Замена резистора на материнской плате

Обновлено: 05.07.2024

Очень частой неисправностью для этой модели является следующий случай: Mac вдруг неожиданно перестает работать от блока питания, на штекере блока не загорается индикатор, аккумулятор не заряжается. На первый взгляд очень похоже что “сгорел” блок питания. Замена блока питания не помогет. И, таким образом, MacBook работает до тех пор, пока не разрядится аккумулятор. После этого он не включится.

Данная неисправность на первой взгляд не является сложной, ведь если Mac нормально работает от заряженного аккумулятора, напрашивается вывод, что все основные цепи и узлы исправны, и дело в том, что напряжение от блока просто не доходит до платы (из серии что сгорел какой-нибудь предохранитель или элемент по входной цепи питания). Если человек обладает более или менее необходимыми знаниями в электронике, он разберет MacBook, возьмет тестер и начнет измерять напряжения на плате, и тут окажется что не все так просто: необходимые напряжения присутствуют, но Mac все равно не работает от блока. Почему же так происходит?

Дело вот в чем… Apple использует в своих ноутбуках интеллектуальные блоки питания, а это значит, что, помимо напряжения питания, есть информационный канал. В штекере блока расположена микросхема которая “общается” c мультиконтроллером (SMC) на мат.плате. Микросхема имеет область памяти в которую записаны данные о блоке (производитель, серийный номер, мощность и т.д), и, пока мак не “прочитает” эту информацию, он не будет работать от блока.

Таким образом причиной нашей поломки является разрыв связи блок — мультиконторллер(SMC), а ремонт заключается в восстановлении этой цепи. Для ремонта такого уровня нужна принципиальная схема материнской платы. На рисунке представлена часть схемы, отвечающая за эту цепь. Рассмотрим ее более подробно.

image

Информационный сигнал ADAPTER SENSE через защитный нулевой резистор R6928 попадает на переходной сдвоенный транзистор Q6920, а с него идет уже на мультиконтроллер(SMC).Управление транзисторм происходит через цепочку, состоящую из транзисторов Q6910,Q6915 и компаратора U6915. Такая усложненная схемотехника передачи информационного сигнала выполняет защитную функцию. Минусом ее является, то что выгорание любого элемента приведет к разрыву связи.

Диагностика и ремонт сводятся к определению сгоревшего элемента и последующей замене. Рассказывать более подробно об этом не имеет смысла, так как для специалиста очевидны эти методы, достаточно иметь схему, а людям, никогда не державшим в руках паяльник, под нижней крышкой Макбука делать категорически нечего. Стоит отметить, что чаще всего выгорает сдвоенный транзистор Q6910 (наблюдения из практики). Он расположен по входной цепи питания, поэтому скачок напряжения или статический разряд при подключении блока могут его «спалить». В самом худшем случае может сгореть мультиконтроллер.

Сложность в том что «мультяки» в маках имеют свою прошивку, и, если его заменить на новый, он будет “пустым” и не заработает.Считать прошивку, насколько мне известно, пока ни у кого не получилось, и взять ее тоже неоткуда. Таким образом, для ремонта нужна будет плата “донор” с рабочим мультяком.

В последнее время подрабатывал на дому выполнением ремонтов электроники. Ремонтируя как технику знакомых, так и выкупленную на местном форуме (Авито и Юле), с целью реализации. Занимался всем на что хватало опыта и знаний: от бытовой аудио-видео, до компьютерной техники.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Мосфеты цепи питания процессора

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Дросселя питания процессора

Для того чтобы электролитические конденсаторы установленные по цепям питания процессора и находящиеся рядом с радиатором процессора (кулером) не вздулись от перегрева, необходимо эффективно отводить выделяемое при работе процессора тепло, иначе говоря требуется эффективная система охлаждения. Но вернемся к сути ремонта.

Мосфет транзистор фото

Мосфет транзистор фото

Если система охлаждения не справляется, то помимо конденсаторов греются еще и установленные на плате мосфеты, транзисторы многофазной системы питания процессора. Количество фаз питания составляет от трех на бюджетных материнских платах, до 4-5 и более в более дорогих, топовых игровых материнках.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Что происходит, когда один из этих квадратиков, полевых транзисторов мосфетов, оказывается пробит? Многие пользователи ПК встречались наверное с подобной поломкой: нажимаешь кнопку включения на корпусе системного блока, кулера дергаются, пытаются начать вращаться и останавливаются, а при повторной попытке включить все повторяется снова.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Провод 4 пин питания процессора

Что это означает? Что в цепях питания процессора где-то короткое замыкание, а скорее всего пробит один из этих самых мосфетов. Как самым простым способом попробовать определить один из вариантов, ваш ли это случай, доступным даже школьнику практически не умеющему обращаться с мультиметром?

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Распиновка разъема 4 пин

Если при установленном процессоре отключить на материнской плате разъем дополнительного питания процессора 4 pin и посмотрев по цветам где у нас находится желтый провод +12 вольт, и черный, земля, или GND, и установив на мультиметре режим звуковой прозвонки прозвонить на данном разъеме материнской платы между желтым и черным проводами у нас зазвучит звуковой сигнал, это означает что пробит один или несколько мосфетов.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Монтаж транзистора на материнке

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Процессор, проводя измерения с помощью мультиметра на мосфетах нужно вынимать, так как он имеет низкое сопротивление, которое может ввести в заблуждение при измерениях. Так вот, выпаяв из схемы дроссель мы исключаем то самое влияющее всегда на правильность результатов измерений сопротивление всех, параллельно включенных радиодеталей. Сопротивление, как известно, всегда считается при параллельном соединении, по правилу “меньше меньшего”.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Схема питания процессора

Иначе говоря, общее сопротивление всех подключенных параллельно радиодеталей будет меньше, чем сопротивление детали имеющей самое меньшее сопротивление, стоящей в нашей цепи при параллельном соединении.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Итак, виновник КЗ (короткого замыкания) цепи питания найден, теперь нужно его устранить. Как это сделать, ведь паяльный фен есть в домашней мастерской не у всех начинающих радиолюбителей? Для начала нам потребуется демонтировать, выпаять с платы установленные обычно вплотную электролитические конденсаторы которые будут мешаться нам при демонтаже и к тому очень не любят перегрева.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Паяльник ЭПСН 40 ватт фото

После чего у них обычно резко сокращается срок службы. Сам демонтаж конденсаторов, если учитывать некоторые нюансы, легко выполняется при помощи любого паяльника мощностью 40-65 ватт. Желательно имеющего обработанное, заточенное в конус жало. Сам я имею паяльную станцию Lukey и паяльный фен, но пользуюсь для демонтажа конденсаторов обычным паяльником 40 ватт ЭПСН с жалом заточенным в острый конус.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Паяльный фен фото

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Диммер на шнур 220В

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

ПОС 61 припой с канифолью

Если с конденсаторами эта процедура не имеет никаких сложностей, за исключением одной фишки применяемой для того, чтобы снизить общую температура плавления бессвинцового припоя, имеющего, как известно, более высокую температуру плавления чем припой применяющийся для пайки электроники ПОС-61.

Так вот, мы берем трубчатый припой с флюсом ПОС-61, желательно диаметром не более 1-2 миллиметров, подносим его к контакту конденсатора с обратной стороны платы и прогревая, расплавив его, осаждаем припой на каждом из двух контактов конденсатора. С какой целью, мы производим эти действия?

  1. Цель первая: путем диффузии сплавов смешения бессвинцового припоя и ПОС-61, мы понижаем общую темперауру плавления образовавшегося сплава.
  2. Цель вторая: чтобы максимально эффективно передать тепло от жала паяльника к контакту, мы условно говоря, греем контакт небольшой капелькой припоя, передавая тепло при этом намного эффективнее.
  3. И наконец, цель третья: когда нам требуется очистить после демонтажа конденсатора отверстие в материнской плате для последующего монтажа, не важно при замене конденсатора или монтаже обратно, как в этом случае этого же конденсатора, мы облегчаем этот процесс проткнув отверстие в расплавленном припое предварительно снизив общую температуру сплава внутри нашего контакта.

Здесь нужно сделать еще одно отступление: для этой цели многие радиолюбители применяют различные подручные средства, кто-то деревянную зубочистку, кто-то заостренную спичку, кто-то иные предметы.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Алюминиевый конический пруток

С его помощью нам достаточно прогревая контакт вставить пруток поглубже в отверстие контакта. Причем данное действие следует проводить без фанатизма, всегда помня о том, что материнская плата это многослойная плата, а контакты внутри имеют металлизацию, иначе говоря металлическую фольгу, сорвав которую если вы недостаточно прогрели контакт или резко вставили предмет которым прочищали отверстие в контакте, вы можете привести материнскую плату или любое другое устройство имеющее подобную сложную конструкцию печатной платы в устройство, уже не подлежащее ремонту.

Итак, все трудности преодолены, конденсаторы успешно демонтированы, переходим наконец к замене наших мосфетов, то есть цели нашей статьи. Собственно любая процедура замены детали подразумевает собой три этапа: сначала демонтаж, затем подготовка платы к последующему монтажу, и наконец сам монтаж новой детали или ранее демонтированной с донорской платы этим или другим способом.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Ни в коем случае нельзя использовать паяльники с мощностью 40-65 ватт, особенно дедушкины в виде топора для монтажа мосфетов на плату (по крайней мере при отсутствии диммера с помощью которого мы сможем понизить температуру жала паяльника). В начале статьи было упоминание о варианте демонтажа мосфетов для начинающих не имеющих в мастерской паяльного фена, сейчас разберем этот вариант подробнее.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Сплав Вуда фото

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Причем со стороны Стока, среднего контакта имеющего большую площадь соприкосновения с платой, мы наносим значительно больше данного сплава. Цель данной операции? Также как и в случае с нанесением сплава ПОС-61, мы снижаем, причем на этот раз значительно существеннее, общую температуру плавления припоя, облегчая тем самым условия демонтажа.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Демонтаж микросхем без фена

Данная операция требует аккуратности от исполнителя для того чтобы при демонтаже не оторвать пятаки контактов с платы, поэтому если чувствуем что прогрели недостаточно, а греть требуется попеременно быстро меняя жало паяльника у этих трех контактов, немного покачивая пинцетом деталь, разумеется без фанатизма. Произведя данную операцию 3-5 раз уже будешь машинально чувствовать когда контакты детали достаточно прогреты, а когда еще нет.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Демонтаж с помощью оплетки

У данного способа демонтажа есть один минус, но при наличии опыта это не становится проблемой: перегрев при демонтаже мосфетов с плат доноров. В случае если же вы приобрели новый мосфет в радиомагазине и уверены в том, что демонтируете пробитый мосфет, перегрев становится не очень критичен. После демонтажа следует обязательно убедиться в том, пропало ли замыкание на контактах мосфета на плате, редко но к сожалению иногда случается и так, что наш якобы пробитый мосфет был ни при чем, а влияли драйвер или ШИМ контроллер на результаты измерений, которые и пришли в негодность. В данном случае без помощи паяльного фена будет не обойтись.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Корпус SO-8 микросхема

Лично демонтировал много раз данным способом микросхемы в корпусе SO-8, применяя на контактах с полигонами иногда паяльник мощностью 65 ватт и немного убавив его мощность диммером. Результат при аккуратности исполнителя практически 100% успешный. Для микросхем в SMD исполнении, имеющим большее количество ног, данный способ к сожалению бесполезен, потому что прогреть большее количество ножек без специальных насадок проблематично и очень высока вероятность оторвать пятаки контактов на плате.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Затем нужно дать раствору – флюсу настояться двое-трое суток до растворении канифоли в спирте, периодически многократно взбалтывая, не давая выпасть в осадок. Данный флюс наношу с помощью кисточки от лака для ногтей, соответственно налив получившийся флюс в очищенную от следов лака 646 растворителем бутылочку. Грязи на плате остается при использовании этого флюса в разы меньше, чем от всяких китайских флюсов, типа BAKU или RMA-223.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Делаем спиртоканифольный флюс

Ту же, которая все-таки останется, мы убираем с платы с помощью 646 растворителя и обычной кисточки для уроков труда. Данный способ по сравнению с удалением следов флюса даже с помощью 97% спирта имеет ряд преимуществ: быстро сохнет, лучше растворяет и оставляет меньше грязи. Рекомендую всем как отличное бюджетное решение.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

646 растворитель фото

Единственное замечу: будьте аккуратнее с пластмассовыми деталями, не наносите на графитовые контакты, типа как встречаются на платах пультов и потенциметров, и никогда не торопитесь, дайте хорошенько просохнуть плате, особенно если есть риск затекания растворителя под стоящие рядом SMD и тем более BGA микросхемы.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Графитовые контакты платы пульта

Среди Нулевых Резисторов отмеченных одним 0 или 000 нулями попадаются и особо важные НУЛЕВЫЕ РЕЗИСТОРЫ зеленого цвета .

Нулевые резисторы бывают очень разными, но всегда имеют НЕ НУЛЕВОЕ СОПРОТИВЛЕНИЕ

Как видно на фотографии даже некоторые Индуктивности иногда помечаются ровно так как "нулевые резисторы" тремя нулями.

Если у обычных SMD резисторов с обозначением 0, 00 или 000 сопротивление всё таки присутствует (вопреки утверждениям многих блогеров), то у зеленого это сопротивление действительно стремится к 0 .

Малое сопротивление таких резисторов - необходимость , но заменять их перемычками нельзя! Ведь они выполняют функцию тех самых элементов которые раньше запаивались в стеклянные трубочки или керамические корпуса и назывались " Плавкими вставками " а в простонародье Предохранителями .

В наши дни предохранители стали сложнее и многие из них имеют свойства самовосстанавливаться, но некоторые даже в современных компьютерах остались такими, что перегорают , благодаря специальному пережигающему транзистору и спасают устройства от перегрузок по току.

Так на материнских платах современных персональных компьютеров, возле разъемов USB есть такие плавкие предохранители рассчитанные на 0.5 ,1.0, 2.0 ампера тока.

Часто именно эти предохранители и становятся причиной нерабочих USB портов в результате подключения к компьютерному разъему USB нагревателей для кружек, вентиляторов или внешних Дисков с большим токопотреблением.

Проверить такой Зеленый резистор на проводимость можно даже не выпаивая,- достаточно подключить к нерабочему порту флешку и измерить на контактах резистора напряжение.

Если напряжение присутствует и оно больше вольта, то предохранитель уже сгорел и его стоит поменять.

А ЗНАЕТЕ ЛИ ВЫ О ТОМ, ЧТО СУЩЕСТВУЮТ ГОЛУБЫЕ РЕЗИСТОРЫ ?
и эти резисторы обязательно ставят параллельно по три !

Любой, кто разбирал компьютер, видел как много различных элементов на материнской плате, в этой статье я постараюсь кратко описать и показать основные компоненты, устанавливаемые на материнские платы современных компьютеров.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Или мосфет. Обычно используется для усиления, генерации и преобразования электрических сигналов. В общем случае транзистором называют любое устройство, которое имитирует главное свойство транзистора - изменения сигнала между двумя различными состояниями при изменении сигнала на управляющем электроде.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Резистор - это пассивный элемент радиоэлектронной аппаратуры, предназначенный для создания в электрической цепи требуемой величины электрического сопротивления, обеспечивающий перераспределение и регулирование электрической энергии между элементами схемы.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Электролитические конденсаторы схожи с аккумуляторами, но в отличии от которых выводят весь свой заряд в крошечные доли секунды. Используются, чтобы выровнять напряжение или блокировать постоянный ток в цепи.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Керамические SMD, танталовые, ниобиевые и др. Лучше для электроники, которая не требует высокой интенсивности работы.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Светодиод (LED). В основном LED - крошечные лампочки.

Катушки и индуктивности

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Индуктор (дроссель) - обмотка провода, катушка, используется для смягчения скачка тока при запуске. Зачастую стоят перед процессором.

Генератор тактовых частот.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Генератор тактовых частот (клокер) — устройство, формирующее тактовые частоты, используемые на материнской плате и в процессоре.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Кварц перемещает энергию назад и вперед между двумя формами в равные доли времени. Задаёт частоту работы всей электрической схемы.

SuperIO (SIO, MultiIO, MIO, "мультик").

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Третья по значимости и размеру микросхема на материнской плате – после мостов. Отвечает за порты ввода-вывода (COM, LPT, GamePort, инфракрасный порт, PS/2 для клавиатуры и мыши и др.). Является микроконтроллером (выполняет часть прошивки биос), выродился из контроллера клавиатуры, но в современных платах выполняет множество важных функций. Он например мониторит сигналы с Шим и когда убедится что всё ОК с питанием - даёт южному мосту команду "нажали на вкл, запускайся", ещё он управляет режимами S0-S5. На текущий момент это его основной функционал, а функции ввода - вывода - отмирающий придаток. Зачастую обладает дополнительным функционалом:

встроенный Hardware Monitoring

контроллер управления скоростью вентиляторов

интерфейс для подключения CompactFlash-карт.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

ШИМ-контроллер (от Широтно-Импульсная Модуляция) - главная микросхема, управляющая напряжением на материнской плате.

Мосты (северный и южный).

Северный мост (MCH).

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Одним из основным составляющим компонентом материнской платы будь то компьютера либо ноутбука является Северный мост (англ. Northbridge; в отдельных чипсетах Intel, также — контроллер-концентратор памяти с английского Memory Controller Hub)

MCH является системным контроллером чипсета на материнской плате платформы x86, к которому в рамках организации взаимодействия подключено следующие оборудование:

1. через Front Side Bus — микропроцессор, если в составе процессора нет контроллера памяти, тогда через шину контроллера памяти подключена— оперативная память.

2. через шину графического контроллера — видеоадаптер (в материнских платах нижнего ценового диапазона, видеоадаптер часто встроенный. В таком случае северный мост, произведенный Intel, называется GMCH (от англ. Chipset Graphics and Memory Controller Hub).

Исходя из назначения, северный мост определяет параметры (возможный тип, частоту, пропускную способность):

- системной шины и, косвенно, процессора (исходя из этого — до какой степени может быть разогнан компьютер);

- оперативной памяти (тип — например SDRAM, DDR, DDR2, её максимальный объем);

Во многих случаях именно параметры и быстродействие северного моста определяют выбор реализованных на материнской плате шин расширения (PCI, PCI Express) системы.

В свою очередь, северный мост соединён с остальной частью материнской платы через согласующий интерфейс и южный мост. Когда технологии производства не позволяют скомпенсировать возросшее, вследствие усложнения внутренней схемы, тепловыделение чипа, современные мощные микросхемы северного моста помимо пассивного охлаждения (радиатора) для своей бесперебойной работы требуют использования индивидуального вентилятора или системы жидкостного охлаждения, что в свою очередь увеличивает энергопотребление всей системы и требует более мощного блока питания.

Минуя северный мост согласно нашей схеме двигаясь на юг на материнской плате расположен южный мост.

Южный мост ( ICH)

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Южный мост (от англ. Southbridge) (функциональный контроллер), также известен как контроллер-концентратор ввода-вывода (от англ. I/O Controller Hub, ICH).

Если взять функциональность, то южный мост включает в себя:

- контроллеры шин PCI, PCI Express, SMBus, I2C, LPC, Super I/O;

- PATA (IDE) и SATA контроллеры;

- часы реального времени (Real Time Clock);

- управление питанием (Power management, APM и ACPI);

- энергонезависимую память BIOS (CMOS);

- звуковой контроллер (обычно AC'97 или Intel HDA).

Опционально южный мост также может включать в себя контроллер Ethernet, RAID-контроллеры, контроллеры USB, контроллеры FireWire, аудио-кодек и др. Реже южный мост включает в себя поддержку клавиатуры, мыши и последовательных портов, но обычно эти устройства подключаются с помощью другого устройства — Super I/O (контроллера ввода-вывода).

Поддержка шины PCI включает в себя традиционную спецификацию PCI, но может также обеспечивать и поддержку шины PCI-X и PCI Express. Хотя поддержка шины ISA используется достаточно редко, она все таки является неотъемлемой частью современного южного моста. Шина SM используется для связи с другими устройствами на материнской плате (например, для управления вентиляторами). Контроллер DMA позволяет устройствам на шине ISA или LPC получать прямой доступ к оперативной памяти, обходясь без помощи центрального процессора.

Системная память CMOS, поддерживаемая питанием от батареи, позволяет создать ограниченную по объёму область памяти для хранения системных настроек (настроек BIOS).

Меню настроек Bios.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Северный и южный мосты материнской платы вкупе составляют одно целое устройство управления всей системой так сказать глаза, уши, руки ЦП. Вкупе эти два чипа называются – чипсет.

Чипсет (англ. chipset) — набор микросхем, спроектированных для совместной работы с целью выполнения набора каких-либо функций. Так, в компьютерах чипсет, размещаемый на материнской плате выполняет роль связующего компонента, обеспечивающего совместное функционирование подсистем памяти, центрального процессора (ЦП), ввода-вывода и других. Чипсеты так можно встретить и в других устройствах, например, в радиоблоках сотовых телефонов.

Чаще всего чипсет современных материнских плат компьютеров состоит из двух основных микросхем северного и южного моста (иногда объединяемых в один чип, т. н. системный контроллер-концентратор (англ. System Controller Hub, SCH):

Иногда в состав чипсета включают микросхему Super I/O, которая подключается к южному мосту по шине Low Pin Count и отвечает за низкоскоростные порты: RS232, LPT, PS/2.

Существуют и чипсеты, заметно отличающиеся от традиционной схемы. Например, у процессоров для разъёма LGA 1156 функциональность северного моста (соединение с видеокартой и памятью) полностью встроена в сам процессор, и следовательно, чипсет для LGA 1156 состоит из одного южного моста, соединенного с процессором через шину DMI.

Создание полноценной вычислительной системы для персонального и домашнего компьютера на базе, состоящих из столь малого количества микросхем (чипсет и микропроцессор) является следствием развития техпроцессов микроэлектроники развивающихся по закону Мура.

В создании чипсетов, обеспечивающих поддержку новых процессоров, в первую очередь заинтересованны фирмы-производители процессоров. Исходя из этого, ведущими фирмами (Intel и AMD) выпускаются пробные наборы, специально для производителей материнских плат, так называемые англ. referance-чипсеты. После обкатки на таких чипсетах, выпускаются новые серии материнских плат, и по мере продвижения на рынок лицензии (а учитывая глобализацию мировых производителей, кросс-лицензии) выдаются разным фирмам-производителям и, иногда, субподрядчикам производителей материнских плат.

Список основных производителей чипсетов для архитектуры x86: Intel, NVidia, ATI/AMD: (после перекупки в 2006 году ATi вошла в состав Advanced Micro Devices), Via, SiS

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Микропроцессор (ЦП)- является полным механизмом вычисления.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

BIOS (Basic Input-Output System) микросхемы основной системы ввода/вывода.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Технология Dual Bios на материнских платах производства Gigabyte. В случае сбоя основного bios его можно восстановить из резервной микросхемы.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Батарейка CMOS. Служит для хранения настроек BIOS и для поддержания системного времени в актуальном состоянии.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Аудиокодек (англ. Audio codec; аудио кодер/декодер) — компьютерная программа или аппаратное средство, предназначенное для кодирования или декодирования аудиоданных.

Сетевой контроллер (Onboard LAN).

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Сетевой контроллер (Onboard LAN) представляет собой отдельную микросхему. Как и в случае с аудио кодеком при выходе из строя может сильно греться. Ремонтируется так же заменой или демонтажем.

Иногда, при неисправности внуренней сетевухи или звуковухи компьютер может не стартануть вводя в ступор южник. Можно починить материнскую плату просто отпаяв микросхему и как правило с вероятностью 80% компьютер заводится и тогда отключив в BIOS

сеть и/или звук и вставив внешнюю плату можно пользоваться компьютером без опаски.

Бородатый сис

Raven Бородатый сис
Posts: 2794 Joined: 03 Mar 2010, 15:12 ОС: RHEL 8 Location: Из серверной

Самоучитель по ремонту материнских плат

Post by Raven » 22 Oct 2010, 13:26

Определения

  • Включается - это после нажатия кнопки загораются светодиоды и начинают работать вентиляторы.
  • Стартует - это когда мамка пискает, и на мониторе начинают появляться буковки.
  • Загружается WINDOWS - это когда на мониторе появляется красивая картинка, с бегущим прогресбаром и написано WINDOWS.
  • Откидываем клаву, мышку, LPT-шнур принтера и, заодним, все остальное. Оказывается, эти нехитрые устройства тоже могут заставить исправную мамку прикидываться мертвой. Проверяем, не коротит ли кнопка ресет (просто откидываем проводок от гребенки на плате). Проверяем, не коротит ли сама материнская плата на корпус (для этого ее желательно достать из корпуса).
  • Проверяем Блок Питания (БП), лучше всего ЗАМЕНОЙ на заведомо исправный. Ибо если в нем потекли или высохли фильтрующие электролитические конденсаторы или неисправны мелкие блокировочные конденсаторы, то уровень паразитных выбросов и помех будет таким, что комп не издаст ни звука, хотя индикаторные светодиоды будут светиться как ни в чем не бывало, а кулера - исправно крутиться. Но если заведомо исправного БП под руками нет, то обязательно проверять на соответствие все выходные напряжения и отсутствие мусора осциллографом.
  • Отключаем всё внутри. Выкидываем память, видяху, все другие платы, оставляем только процессор и спикер. Eсли после включения мамка запищит, то условно можно считать ее живой (BIOS заводится), а неисправность где-то в выдернутых платах. Теперь вставляем обратно память, проверяем - если пищать стало иначе, значит память видится, можно втыкать видяху. Проверяем, должна появиться картинка на мониторе. Поочередно втыкаем остальные платы, после каждой проверяем, подключаем остальные провода и шлейфы - так же проверяем после каждого подключения. Стоит помнить, что мамки с интегрёным видео, даже будучи полностью исправными, без памяти часто прикидываются полным трупом. Здесь же не забыть проверить, правильно ли подсоединен шлейф IDE. Некоторые мамки (в основном старые первопни) не подают признаков жизни, если в них воткнули шлейф наоборот.
Я не злопамятный, я просто часто ковыряю логи

Бородатый сис

Raven Бородатый сис
Posts: 2794 Joined: 03 Mar 2010, 15:12 ОС: RHEL 8 Location: Из серверной

Post by Raven » 22 Oct 2010, 13:28

Осмотр

Внимательно осматриваем периферийные порты материнки на предмет повреждений, а так же "завалившихся" болтиков и проволочек! Не обхОдим вниманием и другие разъемы, проверяем на предмет замыканий контакты в ISA, PCI, AGP и др. слотах.

В природе попадаются процессоры, которые жгут материнские платы, как предохраняться? Проверять его сопротивление. Берем камень, втыкаем в выключенную маму, один щуп на землю, другой на дроссель VRM-a. Если сопротивление 5-7 Ом, то камень маму не сожжет. Если же сопротивление меньше одного Ома, то вот он - настоящий мамкокиллер.

Вентилятор

Не забывайте, что часто виновником подобного поведения (типа нормальный старт и немедленное выключение или выключение через 4-10 сек) может являться излишняя умность мамки, при попытке включить её с неподключенным кулером на проце. При чем это может быть верно, даже при выключенной по умолчанию этой опции в биосе. Мало того, некоторые, даже типа не имеющие подобных проблем в течение длительного времени, могут "вдруг" потребовать какого-либо кулера на CPU-коннекторе (при чем именно - на CPU). Так что при малейшем подозрении на подобное поведение - не поленитесь повесить на CPU коннектор максимально многооборотистый кулер (ибо малошумящие экземпляры - 2000-3500об/мин) могут быть игнорированы. Все это верно не только для асуса, хотя для него - в первую очередь.

Настройки и коннекторы

Самопроизвольно выключается, и потом определенное время не возможно включить. Вплоть до того доходит ситуация, что шнур питания приходится выдергивать на определенное время, и после этого только комп снова включается. Блок Питания поменял, на другой и вентилятор на камне крутится, плохое питание или перегрев исключен. Самое интересное, после того, когда он выключится то LED Power начинает мигать. Скорее всего она не выключается, а засыпает. По таймеру или по какому-то событию. Наверняка в разделе Power Management стоит какой-нибудь Resume By Alarm -> Enable, или еще какая-нибудь ерунда касательно автоматического отключения/включения питания, или STR->Enable (вместо POS), или еще что-то такое же с настройками питания/засыпания, ищите там. И еще одно (из той же оперы) - нет ли в общей колодке разъемов управления на матери пинов с наименованием SM или подобным? Если есть - не замкнуты ли случайно, не коротят ли, не повесили ли на них случайно светодиоды индикации и т.п.

Питатели

P4PE2-X. Включается, раскручивает вентилятор проца, примерно через три секунды вырубается, ждет секунду, сама включается снова и начинает быстро-быстро прерывисто визжать в спикер. Меряю питатели - все ок, а на памяти 0,4 вольта. Присматриваюсь в Q15 (APM2054) дырка. Меняю на D17NF03, все работает.

Еще проблемы с питанием - выгорание ключей, которые коммутируют дежурное или основное питание на клавиатуру/USB/сеть/. из-за отсутствия запаса по мощности или короткого, ключей или стабилизатора +2.5 В при установке модуля памяти "наоборот" и т.п., но обычно это все (дырки и угли) видно невооруженным глазом. Мамка при этом обычно вообще не включается.

Если после "нажатия" power_on, запускается вертухлятор и тут же все гаснет, скорее всего, уходит в защиту - надо искать короткое замыкание по питанию. Для проверки VRM, можно выпаять дроссели (кольца с проволокой), и таким образом выяснить, на каком этапе коротит, до или после них. Если до, то скорее всего пробой у мосфетов, если после, то - в кондерах.

Voltage Regulator Module (VRM) - модуль регулятора напряжения (ШИМ). Состоит из батареи электролитических конденсаторов, ряда MOSFET'ов (силовых ключей - полевых транзисторов, больших и малых), нескольких (1-3 и больше) дросселей. Главной обязанностью схемы DC-DC конвертера, является кормление процессора.

Немного теории на примере микросхемы FAN5091. (Но ведь может стоять и аналог.) Это - программируемый преобразователь постоянного напряжения фирмы "Fairchild Semiconductor". Обычно располагается рядом с панелькой процессора в окружении больших конденсаторов, дросселей и кучи силовых транзисторов и диодов. Имеет 24 ноги. Работает по принципу ключевого преобразователя с широтно-импульсным управлением и индуктивным накопителем ( накопители - это черные ферритовые кольца с медной проволокой). Микросхема этим самым управлением и занимается. На ножки 1-5 с процессора поступает 5 разрядов двоичного кода, нули и единицы, выходного напряжения, в соотвествие с которым цифровая схема управления формирует последовательности прямоугольных импульсов переменной длительности (т.е. широтЫ, откуда и название) на ножках 14/17 и 11/8, управляющих ключами на полевых транзисторах (это черные квадратные таблетки с тремя ножками), которые на определенное время коммутируют накопительную индуктивность и источник питания +5 вольт. В результате из +5 вольт получается ваше напряжение +1,644 вольта. М/с FAN5091 может программироваться на выходное напряжение от 1,1 вольта до 1,85 вольта с шагом 25 милливольт и точностью 1% и предназначена для построения источников питания с током нагрузки до 50 ампер. Частота преобразования программируется от 200 кГц до 2 мГц. М/с имеет два симметричных канала, имеет защиту от повышения и понижения питающего напряжения и перегрева: при +150 градусах отключается, а при +40 включается снова. Горят эти fan-ы крайне редко, в первую очередь проверять 10-омный резистор по ее (ШИМ) питанию. Я один раз долго бился, а он слегка подгорел и на питании ШИМ-а было 8в вместо 12. Я их просто выкидываю и перемычки ставлю. Повторов не было. Ещё проверять кондеры по софт-старту и в бустерных цепях.

Часто встречающаяся неисправность импульсного стабилизатора - вылет микросхемы ШИМ-контроллера после скачка по +12 В, вызванного, например, коротким по +5 или сгоранием БП, тогда сгорают не только ШИМ и мосфеты, но иногда и часть их SMD-обвязки. Схему и принцип действия ШИМ-контроллера здесь рисовать смысла мало - оно без проблем находится в даташите на него. Добавлю только, что (в зависимости от модели) некоторые стабилизаторы при отсутствии процессора не работают, другие - выдают минимальное рабочее напряжение. И при высыхании входных конденсаторов стабилизатора может срабатывать защита от перегрузки из-за кажущегося увеличения падения напряжения на RdsON. На многих современных мамках стали экономить и на электролитах, и на керамике, что должно обеспечить ремонтникам хорошее будущее

Болезнь плат K7T - дохнущий ШИМ. Мама отрубается после нескольких секунд работы. Если SC1155 дико греется, слышен свист и вообще по осциллографу полная бяка - срочно менять, может пожечь камень. Иногда бывает отлеживается, но использовать ее после этого я бы не стал. Хотя можно заменить дроссель, поднагреть саму шимку - эффект процентов 80.

Мама epox 4BEA2, сгорел элемент U17, 3 ноги, 23ADN08, стоит рядом с батарейкой. Замена этого элемента плодов не принесла, кроме того, что, действительно, 1.87 вольта стабилизирует. Теперь о неисправности - мама вообще не включалась. Типа уходил бп в защиту. После замены ентого элемента, выяснил, что не бп в защиту уходит, а pc-on срабатывает: после кратковременного низкого уровня снова высокий. Принудительный запуск - полная работоспособность. Поменял мультик - U3, стала заводиться, но через раз. Дальнейшие исследования показали, что за аварийное отключение отвечает тиристор BT163D, QA1, рядом с разъемом питания, управляется LM 358 - U19, рядом с димм-разъемами и кулерным разъемом. За неимением тиристора, заменил только лм-ку, пока работает без вопросов.

Я не злопамятный, я просто часто ковыряю логи

Бородатый сис

Raven Бородатый сис
Posts: 2794 Joined: 03 Mar 2010, 15:12 ОС: RHEL 8 Location: Из серверной

Post by Raven » 22 Oct 2010, 13:30

Дежурка, Power_on & Power_good

Внимание, сигнал PG (power good) вырабатывает сетевой БП после включения и стабилизации всех выходных напряжений, этот сигнал сигнализирует мамке, что питания хорошие и можно включаться, и никак иначе. Внимание, некоторые особоумные мамы, (например, Intel D850MV) не включаются намордной кнопкой ps_on, если в ней не установлен процессор.

Если мамка (ATX) совсем не включается, либо не выключается при удержании кнопки 4 секунды - надо проверить наличие генерации на часовом кварце 32768 Гц. Не убедившись в генерации кварца на южнике ни в коем случае нельзя пытаться завести такую мамку, замыкая повер_он через входной разъём БП, иначе можно устраивать плач старухи по убитому мосту (обычно южник начинает калиться). Только внимательно, на последних чипсетах генератор настолько маломощный, что срывается даже при подключении осциллографа. При наличии подозрений - кварц заменить на такой же, взять с другой мамки или с любых электронных часов дяди ляо. Иначе, если мать не заводится замыканием повер_она на морде, обычно запускаю принудительно через "повер_он" на разъеме питания АТХ, если работает - либо протяжка к повер-ону, либо кто-то пароль в биосе на загрузку поставил (и такое тоже случается, обычно на ЕРОХ-ах). Но не все так просто. Дело в том, что вышеописанным действием мы коротим выход триггера, запускающего мать, ведь со стороны мамки зеленый провод - выход. Таким образом рискуем получить ПЫХ (иногда с дымком) схемы запуска мамки.

  • Банальное решение - замена мультика W83627HF.
  • Нестандартное - включить принудительно, зайти в BIOS, выбрать включение с клавиатуры, save and exit. Проверено на 20-30 мамках, по сей день работают и жалоб не поступало.

GA-7N400 не запускается с кнопки, нет напруги на кнопке PW-ON. Лечится заменой резистора R863 номиналом 1 Ом (звонится

500 Ом) в обвязке W83301 (управляет дежуркой). Плата уже вторая - похоже болезнь.

Acorp 6VIA82P ver 1.6 - для того чтобы её включить нужно очень долго тыкать отвёрткой в то место куда подключается кнопка включения, но если она и включится, то пост-карта встаёт на тестировании CMOS and battery voltage. Меняем батарейку, делаем очистить CMOS - плата включается. Заходим в биос и даже если ничего не меняя выходим - всё, опять не включается пока не обнулить CMOS. Ещё замечено что часы у неё стоят, 0 и всё. Батареек поменяно 5 штук и флешку менял. Странно, но заработало только после замены кварца.

Проверка цепей включения: проверяется тестером наличие высокого уровня на джамперах RESET и POWER ON (бывает от 3 до 5 вольт), наличие напряжения около 3 вольт на джампере CMOS и вообще правильность выставленных джамперов. Если отсутствует напряжение на одном из данных контактов, значит имеет место механический (электрический) обрыв. Необходимо проследить, куда ведут дорожки, и найти, где теряется сигнал (все те же выгорания дорожек, smd-компоненты, диоды и т.д.). Проверить работоспособность ключа, замыкающего контакт БП "PC-ON", так же всю цепочку до SUPER I/O. Если кто не в курсе - когда на БП подано 220В и он подключен к матери, на мать подаётся напряжение 5В (стендбай), питающее цепи управления питанием. Это немножко логики, кусочек южного моста, кусочек SUPER I/O, в зависимости от умения матери режима S3, это так же может быть память. Для облегчения задачи подсказка: POWER ON питается через небольшое количество обвязки со STENDBY блока питания, RESET либо от него же, либо от 5-ти вольт, либо от POWERGOOD, естественно тоже через обвязку. При включении ATX питания, т.е. подачи напряжения на БП, мамка заводится сама, опция в сетапе, связанная с питанием не влияет. Пробуй поменять электролит по кнопке повер-он на землю, или бывает smd кондерчик - скорее всего он. Всякие 440LX, MS6330, 6340 тоже болеют такой фигней. Просто в цепях запуска (скорее всего повер-он) что то дает стартовый импульс, вот и начинает мама грузиться. Иногда случается, что включается, работает секунды 2, доходит до памяти и отключается. Потом повер-оном все прекрасно работает. Искать неисправный элемент себе дороже - всю мелочь выпаивать и менять - жуткий геморрой. Я оставляю все как есть, ничего страшного. Может такое быть из-за бп иногда, разная схемотехническая реализация у разных фирм, с одним все нормально, с другим включается сразу. С другой стороны, триггером называется электронное переключающее устройство, которое сколько угодно долго сохраняет одно из двух своих состояний устойчивого равновесия и скачкообразно переключается по сигналу извне из одного состояния в другое. Командовать сим загадочным девайсом можно из BIOS'a, а считывать его состояние с помощью логики заведующей PWR_ON и RESET, а питать его можно от +5в STB, а когда оно отсутствует - от батареи +3в. Т.е. это южный мост получается или батарейка.

После нажатия на PS-On включает и выключает БП с интервалом в секунду. И так до бесконечности. С процом, без проца - по бубену. Замена мультика ничего не дала. Если принудительно удерживать БП включенным, то мама стоит в нулях. Ничего не греется, т.е. на КЗ по питанию не похоже. При этом Reset на Пост-карте сначала загорается, а потом гаснет. Стоит обратить внимание на саму APM3055. Много всего поменял/пропаял, пока на него вышел! Сдох ключ, который подает напряжение на формирователь 3.3в/1.5в питания южника в рабочем режиме. Т.е. происходило следующее - в дежурке питание южника есть, а при переходе в рабочий режим этот долбаный ключ должен скомутировать входное напряжение с основных 5В, а он сдох. Соответственно за счет кондесаторов полсекунды питание на южнике держится, потом исчезает - он выключает БП - питание на нем появляется - он включает БП. И так до бесконечности! Сложность выявления дефекта была в том, что при таком поведении все напряжения дёргаются и понять, кто виноват очень сложно. Так что если у кого проблемы с Гнилобайтами, стоит всегда обращать внимание на APM3055. Уже в 3-х различных узлах попадались дохлые. Иногда для ремонта хватает его пропайки. Но надежнее все же заменить!

Elite Group 848P-A V1.0 Со слов клиента выключили компьютер и включили через два часа. При подаче напряжения включается, стартует и работает примерно 4-5 секунд, успевает проинициализировать видеокарту и выключается. Повторно включается только после полного отключения и снова на 4-5 секунд. Пробит транзистор Q47 прямо около панели кнопок. Маркировка родная SN, менял на SG - все заработало. Смотреть расшифровку было лень.

Читайте также: