Все числа в компьютере представляются с помощью нулей и единиц а не десяти

Обновлено: 06.07.2024

Основной принцип хранения информации можно сформулировать следующим образом: сохраненная информация всегда имеет форму "следа", оттиска на каком-нибудь носителе.

Тип носителя роли не играет. Это может быть камень, дерево , бумага, магнитная лента или фотопленка. След в форме некоторого знака на камне, дереве и бумаге может быть нанесен непосредственно человеческой рукой, вооруженной резцом, кистью или карандашом. Он виден невооруженным взглядом и может быть легко прочитан.

Использование в качестве носителей информации фотопленки, магнитной ленты и лазерного диска требует специальных устройств - преобразователей информации. Так, для записи информации на фотопленку требуется фотоаппарат, а для считывания информации - проектор. Магнитные запись и считывание информации осуществляются с помощью магнитофона.

Характерной чертой всех этих типов носителей является необходимость наличия специальных технических устройств как для записи, так и для считывания информации. Это означает возможность механизации и автоматизации процессов записи и чтения информации, делает их независимыми от присутствия человека.

Сегодня совершенствование компьютера как универсального средства обработки информации привело к созданию целого ряда устройств, специально предназначенных для хранения информации в электронной форме.

Такие современные материалы, как фотопленка и магнитная лента, способны удовлетворить большинству требований, но они не лишены недостатков. Общеизвестно, что со временем фотоснимки темнеют, прослушивание грампластинок сопровождается потрескиванием, а магнитные записи начинают "шуметь" после многократного проигрывания. Сегодня самый распространенный способ хранения информации - магнитная запись. Но и она может быть испорчена под воздействием температуры или магнита. Для хранения небольших порций информации используют гибкие магнитные диски ( floppy disks ), на смену которым приходят Zip дискеты. Для хранения больших объемов информации применяют " жесткие " диски ( hard disks), иногда называемые винчестерами.

Со временем объем информации, с которой работал человек и которую ему надо передать другому человеку, возрастал. Это привело к созданию нового типа носителя - лазерного диска.

Лазерный диск - трехслойный диск , изготовленный из стекла или прочной пластмассы. В нем между двумя тонкими защитными слоями пластмассы (стекла) помещен тонкий слой металлической фольги из серебра или даже из золота. Запись информации на такой диск осуществляется лучом лазера. Но записать информацию на лазерный диск можно всего один раз.

В последние годы найдены материалы, сочетающие в себе достоинства магнитного и оптического носителей и позволяющие перезаписывать информацию, хранящуюся на диске. Основными достоинствами магнитооптических дисков являются большая информационная емкость, компактность, мобильность, возможность перезаписи хранящейся информации.

Подробнее об устройствах, предназначенных для хранения информации на ЭВМ, рассказывается в разделе "Периферийные и внутренние устройства".

Кодирование информации

Кодирование информации - это процесс формирования определенного представления информации.

В более узком смысле под термином " кодирование " часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (например, звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. Например, чтобы перевести в числовую форму музыкальный звук, можно через небольшие промежутки времени измерять интенсивность звука на определенных частотах, представляя результаты каждого измерения в числовой форме. С помощью программ для компьютера можно выполнить преобразования полученной информации, например "наложить" друг на друга звуки от разных источников.

Аналогичным образом на компьютере можно обрабатывать текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать ) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов.

Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми. Ввод чисел в компьютер и вывод их для чтения человеком может осуществляться в привычной десятичной форме, а все необходимые преобразования выполняют программы, работающие на компьютере.

Единицы измерения информации

Решая различные задачи, человек вынужден использовать информацию об окружающем нас мире. И чем более полно и подробно человеком изучены те или иные явления, тем подчас проще найти ответ на поставленный вопрос. Так, например, знание законов физики позволяет создавать сложные приборы, а для того, чтобы перевести текст на иностранный язык, нужно знать грамматические правила и помнить много слов.

Однако иногда возникает ситуация, когда людям сообщают много новых для них сведений (например, на лекции), а информации при этом они практически не получают (в этом нетрудно убедиться во время опроса или контрольной работы). Происходит это от того, что сама тема в данный момент слушателям не представляется интересной.

Если подбросить монету и проследить, какой стороной она упадет, то мы получим определенную информацию. Обе стороны монеты "равноправны", поэтому одинаково вероятно, что выпадет как одна, так и другая сторона. В таких случаях говорят, что событие несет информацию в 1 бит. Если положить в мешок два шарика разного цвета, то, вытащив вслепую один шар, мы также получим информацию о цвете шара в 1 бит .

Единица измерения информации называется бит ( bit ) - сокращение от английских слов binary digit, что означает двоичная цифра.

В компьютерной технике бит соответствует физическому состоянию носителя информации: намагничено - не намагничено, есть отверстие - нет отверстия. При этом одно состояние принято обозначать цифрой 0, а другое - цифрой 1. Выбор одного из двух возможных вариантов позволяет также различать логические истину и ложь . Последовательностью битов можно закодировать текст, изображение, звук или какую-либо другую информацию. Такой метод представления информации называется двоичным кодированием (binary encoding).

В информатике часто используется величина, называемая байтом ( byte ) и равная 8 битам. И если бит позволяет выбрать один вариант из двух возможных, то байт , соответственно, 1 из 256 (2 8 ). В большинстве современных ЭВМ при кодировании каждому символу соответствует своя последовательность из восьми нулей и единиц, т. е. байт . Соответствие байтов и символов задается с помощью таблицы, в которой для каждого кода указывается свой символ. Так, например, в широко распространенной кодировке Koi8 -R буква "М" имеет код 11101101, буква "И" - код 11101001, а пробел - код 00100000.

Наряду с байтами для измерения количества информации используются более крупные единицы:

1 Кбайт (один килобайт ) = 2 10 байт = 1024 байта;

1 Мбайт (один мегабайт ) = 2 10 Кбайт = 1024 Кбайта;

1 Гбайт (один гигабайт ) = 2 10 Мбайт = 1024 Мбайта.

Пример. Книга содержит 100 страниц; на каждой странице - 35 строк, в каждой строке - 50 символов. Рассчитаем объем информации, содержащийся в книге.

Русский язык,литература

Антонина Маслова

Антонина Маслова запись закреплена

2. Синтаксический анализ.
Прочитайте текст.
(1)Компьютер может обрабатывать только информацию, представленную в числовой форме. (2)Вся другая информация - как звуки, так и изображения - для обработки на компьютере должна быть преобразована в числовую форму. (3)Аналогичным образом на компьютере обрабатывается и текстовая информация: при вводе в компьютер каждая буква кодируется определённым числом, а при переводе на внешние устройства по этим числам строятся соответствующие изображения букв. (4)Это соответствие между набором букв и числами называется кодировкой символов. (5)Все числа в компьютере представляются с помощью нулей и единиц, а не десяти цифр, как это привычно для людей. (6) Иными словами, компьютеры обычно работают в двоичной системе счисления.

3. Пунктуационный анализ.
Расставьте знаки препинания в предложении: укажите цифры, на месте которых в предложении должны стоять запятые.
Все еще сильные (1) мало тронутые рукой человека(2) леса стояли в этот час неподвижно(3) можно было бы сказать(4) что они сумрачны(5) и беззвучны(6) если бы беззвучие не пронизывалось то ближе(7) то дальше короткой перекличкой птиц(8) которые(9) словно переговаривались друг с другом.

4. Синтаксический анализ.
Замените словосочетание «еловая ветка», построенное на основе согласования, синонимичным словосочетанием со связью управление. Напишите получившееся словосочетание.

8. Лексический анализ.
Найдите в тексте контекстные антонимы к слову ЖИЗНЕРАДОСТНЫЙ (предложение 26).
Напишите один из них.
Часть 3
9.1. Напишите сочинение-рассуждение, раскрывая смысл высказывания известного лингвиста И.Н.Горелова: «Самое удивительное в том, что писатель-мастер умеет, взяв обычные, всем известные слова, показать, сколько оттенков смысла скрывается и открывается в его мыслях, чувствах». Аргументируя свой ответ, приведите 2 (два) примера из прочитанного текста. Приводя примеры, указывайте номера нужных предложений или применяйте цитирование. Вы можете писать работу в научном или публицистическом стиле, раскрывая тему на лингвистическом материале. Начать сочинение Вы можете словами И.Н.Горелова. Объём сочинения должен составлять не менее 70 слов.

9.2. Напишите сочинение-рассуждение. Объясните, как Вы понимаете смысл финала текста: «Шрам на ноге почти полностью зарубцевался, а вот сердце моё до сих пор кровоточит. И когда мне говорят: «Вам такой-то передал привет», я цепенею от ужаса и по моей спине пробегают мурашки» Приведите в сочинении 2 (два) аргумента из прочитанного текста, подтверждающих Ваши рассуждения. Приводя примеры, указывайте номера нужных предложений или применяйте цитирование. Объём сочинения должен составлять не менее 70 слов. Если сочинение представляет собой пересказанный или полностью переписанный исходный текст без каких бы то ни было комментариев, то такая работа оценивается нулём баллов.

9.3. Как Вы понимаете значение слова ПРЕДАТЕЛЬСТВО? Сформулируйте и прокомментируйте данное Вами определение. Напишите сочинение-рассуждение на тему «Что такое предательство», взяв в качестве тезиса данное Вами определение. Аргументируя свой тезис, приведите 2 (два) примера-аргумента, подтверждающих Ваши рассуждения: один пример-аргумент приведите из прочитанного текста, а второй – из Вашего жизненного опыта. Объём сочинения должен составлять не менее 70 слов. Если сочинение представляет собой пересказанный или полностью переписанный исходный текст без каких бы то ни было комментариев, то такая работа оценивается нулём баллов. Сочинение пишите аккуратно, разборчивым почерком.

(1). (2)Вся другая информация - как звуки, так и изображения - для обработки на компьютере должна быть преобразована в числовую форму, (З)Аналогичным образом на компьютере обрабатывается и текстовая информация: при вводе в компьютер каждая буква кодируется определённым числом, а при переводе на внешние устройства по этим числам строятся соответствующие изображения букв. (4)Это соответствие между набором букв и числами называется кодировкой символов. (5)Все числа в компьютере представляются с помощью нулей и единиц, а не десяти цифр, как это привычно для людей. (6).
Какое из приведённых ниже предложений должно быть первым в этом тексте?
1)Персональные компьютеры - это универсальные устройства для обработки информации.
2)Компьютер может обрабатывать только информацию, представленную в числовой форме.
3)Вся информация, предназначенная для долговременного пользования, хранится в файлах.
4)Информация в компьютере хранится в памяти или на различных носителях, например на гибких и жёстких дисках.
Какое из приведённых ниже предложений должно быть шестым в этом тексте?
1)Прежде всего, компьютеры обычно работают в двоичной системе счисления,
2)Однако компьютеры обычно работают в двоичной системе счисления.
3)Кроме того, компьютеры обычно работают в двоичной системе счисления.
10
4)Иными словами, компьютеры обычно работают в двоичной системе счисления.
Какие слова являются грамматической основой во втором (2) предложении текста?
1)информация - звуки, изображения
2)информация должна
3)информация должна быть преобразована
4)информация преобразована
Укажите верную характеристику второго (2) предложения текста
1)простое
2)сложносочинённое
3)сложное бессоюзное
4)сложноподчинённое
11
Укажите правильную морфологическую характеристику слова ПРЕОБРАЗОВАНА из второго (2) предложения текста.
1)действительное причастие
2)страдательное причастие
3)прилагательное
4)деепричастие
Укажите значение слова КОДИРУЕТСЯ в предложении 3.
1)воспроизводится в определённой последовательности
2)постоянно повторяется
3)записывается в виде текста
4)преобразуется с помощью определённых условных обозначений
В каком слове есть суффикс -ЧИК- со значением «маленький»?
1)шкафчик
2)мячик
3)пончик
4)огурчик

Какое из приведённых ниже предложений должно быть первым в этом тексте?
2) Компьютер может обрабатывать только информацию, представленную в числовой форме.
Какое из приведённых ниже предложений должно быть шестым в этом тексте?
4) Иными словами, компьютеры обычно работают в двоичной системе счисления.
Какие слова являются грамматической основой во втором (2) предложении текста?
3) информация должна быть преобразована
Укажите верную характеристику второго (2) предложения текста
1) простое
Укажите правильную морфологическую характеристику слова ПРЕОБРАЗОВАНА из второго (2) предложения текста.
2) страдательное причастие
Укажите значение слова КОДИРУЕТСЯ в предложении 3.

4) преобразуется с помощью определённых условных обозначений
В каком слове есть суффикс -ЧИК- со значением «маленький» ?
1) шкафчик

Первое лень сейчас читать, честно говоря, а остальное напишу
10) Грам. основа - информация должна быть преобразована
Второе предложение простое
11) Страдательное причастие
Кодируется - преобразуется с помощью ( ит. д)
ЧИК со значением "маленький" - только в слове шкафчик


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности



2. Раздавайте видеоуроки в личные кабинеты ученикам.


3. Смотрите статистику просмотра видеоуроков учениками.

Конспект урока "Представление чисел в компьютере"

На данном уроке мы с вами узнаем, как представляются целые и вещественные числа в компьютере.

А начнём мы с вами с целых чисел.

Как вы уже знаете, целые числа – это множество чисел, которое состоит из натуральных чисел, чисел, противоположных натуральным, и нуля.

Итак, оперативная память представляет собой таблицу, то есть состоит из ячеек.

Каждая ячейка оперативной памяти представляет собой физическую систему, которая состоит из некоторого числа однородных элементов. Эти элементы обладают двумя устойчивыми состояниями, которые соответствуют двум числам – нулю и единице. Каждый такой элемент предназначен для хранения одного из битов – разряда двоичного числа. Поэтому каждый элемент ячейки называется битом или разрядом.

То есть, можно сказать, что каждая ячейка оперативной памяти содержит число, представленное в двоичной системе счисления, так как вся информация представлена в памяти компьютера именно в этой системе счисления. Каждая ячейка также включает в себя некоторое количество клеточек (ячеек). В каждой клеточке содержится число ноль или один. Это зависит от того, какой код соответствует изначальному числу.

Давайте рассмотрим одну ячейку, которая состоит из n разрядов.

Она разбита на n клеточек. n обозначает количество разрядов или битов, отведённых под исходное число. Первая клеточка слева – это (n-1)-й разряд. Вторая – (n-2)-й разряд и так далее. Последняя клеточка – это 0-й разряд.

Можно сказать, что разряд – это степени для числа два в двоичной системе счисления.

Для представления целых чисел в компьютере существует несколько различных способов, которые отличаются друг от друга количеством разрядов и наличием или отсутствием знакового разряда. Обычно под целые числа отводится 8, 16, 32 или 64 разряда или бита.

Существует беззнаковое и знаковое представление чисел. Беззнаковое представление можно использовать только для неотрицательных чисел, отрицательные же числа представляются только в знаковом виде.

Беззнаковое представление используется для таких объектов, как адреса ячеек; счётчиков, например, количество символов в тексте; чисел, которые обозначают дату и время; размеров графических изображений в пикселях и много другое.

Для этих данных используется беззнаковое представление, так как они никак не могут быть отрицательными числами.

Давайте рассмотрим таблицу максимальных значений для беззнаковых целых n -разрядных чисел:

В первом столбце указано количество битов, во втором минимальное значение, а в третьем – максимальное значение.

Минимальное значение во всех строка равно нулю. А вот максимальное вычисляется по формуле 2 n – 1. То есть максимальное восьмиразрядное число будет равно 255.

2 8 – 1 = 256 – 1 = 255.

Максимальное значение целого неотрицательного числа достигается в том случае, когда во всех разрядах ячейки хранятся единицы.

Давайте разберёмся на примере.

Возьмём восьмиразрядную ячейку и поместим в неё максимально допустимое число 255.

Исходя из этого можем сказать, что наша ячейка состоит из 8 разрядов или клеточек. При переводе числа 255 в двоичную систему счисления получим 8 единиц. То есть в каждой клеточке будет содержаться по единице.

Число разрядов n=8. Давайте над каждой клеточкой расставим соответствующий разряд начиная с крайней левой.

Давайте вспомним общий вид нашей ячейки.

То есть ячейка из n разрядов, в нашем случае 8, состоит из n клеточек (снова из 8), а каждый разряд вычисляется по формуле n – 1, n – 2 и так далее. В зависимости от того, на каком месте находится ячейка.

А если мы возьмём все наши единицы и проставим над ними наши разряды, то мы можем перевести наше число из двоичной системы счисления в десятичную уже известным нам образом.

Если же брать число 256, то мы не сможем поместить его в восьмиразрядную ячейку, так как оно будет состоять из единицы и восьми нулей, а клеточек у нас 8.

Если мы возьмём число 65 535, то в двоичной системе счисления оно будет состоять из 16 единиц. А если шестнадцатиразрядную ячейку снова представить, как строку, состоящую из 16 клеточек и расставить соответствующие разряды, то она будет выглядеть следующим образом:

Для получения компьютерного представления беззнакового целого числа достаточно перевести его в двоичную систему счисления и дополнить полученный результат слева нулями до стандартной разрядности.

Давайте рассмотрим, как будет выглядеть число 125 в восьмиразрядном и шестнадцатиразрядном представлениях. Для этого переведём наше число в двоичную систему и получим следующее:

Наше число состоит из 7 цифр. Поместим его в восьмиразрядную ячейку.

Но ячеек 8, а цифр 7. В таком случае помещаем наше число в крайние справа семь ячеек, а в первую левую запишем ноль.

Он не повлияет на наше число, но все разряды ячейки должны быть заполнены цифрами.

А если мы поместим это же число в шестнадцатиразрядную ячейку, то получим 9 ячеек слева, заполненных нулями, а в остальных 7 будет располагаться наше число.

То есть можно сказать, что мы записываем наше число в двоичной системе счисления, а затем дополняем эту двоичную запись незначащими нулями слева в зависимости от того, из скольких разрядов состоит наше представление числа.

Это то, что касается беззнакового представления чисел.

При представлении числа со знаком (плюсом, если это положительное число, и минусом, если это отрицательное число) самый старший разряд, то есть тот, который находится слева, отводится под знак числа, а остальные разряды – под само число. Если число положительное, то в самый старший разряд (самую левую клеточку) пишется цифра 0, а если отрицательное, то 1.

Такое представление чисел называется прямым кодом. Такие коды в компьютере используются для хранения положительных чисел в запоминающих устройствах, для выполнения операций с положительными числами.

Например, число 56 в двоичной системе будет равно: 1110002.

Оно в себя включает 6 цифр. Запишем его в восьмиразрядную ячейку.

Две оставшиеся слева клеточки заполним нулями, так как число положительное.

А если бы наше число было отрицательным, то оно выглядело бы следующим образом.

В старший разряд мы поставили единицу, так как число отрицательное.

Для выполнения операций с отрицательными числами используется дополнительный код, который позволяет заменить операцию вычитания сложением.

Дополнительный код целого отрицательного числа может быть получен по следующему алгоритму:

· записать прямой код модуля числа;

· инвертировать его (заменить единицы нулями, нули – единицами);

· прибавить к инверсному коду единицу.

Давайте рассмотрим применение этого алгоритма на примере.

Нам дано число –25. При переводе в двоичную систему модуля числа получим следующее число: 110012.

Теперь смотрим на первый пункт. Нам необходимо записать прямой код модуля числа. Возьмём восьмиразрядный код. То есть наше число будет записано в клеточки, а в трёх пустых клеточках слева от него – нули.

Далее во втором пункте нам необходимо инвертировать наше число, то есть заменить единицы нулями, а нули – единицами. Получим следующее:

Теперь нам осталось, исходя из третьего пункта, прибавить к числу единицу. Получим следующее число:

Всё, что говорилось ранее, относилось к представлению целых чисел. Для представления вещественных чисел используется немного другой способ. Давайте рассмотрим его.

Любое вещественное число A может быть записано в экспоненциальной форме:

m – мантисса числа.

q – основание системы счисления.

p – порядок числа.

Возьмём для примера число 1 345 572. Его можно представить различными способами:

С экспоненциальной формой записи вы наверняка уже встречались. Например, считая на калькуляторе, вы могли получить следующее число: 1,34Е + 6.

Оно обозначает следующее: 1,34 · 10 6 . То есть знак Е – это основание десятичной системы счисления.

Из примера, можно сделать вывод, что положение запятой может изменяться.

Для единообразия мантиссу обычно записывают как правильную дробь, которая имеет после запятой цифру, отличную от нуля. То есть наше число 1 345 572 будет выглядеть следующим образом: 1 345 572 = 0,1345572 • 10 7 .

Вещественное число может занимать в памяти компьютера 32 или 64 разряда.

То есть наша ячейка в памяти может состоять из 32 или 64 клеточек. При этом выделяются разряды для хранения знака мантиссы, знака порядка, порядка и мантиссы.

Давайте разберёмся на примере. Возьмём число 125 в десятичной системе счисления и запишем её в тридцатидвухразрядную ячейку.

Для начала нам нужно перевести число 125 в двоичную систему счисления. Получим следующее: 12510 = 11111012.

Теперь запишем это число в экспоненциальной форме.

Ставим равно. Мантиссой числа будет следующее: 0,1111101.

Ставим знак умножения. q – это основание системы счисления. В нашем случает это двоичная система счисления. Число 2 в двоичной системе счисления будет состоять из цифр 1 и 0. Запишем его.

11111012 = 0,1111101 · 10.

p – это порядок числа или же степень. Мы с вами перенесли наше число на семь знаков вправо после запятой. Значит наше p будет равно 7. При переводе числа семь в двоичную систему счисления получим следующее:

11111012 = 0,1111101 · 10 111 .

Мы с вами записали двоичное число в экспоненциальной форме.

Теперь перенесём всё в клеточки ячейки памяти, размером 32 разряда.

Под знак и порядок выделяется восемь клеточек, под знак и мантиссу двадцать четыре.

Первую клеточку слева выделяем под знак. Так как наше число положительное, то ставим цифру 0.

В разделе «Знак и порядок» запишем число 7 в двоичной системе счисления. Оставшиеся клеточки заполним нулями.

Теперь переходим к разделу «Знак и мантисса». В первой слева снова ставим цифру ноль, которая обозначает, что знак нашего числа положительный.

Далее запишем наше число, а оставшиеся клеточки заполним нулями.

Мы записали наше число в тридцатидвухразрядную ячейку.

Диапазон представления вещественных чисел определяется количеством разрядов, отведённых для хранения порядка чисел, а точность – количеством разрядов, отведённых для хранения мантиссы.

Давайте рассмотрим следующий пример:

В нём максимальное значение порядка числа составляет: 11111112 = 12710.

Следовательно, максимальное значение числа будет равно: 0,11111111111111111111111 · 10 111 .

Широкий диапазон представления вещественных чисел важен для решения научных и инженерных задач. Но в тоже время алгоритмы обработки таких чисел более трудоёмки по сравнению с алгоритмами обработки целых чисел.

А теперь пришла пора подвести итоги урока.

Сегодня мы узнали, как представляются целые и вещественные числа в компьютере, а также научились преобразовывать числа в ячейки памяти, учитывая разрядность ячейки.

Читайте также: