствующей операционной системы.
Впервые они появились в 80286, но удобный для употребления вид приняли только в 32-разрядных процессорах (80386 и выше). Во-первых, было снято ограничение на 64-Кбайтный размер сегмента – теперь любой сегмент может иметь почти произвольный размер до 4 Гбайт. Во-вторых, был введен механизм страничной переадресации памяти (paging). Теперь любая страница (область фиксированного размера) виртуальной логической памяти (адресуемой программой в пределах выделенных ей сегментов) может отображаться на любую область физической памяти (реально установленной оперативной). Отображение поддерживается с помощью специальных таблиц страничной переадресации, в которых, кроме связи адресов, есть указание на присутствие страницы в физической памяти на данный момент времени. Теперь страница памяти, не нужная процессору в данный момент времени, может быть выгружена на устройство хранения (диск). На ее место можно загрузить нужную страницу. Заявку на загрузку нужной страницы делает сам процессор, без каких-либо усилий выполняемой программы: если программе потребовалась ячейка виртуальной памяти из страницы, образа которой сейчас нет в физической памяти, вырабатывается специальное исключение. Обработчик этого исключения (это часть ОС) найдет свободную физическую страницу (выгрузив на диск ту, которая, по его мнению, пока не нужна), «подкачает» на нее с диска требуемую информацию и вернет управление процессу, прерванному исключением. Этот процесс ничего «не заметит» (кроме некоторой задержки выполнения инструкций). Таким образом, в распоряжение всех процессов, исполняемых на компьютере псевдопараллельно, предоставляется виртуальная оперативная память, размер которой ограничен суммой объема физической оперативной памяти и областью дисковой памяти, выделенной для подкачки страниц.

Виртуальная память - что это?

Виртуальная память является подкачкой (дополнением) оперативной памяти. Она присутствует практически во всех операционных системах.

При запуске ресурсоемких программ у нас постоянно возникает потребность в виртуальной памяти. По этому сегодня мы рассмотрим подробный обзор «что это такое?» и как мы можем ее изменить в лучшую сторону.

Что такое виртуальная память?

Виртуальная память (Virtual Memory, ВП) — это метод управления памятью компьютера, использующий для работы файл подкачки (swap file). При недостатке существующего объема ОЗУ, позволяет запускать на ПК более ресурсозатратные программы. В таком случае данные приложения автоматически перемещаются между основной памятью и вторичным хранилищем.

Виртуальная память так же обладает рядом достоинств:

  • Работает полностью в автоматическом режиме и не требует от пользователя постоянного управления основным пространством.
  • Значительно повышает безопасность использования программного обеспечения (снижает вероятность вылетов, критического завершения работы, потери данных).
  • Позволяет запускать и использовать на ПК больше памяти, чем это доступно физически.

За счет ее использования компьютер способен изолировать запущенные процессы друг от друга и рационально распределять RAM.

Она расходуется только для хранения активно используемых областей. Виртуальная память может включать важные для пользователя пароли, логины и другую информацию. Эта возможность используется сотрудниками спецслужб и хакерами для получения доступа к остальным компонентам компьютера. Сделать это можно как аппаратно, так и системно.

Как узнать объем файла подкачки (swap file)

Файл подкачки хранится на винчестере компьютера. Если для работы устройства используется несколько жестких дисков, то он будет расположен на самом быстром из них. Определить объем ВП можно с использованием стандартных средств Windows или специального софта.

Системный монитор

Размер свапа подкачки можно узнать через штатную утилиту «Системный монитор».

Для этого:

  • Откройте меню «Пуск» и начните вводить название приложения для мониторинга.
  • Появится новое окно. Здесь вы найдете основную информации о свапе, пиковые значения подсчета обмена страниц, процент использования системой и размер.

При определении размера ВП система исходит не из объема ОЗУ, а из задач, которые выполняются на устройстве. Поэтому для определения размера необходимо запустить приложения и компоненты, которые обычно используются компьютером и посмотреть пиковое значение свапинга в течение этого сеанса. Он и будет определять величину файла подкачки.

Узнать объем ВП и другие параметры системы можно используя специальную утилиту Vmmap.exe. Она доступна для бесплатной загрузки на официальном сайте Microsoft и не требует установки. Поставляется в виде исполняемого файла, полностью на английском языке.

Dump File и его типы

Swap используется не только для расширения физической памяти, но и для создания аварийных дампов при возникновении «внештатных» аварийных ситуаций.

Как это работает:

  • Во время первоначального запуска системы, Windows создает и сохраняет на жестком диске специальную карту секторов, которые занимает на HDD свап.
  • Если происходит сбой, то операционная система изучает созданную карту на наличие неисправностей. В идеале она должна быть целостной. Если это так, то данные переписываются на винчестер и в свап по созданной карте секторов.
  • При следующем перезапуске компьютера SMSS анализирует ВП и проверяет его на наличие дампов, если он есть, то данные копируются из файла подкачки в специальный dump file. Дополнительно обновляется системный журнал. Поэтому открыв его можно узнать, была ли проведена эта операция.

Таким образом при автоматическом выборе размера свапа, Windows руководствуется настройками для создания аварийного дампа.

Загрузка и восстановление

Загрузка и восстановление

Дампы можно разделить на 4 типа:

В него записывается все содержимое RAM на момент незапланированного завершения работы. С учетом этой информации файл подкачки должен иметь размер равный физической памяти компьютера +1 МБ (используется для создания записи в системном журнале).

Выбирается системой автоматически только в том случае, если общий объем физической памяти 4 ГБ и менее.

В него записывается только информация и память, выделенная для ядра операционной системы. Он занимает сравнительно меньше места и его объема достаточно, чтобы Windows могла определить причины аварийного завершения работы.

Выбирается по умолчанию, если размер RAM превышает 4 ГБ. При выборе дампа памяти ядра важно следить, чтобы минимальный размер для файла подкачки составлял хотя бы ⅓ от общего объема физической.

Записывает только самую необходимую информацию для выявления причин аварийного сбоя. Здесь находится стоп-код и описание самой ошибки, дополнительно указываются загруженные на устройство драйвера и перечень запущенных процессов.

Необходимый размер файла подкачки для него —не менее 2 Мб.

Доступен только для операционных систем семейства Windows начиная от восьмерки и выше, либо Server 2012. Представляет собой аналог дампа ядра, но с тем отличием, что система может постоянно менять размер файла подкачки, позволяя ей выбирать оптимальный для работы вариант.

Размер свапа будет напрямую зависит от объема RAM и выбранного типа дампа. Дополнительно стоит учитывать и версию операционной системы. Это касается серверных и обычных сборок.

Как изменить Dump File

Перед тем, как менять размер виртуальной памяти, необходимо правильно определить и выбрать тип дампа. Сделать это можно используя штатные инструменты Windows. Для этого выполните следующие действия:

  • Правой кнопкой мыши кликните по значку «Мой компьютер» и выберите меню «Свойства» . Найдите пункт «Дополнительные параметры» . Откроются свойства системы.

Система

  • Попасть в них можно и другим способом. Откройте диалоговое меню: «Выполнить» и в нем наберите:
  • На вкладке «Дополнительно» найдите категорию, которая посвящена загрузке и восстановлению системы. После чего нажмите на кнопку «Параметры» .
  • В блоке «Отказ системы» найдите графу запись отладочной информации и выберите подходящий тип дампа. Для Windows 10 по умолчанию используется Автоматический.

Загрузка и восстановление

Загрузка и восстановление

  • По желанию дамп можно отключить. Для этого в выпадающем списке выберите «Нет» . После этого система не будет делать резервные копии.
Учтите, что это может привести к безвозвратной потери важных данных.

Нажмите «Ок» , как только внесете все необходимые изменения, чтобы они вступили в силу. Как только тип дампа будет выбран, можно приступать к изменению объема виртуальной памяти.

Как изменить объем виртуальной памяти через быстродействие

Запустите системную утилиту «Выполнить» одновременным нажатием клавиш Windows+R или откройте ее через Пуск. После этого:

и нажмите «Ок» .

  • Перейдите на вкладку «Дополнительно» и найдите здесь категорию «Быстродействие» .

Свойства системы

  • Кликните по серой кнопке «Параметры» . Откроется новое окно. Здесь перейдите на вкладку «Дополнительно» .
  • В нижней части экрана будет указан объем виртуальной памяти. Нажмите «Изменить» , чтобы ввести другой параметр и увеличить, либо уменьшить размер файла подкачки.

Параметры быстродействия

По умолчанию система определяет размер полностью в автоматическом режиме. Это наиболее оптимальная опция для Windows. При изменении объема свапа вручную важно, чтобы новый размер виртуальной памяти был не менее существующего, в противном случае возможны сбои в работе ПК.

После увеличение размера свапа перезагрузка не требуется. Если же он был наоборот уменьшен, то устройство необходимо обязательно перезапустить.

Как добавить виртуальную память на Windows

Как правило, среднестатистическому пользователю достаточно того объема ВП, которая выделяется устройством автоматически. Если на ПК мало физической RAM, то увеличить ее объем можно за счет свапа.

Для этого:

  • Правой кнопкой мыши кликните по значку «Мой компьютер» и в выпадающем списке выберите графу «Свойства» .
  • Откроется окно для работы с параметрами. В левой части экрана найдите надпись «Дополнительный параметры системы» .
Для этого необходимы права администратора. При появлении запроса на ввод пароля, укажите его, после чего продолжите изменение параметров.
  • Здесь найдите «Быстродействие» и через меню «Параметры» откройте дополнительные свойства. На отразившейся вкладке выберите «Изменить» напротив «Виртуальная память» .
  • Уберите галочку напротив графы «Автоматически выбирать объем файла подкачки» . После этого станут доступны остальные пункты.

Параметры быстродействия

  • Выберите диск, на котором много свободного места и чьи ресурсы будут использоваться для создания файла подкачки.
  • Отметьте пункт «Указать размер» , после чего добавьте значение в пустое поле. При этом число в поле «Максимальный» должно быть в 1,5 раза, чем в поле «Исходный» .

Как только закончите работу, подтвердите действия нажатием кнопки «Ок» . Все изменения автоматически вступят в силу.

В некоторых случаях увеличение Virtual Memory помогает повысить скорость работы ПК, увеличить общее быстродействие.

Рекомендации по использованию виртуальной памяти

VMMAP - Sysinternals

Если вы не знаете, какой оптимальный объем для свапа выбрать и на что это будет влиять, то далее мы предлагаем ознакомиться вам с небольшими советами, которые помогут увеличить быстродействие ПК.

Итак, рассмотрим ряд советов:

  • Если на устройстве используется несколько HDD или SSD, то для свапа указывайте тот диск, который не являетсясистемным. Здесь не должна быть установлена операционная система. В итоге это значительно повысит общую скорость работы.
  • Создавать можно несколько файлов подкачки. Если вы используете дамп, то хотя бы один свап должен находиться на системном диске. Для всех остальных случаев делать это не обязательно.
  • Если у вас несколько винчестеров с разными физическими параметрами, то выбирать следует тот, который отличается лучшими показателями скорости работы. Узнать это можно из технических характеристик HDD.
  • Если жесткий диск разбит на несколько разделов, то для файла подкачки следует выбирать тот, который является основным (первым). К этому участку есть мгновенный доступ, что серьезно влияет на скорость работы.
  • Не бойтесь указать слишком большой размер для файла подкачки. Если физический размер HDD позволяет это сделать, то выделите ВП от 4 объемов от существующей RAM. Слишком низкий показатель может привести к появлению ошибок, критическому завершению работы некоторых приложений (с потерей данных).
  • Старайтесь ограничивать минимальный объем swap файла. Это позволит избежать его постоянной фрагментации. Если вы используете компьютер для работы с ресурсозатратным ПО или он работает в качестве сервера для хранения баз данных, то размер файла подкачки должен составлять 2-3 полных объема ОЗУ. Во всех остальных случаях он должен быть равен RAM или быть больше в 1,5 раза.

После манипуляций с настройками компьютера и изменением размера ВП лучше перезагрузить компьютер (хотя это не всегда обязательно) и запустить специальную утилиту для дефрагментации. Это поможет переместить его ближе к началу раздела, чтобы система получала к нему моментальный доступ.

Так же подробно про ВП можно посмотреть в видеоролике ниже:

Виртуальная память или файл подкачки

В видео рассматривается оптимальный размер файла подкачки

Сегодня мы ответили на вопрос «Виртуальная память, что это? И для чего она нужна?». Она помогает значительно повысить быстродействие системы и используется для хранения информации при сбоях. По умолчанию объем файла подкачки регулируется Windows полностью в автоматическом режиме.

Если пользователь хочет указать его самостоятельно, то для этого необходимо учесть выбранный тип дампа (либо отключить его). Объем виртуальной памяти зависит от дампа и общего объема RAM.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Читайте также: