Заменят ли квантовые компьютеры обычные

Обновлено: 03.07.2024

Объясняем на лампочках и котиках, что такое квантовый компьютер.

К тому же это имеет прямое отношение к безопасности ваших данных, ведь многие защитные механизмы в цифровом мире основаны как раз на том, что их нельзя взломать за разумное время. Давайте разберемся, что это за квантовый компьютер такой и стоит ли опасаться, что киберпреступники начнут пользоваться им для взлома.

Что такое квантовый компьютер

Основное отличие квантовых компьютеров от традиционных, транзисторных, которыми все мы пользуемся сейчас, — то, как они работают с данными. Привычные нам устройства, от смартфонов и ноутбуков до суперкомпьютера-шахматиста Deep Blue, хранят все в битах — так называется мельчайшая единица информации, которая может принимать всего два значения: либо ноль, либо единица.

Но когда устройство решает какую-то задачу, оно включает и выключает лампочки, постоянно записывая и стирая результаты промежуточных вычислений, чтобы они не забивали память. Это занимает время, так что если задача очень сложная, компьютер будет думать долго.

Квантовые компьютеры в жизни

Есть и другие проблемы, мешающие квантовым компьютерам полностью заменить предшественников. Вы помните, что они обрабатывают информацию принципиально иначе? Это значит, что и программы для них нужны совершенно другие. На квантовый компьютер нельзя просто взять и установить Windows — надо с нуля разрабатывать специальную квантовую ОС и специальные же квантовые приложения.

И хотя такие попытки уже предпринимают ученые и IT-гиганты, пока что квантовые компьютеры работают примерно как внешние жесткие диски — подключаются к обычным компьютерам и управляются через них. И используются они для решения узкого круга задач — например, для моделирования атома водорода или поиска по базам данных. А вот выйти в Интернет или посмотреть видео с котиками с помощью квантового компьютера не получится.

Тем не менее многие считают квантовые вычисления перспективными. Первая компания, продающая бизнесу квантовые компьютеры, появилась еще в 1999 году. Сейчас в это направление вкладываются крупные организации, такие как американские Google, Honeywell и IBM (последняя уже предлагает клиентам доступ к своему квантовому компьютеру через облако), японская Toshiba и китайские Alibaba и Baidu. В 2019 году квантовыми технологиями заинтересовались и российские власти.

Правда, тут стоит оговориться: задача, которую решили в Google, не имеет никакой практической пользы, кроме демонстрации возможностей квантовых технологий. Погружаться в ее суть мы не будем, потому что это действительно сложно и не очень нужно обычному пользователю. Но если вы очень хотите убедиться в этом лично, описание задачи есть в отчете Google.

А еще не все согласны с утверждением Google про 10 000 лет. В IBM, например, уверены, что суперкомпьютер сможет решить эту же задачу пусть и не за три минуты, но всего за два с лишним дня. Хотя это, в общем-то, тоже ощутимая разница.

Квантовые компьютеры (пока) не угроза

Как видите, квантовые компьютеры до сих пор — скорее игрушка для ученых, чем потребительские устройства или инструмент взломщика. Что, конечно, не значит, что в будущем они не станут ближе к жизни (и опаснее). Впрочем, эксперты в области защиты данных уже сейчас готовят на них управу. Но об этом — в следующий раз.

К омпьютерные технологии неустанно развиваются. Обычные смартфоны теперь способны выполнять задачи, на решение которых в прошлом требовалась мощность огромных вычислительных машин. Впрочем, человечество стоит на пороге куда более масштабного технологического скачка. Он произойдет с появлением полноценного квантового компьютера. Всего за несколько минут он сможет решить задачу, на которую даже у самых мощных суперкомпьютеров уйдут десятилетия и даже столетия вычислений. Пока существуют только прототипы квантовых компьютеров, однако технологии с каждым годом совершенствуются. «Лента.ру» и Homo Science рассказывают, что такое квантовые технологии и каким образом они могут изменить мир.

Одним из первых о создании квантового компьютера заговорил американский физик Ричард Фейнман в 1982 году. По мысли ученого, такие машины способны моделировать сложные квантовые системы, например, атомы, что не по силам обычному, классическому компьютеру, которому для этого требуется колоссальный объем вычислительных ресурсов. Стало ясно, что квантовые компьютеры — хотя на тот момент не существовало даже их прототипов — способны на то, на что не способны даже мощнейшие суперкомпьютеры.

В 1996 году американский математик Лов Гровер предложил квантовый алгоритм решения задачи перебора, который теоретически способен ускорить поиск внутри гигантских баз неупорядоченных данных. Этот алгоритм был реализован в 1998 году с помощью компьютера, состоящего из двух кубитов на базе ядерного магнитного резонанса (ЯМР) — того же самого явления, что стало основой для магнитно-резонансных томографов. Годом позже было показано, что ЯМР-компьютеры не имеют никакого преимущества перед обычными компьютерами, поскольку в них не реализуется особый феномен, называемый квантовой запутанностью.

Пока одни ученые искали алгоритмы, которые можно реализовать на квантовом компьютере, другие занимались физической реализацией квантовых вычислений. В 1995 году физики Сирак и Цоллер предложили ионную ловушку для создания кубитов, а в 1999 году японский физик Ясунобу Накамура продемонстрировал рабочий кубит на основе сверхпроводников.

Технологии стремительно развивались, и в 2009 году была опубликована работа, в которой исследователи использовали два запутанных фотона для вычисления энергии молекулы водорода, что слишком сложно для классических компьютеров. Это была первая демонстрация того, что квантовые вычисления способны привести к полезному результату.

Спустя десять лет, в 2019 году, Google объявила о достижении квантового превосходства: всего за 200 секунд их компьютер выполнил серию вычислений, на которую у суперкомпьютера ушло бы десять тысяч лет. А всего через год о достижении квантового превосходства сообщили китайские ученые: их компьютер на запутанных фотонах Jiuzhang за 200 секунд решил задачу, которая потребовала бы у самого мощного суперкомпьютера до 2,5 миллиардов лет вычислений.

Сейчас уже ведется работа по подготовке человеческого общества к появлению полноценных квантовых компьютеров: разрабатываются новые стандарты, создаются дорожные карты, стратегии выхода на рынок и сфера применения квантовых вычислений.

В России дорожная карта развития квантовых вычислений разработана совместными усилиями Росатома и Российского квантового центра.

На создание квантовых компьютеров и облачной платформы для доступа к ним планируется потратить 23,6 миллиарда рублей.

Квантовое превосходство — это свойство квантовых компьютеров решать задачи, которые не способны решить классические компьютеры за обозримый период времени. Сейчас ученые рассматривают это достижение больше как доказательство принципа, чем то, что может повлиять на будущую коммерческую жизнеспособность таких вычислений.

В России под эгидой Росатома создана Национальная квантовая лаборатория, куда вступили различные научные организации, включая Фонд «Сколково», Российский квантовый центр и профильные научные институты. Целью лаборатории является создание квантовых процессоров на базе сверхпроводников, холодных атомов, фотонов и ионов. К 2024 году планируется построить квантовые компьютеры, состоящие из 30-100 кубитов, в зависимости от используемой технологии.

Квантовое превосходство может быть временным и не исключает появления более эффективных алгоритмов, ускоряющих вычисления классическими компьютерами, поэтому любое заявление о достижении квантового превосходства вызывает скепсис у специалистов и подвергается тщательной проверке. Когда Google опубликовала результаты вычислений квантового процессора Sycamore, IBM заявила, что ее суперкомпьютер способен решить ту же задачу более точно и почти с той же скоростью — за два с половиной дня.

Страны вкладывают огромные суммы в развитие квантовой отрасли. Китай создал новый центр квантовых исследований (National Laboratory for Quantum Information Sciences) стоимостью 10 миллиардов долларов; Евросоюз разработал генеральный план развития квантовых технологий и планирует потратить на это около миллиарда евро; США, в соответствии с законом о национальной квантовой инициативе, выделили 1,2 миллиарда долларов на развитие проектов в этой области за пятилетний период. Однако для достижения полезной вычислительной производимости, вероятно, понадобятся машины, состоящие из сотен тысяч кубитов.

Классические компьютеры выполняют логические операции, используя биты — единицы информации, принимающие значение либо «0», либо «1». В квантовых вычислениях для этого используются кубиты, представляющие собой квантовое состояние объекта, например, фотона. До момента измерения квантовое состояние является неопределенным, то есть оно находится в суперпозиции двух возможных состояний — «0» или «1». Суперпозиция одного объекта может быть связана с суперпозициями других объектов, то есть можно сконструировать между ними логические отношения, подобные тем, что существуют на основе транзисторов в классических компьютерах. Однако квантовые системы трудно поддерживать в состоянии суперпозиции достаточно долго, поскольку квантовое состояние нарушается (система декогерирует) в результате взаимодействия с окружающей средой.

Чтобы добиться квантового превосходства, необходимо использовать явление, называемое квантовой запутанностью. Оно возникает в случае, когда две системы настолько сильно связаны, что получение информации об одной системе немедленно даст информацию о другой — вне зависимости от расстояния между этими системами.

Хартмут Невен, директор Google Quantum AI Labs предложил новое правило, которое предсказывает прогресс квантовых компьютеров в ближайшие 50 лет. Оно гласит, что мощность квантовых вычислений испытывает двукратный экспоненциальный рост по сравнению с обычными вычислениями. Если бы этому принципу подчинялись классические компьютеры, то ноутбуки и смартфоны появились бы в мире уже к 1975 году. Невен обосновывал свое правило тем, что ученые создают все более совершенные квантовые процессоры с большим количеством запутанных кубитов, и при этом процессоры сами по себе экспоненциально быстрее традиционных компьютеров.

Закон Невена, или, как его еще называют, закон Мура 2.0, прогнозирует, что по мере совершенствования квантовых микросхем вычисления будут становиться все быстрее и смогут решать проблемы, которые не под силу даже самым мощным суперкомпьютерам на планете. Это лишь вопрос количества доступных кубитов и снижения частоты ошибок, которые представляют основную проблему современных квантовых информационных систем. Если закон Невена себя оправдает, то в ближайшем будущем квантовые компьютеры покинут пределы университетских и исследовательских лабораторий и станут доступны для коммерческих и других приложений.

Все больше крупных компаний разрабатывают квантовые компьютеры, обеспечивая доступ к ним через облачные технологии. Заказчиками могут быть университеты, исследовательские институты, а также различные организации, которые заинтересованы в том, чтобы протестировать возможные сценарии использования таких вычислений. Рынок пока невелик: по оценкам Hyperion Research , в 2020 году он составил 320 миллионов долларов, однако его ежегодный рост составляет почти 25 процентов.

Специалисты Boston Consulting Group предсказывают, что к 2040 году рынок вырастет до 850 миллиардов долларов. Этот прогноз основан на уверенности, что уже в ближайшие годы мир получит оборудование, подходящее для решения коммерческих и общественных задач. Даже отсутствие готовых прототипов не мешает инвестициям в начинающие стартапы. Например, PsiQuantum привлек 665 миллионов долларов на создание квантовых компьютеров на базе запутанных фотонов.

В настоящее время усилия ученых сосредоточены на двух направлениях: создании универсальных квантовых компьютеров для широкого круга задач и специализированных квантовых вычислителях. Как правило, коммерчески доступные системы имеют небольшое количество кубитов, однако в них используются принципы квантовой механики, ускоряющие вычисления. Одним из главных игроков на этом рынке является компания D-Wave Systems, чьи устройства уже включают в себя пять тысяч кубитов. В 2020 году D-Wave начала предлагать коммерческий доступ через облако к специализированным квантовым компьютерам Advantage с пятью тысячами кубитов, которые пока пригодны для решения сложных оптимизационных задач.

IBM представила коммерчески доступный IBM Quantum System One, пригодный для решения более широкого круга задач, в том числе моделирования материалов для систем хранения энергии, оптимизации портфелей финансовых активов и улучшения параметров стабильности в инфраструктуре энергоснабжения. Исследователи также стремятся использовать квантовый компьютер для того, чтобы раздвинуть границы глубокого обучения. Пока ведутся исследования, связанные с проверкой концепции, то есть демонстрации осуществимости квантовых вычислений в интересующих специалистов областях.

Одна из наиболее перспективных областей, на которую могут повлиять квантовые вычисления, — разработка систем искусственного интеллекта (ИИ). ИИ имеет дело с огромными объемами данных, а неточности в обучении нейронных сетей приводят к значительным погрешностям. Квантовые компьютеры могут улучшить алгоритмы обучения и интерпретации. Предприниматель в области ИИ Гэри Фаулер считает, что большую роль играет способность квантовых компьютеров выходить за рамки привычного двоичного кодирования. Это влияет как на объем анализируемой информации, так и на обработку естественного языка.

ИИ на базе квантового компьютера будет способен глубоко понимать и анализировать текст и речь. Это касается и распознавания образов, то есть искусственный интеллект может научиться видеть предметы и понимать, что находится перед ним, с той же точностью, что человек, и даже лучше. Улучшенное распознавание образов позволит медицинским работникам быстрее диагностировать и лечить заболевания по снимкам МРТ.

Некоторые специалисты считают, что сильный ИИ невозможен без квантовых компьютеров. Современные суперкомпьютеры не обладают мощностью для моделирования человеческого мозга с химическими взаимодействиями между отдельными частями нервных клеток. Даже с учетом закона Мура такие компьютеры не появятся и через миллион лет, однако полноценный квантовый компьютер поможет решить эту проблему.

Считается, что постквантовая криптография, которая неподвластна квантовым компьютерам, остается неуязвимой даже для самых мощных систем. Специалисты уже работают над решением этой задачи, и NIST (Национальный институт стандартов и технологий, США) разрабатывает новые стандарты защиты информации, которые будут опубликованы в 2022 году. В то же время подобная криптография требует огромных ресурсов, поэтому квантовые компьютеры могут помочь защитить то, что они же делают уязвимым. Однако уже сейчас существуют прототипы защитных протоколов будущего, доступные для тестирования. Полный переход к ним может затянуться на 15-20 лет.


Квантовые компьютеры способны привести к резкому прорыву в открытии и разработке новых лекарств, давая ученым и врачам возможность решать задачи, которые невозможно решить сейчас. Специалисты швейцарской фармацевтической компании Roche надеются, что квантовое моделирование ускорит разработку вакцин для защиты от инфекций, подобных COVID-19, лекарств от гриппа, рака и даже болезни Альцгеймера. Квантовое моделирование может заменить лабораторные эксперименты, чем снизит стоимость исследований и сведет к минимуму потребности в тестировании препаратов с участием животных и людей.

Квантовые компьютеры потенциально могут ускорить создание новых катализаторов для утилизации СО2 из воздуха или отработанных газов, которые не только сократят выбросы, но и позволят получать ценные нефтехимические продукты.

С помощью «квантового отжига» можно рассчитать траекторию движения каждой частицы воздушного потока над новым типом крыла, что может привести к изобретению новых технологий в аэродинамике. Подобный принцип можно использовать для решения задач оптимизации трафика в городе или потока данных в сети.

 Фото: hamsterrobotics.tech

Российский разработчик электроники и робототехники "Хамстер роботикс" представил первый отечественный мини-ПК на процессоре "Байкал" и с операционной системой "Альт Линукс". С одной стороны, это событие вызвало немалый интерес со стороны технических экспертов, а с другой - госструктур, перед которыми все острее стоит задача перейти на российский софт. Однако еще в далеком 2010 году Стив Джобс сделал революционное заявление о том, что персональный компьютер мертв. Тогда его поддержали многие авторитетные издания и эксперты в области IT, в один голос объявившие о смерти ПК. Действительно, по данным Gartner, этот сегмент рынка стремительно сокращается седьмой год подряд. По сравнению с 2011 годом объем продаж стационарных компьютеров упал на 30%, составив в 2018 году всего 259 миллионов единиц этой техники - цифра, сопоставимая с показателями далекого 2006 года. У пользователей все большим спросом пользуется сочетание функциональности, дизайна и производительности. Так, по прогнозам экспертов, на фоне общего спада продаж только устройства 2-в-1 и ультратонкие ноутбуки покажут положительный рост в ближайшее время.

Фото: Фото из личного архива Сергея Адаева

Тем не менее нельзя отрицать, что за последнее десятилетие персональный компьютер сильно эволюционировал. Ноутбуки, планшеты и смартфоны вытеснили его как базовое устройство для работы, казуальных игр и веб-серфинга, но стационарный компьютер остается незаменимым для выполнения специализированных функций. Благодаря более мощному процессору и возможностям по кастомизации ПК лучше приспособлен к работе с графикой, запуску "тяжелых" современных игр, проведению сложных вычислений и исполнению других функций "рабочей станции".

Прорыв в квантовых технологиях еще раз доказал, что компьютер не собирается легко сдаваться и полностью уступать своим мобильным аналогам. Квантовый процессор Google, презентованный компанией в сентябре прошлого года, всего за три с половиной минуты справляется с задачей, на решение которой у самого передового суперкомпьютера ушло бы около десяти тысяч лет. О том, что это означает для обычного потребителя и в каком направлении будет развиваться технология, рассказали эксперты.

"Квантовый компьютер, что бы ни говорили скептики, уже существует. Пусть пока это не самое производительное вычислительное устройство, но квантовое превосходство было продемонстрировано. Созданный Google сверхпроводниковый квантовый симулятор на выбранном алгоритме показал гораздо более высокую производительность, чем самый мощный классический компьютер. Экспериментальные исследования по созданию квантового компьютера ведутся во многих исследовательских центрах по всему миру. Огромные финансовые средства вкладываются в эту область, причем фундаментальных запретов на создание таких машин нет - дело только в достижении определенного технологического уровня", - сказал генеральный директор концерна "Автоматика" госкорпорации "Ростех" Владимир Кабанов.

Термин "квантовое превосходство" обозначает способность квантовых вычислительных устройств решать проблемы, недоступные для классических компьютеров - независимо от пользы и практической применимости этих результатов. Для выполнения своих вычислений квантовый компьютер использует сложнейшие явления квантовой механики - квантовую запутанность и суперпозицию, объяснил руководитель лаборатории криптографии АО "НПК "Криптонит" (входит в "ИКС Холдинг") Василий Шишкин.

Фото: Предоставлено пресс-службой Инновационного центра Ай-Теко

"Потенциальное превосходство квантового компьютера перед классическим заключается в том, что квантовый вычислитель оперирует не обычными битами, а квантовыми - кубитами. В отличие от битов, которые в каждый момент времени могут находиться только в одном из двух состояний - 0 или 1, кубиты принимают оба эти значения с некоторой вероятностью. Это явление называется квантовой суперпозицией", - рассказал Шишкин. Благодаря своим особенностям кубиты могут нести гораздо больше информации, что радикально увеличивает вычислительные мощности квантового компьютера.

Однако, отмечает эксперт, при разработке такого устройства возникает ряд практических трудностей: "Как только пользователь считывает значение кубита, он теряет квантовое свойство и превращается в обычный бит с одним постоянным значением. Поэтому входные данные записываются в виде системы кубитов, а вычисления проводятся без измерения их значений. Как только значения кубитов считываются, вычисления прекращаются".

Кроме того, при создании квантового компьютера нужно учитывать и такое явление, как квантовая запутанность. "Это означает, что кубиты должны находиться в зависимых состояниях. Например, если при измерении одного кубита мы получаем значение 1, то результат измерения всех связанных с ним кубитов даст 0. Основная текущая технологическая проблема заключается в том, что системы связанных кубитов крайне нестабильны и очень быстро приводят к появлению ошибок. Причем чем больше кубитов, тем короче период стабильной работы", - пояснил эксперт.

Эта особенность объясняет, почему в существующих квантовых вычислителях так мало кубитов. Однако ежегодно это число растет: к примеру, в первом квантовом вычислителе, протестированном IBM в 2001 году, было всего семь кубитов, а в представленном Google в 2019 году квантовом процессоре Sycamore - уже 53.

Действительно, последние три года наблюдается двукратный ежегодный рост числа кубитов в квантовых компьютерах, так что у технологии есть большие перспективы, говорит Сергей Ширкин, декан факультетов искусственного интеллекта и аналитики Big Data в GeekUniversity, образовательном портале GeekBrains: "В квантовых вычислениях ожидаются как минимум ежегодные небольшие прорывы, которые в итоге должны привести к тому, что значительная часть вычислений для искусственного интеллекта будет выполняться на квантовых компьютерах. Это может произойти в ближайшие десять лет при условии, что инвестиции в исследования станут расти и будет увеличиваться число разработчиков квантовых компьютеров. Технологии такого уровня обычно становятся доступны повсеместно: доступ к квантовому компьютеру можно получить как часть облачного сервиса".

Фото: Pixabay

Технологии создания квантового компьютера требуют совершенствования, считает сооснователь ООО "Крона", доктор физических наук Иван Аткнин. "Отдельные научные прорывы случаются регулярно, но это самое начало пути - ученые только сейчас поняли, что это возможно. В ближайшие пять лет настоящего квантового прорыва точно не случится, первые успехи будут только лет через десять. Так, технологии искусственного интеллекта были созданы более 50 лет назад, но реальное применение началось совсем недавно. При этом ИИ гораздо более простая технология, чем квантовый компьютер", - прогнозирует ученый.

Эволюция компьютера показательна: прорывные для своего времени разработки сначала внедряются в специализированных сферах и только потом получают широкое бытовое распространение. Так, первые прототипы компьютера, появившиеся в 1940-х годах, использовались исключительно в военных и научных целях. Они занимали целые комнаты, весили десятки тонн и могли проводить до нескольких тысяч операций в секунду. Эра персонального компьютера началась только в 1980-х годах благодаря "Макинтошу" Стива Джобса. Устройство стоило две с половиной тысячи долларов, весило чуть меньше десяти килограмм и могло управляться даже ребенком. К моменту, когда Джобс объявил о смерти ПК в 2010 году, он стал неотъемлемой частью жизни большинства людей. Вероятно, со временем то же самое произойдет и с квантовым компьютером. Однако, по мнению экспертов, обычному потребителю не стоит ждать персональных квантовых устройств по крайней мере ближайшие десять лет.

Пока же все работы в этой сфере носят исследовательский характер, а полученные результаты нужны в первую очередь научно-технологическому сообществу, сетует ректор Университета Иннополис, советник Российского квантового центра Александр Тормасов. "Индустрия только начинает интересоваться квантовыми технологиями. В Российском квантовом центре мы обсуждаем создание операционных систем для работы с квантовыми компьютерами. Также в ближайшие десять лет на рынок могут выйти квантовые устройства, позволяющие измерять время с высокой точностью. Это станет толчком для дальнейшего технологического развития, так как мы сможем получить систему спутникового позиционирования, у которой повысится масштаб распознавания со 100 метров до 30 сантиметров. Тогда мы сможем из космоса увидеть шаги человека", - заключил эксперт.

Нейросети сейчас у всех на слуху. Одна из причин такого быстрого и повсеместного их распространения — это сильно упавший порог вхождения. Существует огромное количество инструментов как для использования готовых и натренированных сетей, так и для создания своих собственных, причем для этого даже не требуется знать суровый матан, который прячется "под капотом" большинства таких инструментов.

Еще одной интересной и очень перспективной сферой являются квантовые вычисления, которые, тем не менее, не получили столь широкого распространения (по крайней мере, пока), как нейросети. Скорее всего, это связано с еще более сложным матаном ( и физикой), а также с чрезмерной дороговизной и сложностью "железа".

Если очень просто, то это устройство, в основе работы которого лежат явления квантовой механики. Среди этих явлений такие великолепные и ̶п̶р̶о̶с̶т̶ы̶е̶ для понимания, как:

  • Квантовая суперпозиция - способность квантовой частицы находиться во всех возможных для нее состояниях сразу. Отличным примером может служить всем известный кот Шрёдингера.
  • Квантовая запутанность - явление, при котором состояния двух и более квантовых частиц становятся зависимыми друг от друга. Причем изменение состояния одной частицы мгновенно сказывается на состоянии другой. То есть как бы далеко не были друг от друга эти частицы, состояние поменяется за неизмеримо малое время. Здесь в качестве примера можно взять "попсовую" и всем известную квантовую телепортацию.
  • Правило Борна (закон) - ̶ ̶ш̶е̶с̶т̶а̶я̶ ̶ч̶а̶с̶т̶ь̶ ̶п̶о̶х̶о̶ж̶д̶е̶н̶и̶й̶ ̶б̶ы̶в̶ш̶е̶г̶о̶. Если вкратце и без тяжелого мат.аппарата, это закон (ну или правило), который рассчитывает вероятность получить какой-либо результат при вычислении, что помогает при работе со следующим пунктом сего списка.
  • Вероятность - в квантовой механике балом правит именно эта госпожа. Любое квантовое явление не есть факт, а есть вероятность того, что оно случится. Но об этом мы еще поговорим.

Справедливости ради, квантовая телепортация не является телепортацией, известной из научной фантастики и прочего сайфая, потому что при передаче квантового состояния (а именно это и происходит) исходное состояние в точке А разрушается и воссоздается в точке Б, при этом не происходит переноса ни материи, ни энергии.

Обновление по комментариям к статье: парадокс кота Шрёдингера был призван показать абсурдность самой идеи суперпозиции. Соответственно, пример кота - не самый лучший для иллюстрации явления суперпозиции.

Спасибо Marat Khamadeev

Преимущества прямо вытекают из самой квантовой механики:

  • Высокий параллелизм - в отличие от классических компьютеров, в которых бит принимает значение либо 0, либо 1 в один момент времени, в квантовом компьютере кубит одновременно и 0, и 1, что позволяет обсчитывать все возможные комбинации параллельно и одновременно на уровне физики без всяких ухищрений с многопоточностью.
  • Высокая масштабируемость и быстрый прирост производительности - при добавлении каждого следующего кубита вычислительная мощность увеличивается экспоненциально. То есть двухкубитный компьютер в 2 раза мощнее однокубитного, 3 - в 8 раз, 4 - в 16 и так далее.

Важно также отметить и недостатки, которым подвержены текущие образцы КК:

  • Измерение неизбежно ведет к ошибкам, потому что любое вмешательство в квантовую систему вызывает "возмущения" (шумы), искажающие полученные данные. Стало быть, необходимо предусмотреть постобработку результатов.
  • Большое количество ошибок в вычислениях, частично вытекающее из первого недостатка а частично из-за самой природы квантовых процессов (ведь мы оперируем вероятностями, а не фактами, помните?), из-за чего одни и те же вычисления следует проводить много раз (сотни и тысячи в зависимости от желаемой точности)

На самом деле, в ответе на этот вопрос кроется еще одна причина, почему же квантовые вычисления не такая популярная (с прицелом на поп) тема для общественности. Основные области, где это было бы полезно, эффективно и вообще не очень сильно сложно (с квантовой точки зрения, разумеется):

  • Моделирование молекул и прочих химических и биологических процессов, являющихся квантовыми по своей природе. Например, расчет нового лекарства от рака за 500 млн долларов за дозу займет не годы, а доли секунды.
  • Криптография. Во-первых, при появлении достаточно мощного КК падут почти все (если не все) классические алгоритмы шифрования, потому что большинство из них ломаются обычным перебором, а перебор - это то, что КК делает очень быстро. Квантовая же криптография позволяет построить такую зашифрованную систему, которая всегда узнает, если ее попытаются прослушать или взломать из-за лежащего в основе принципа неопределенности (Гейзенберга). То есть в данном случае недостаток измерения (вмешательства) в систему становится преимуществом.
  • Эти ваши нейросеточки. КК способен моделировать нейросеть экспоненциального размера и обрабатывать огромные объемы данных практически мгновенно.

Как верно отметили некоторые в комментариях квантовая криптография построена на несколько иных принципах и не имеет прямого отношения к квантовым же компьютерам.

Так что поиграть со включенным RTX при fps свыше 120 в 4К разрешении на КК пока что не получится, увы.

Квантовые компьютеры начали появляться с начала XXI века, но их производительность и возможности сильно ограничены. И вопреки распространенному заблуждению довольно много его составных частей представляют собой вполне себе обычную электронику, а уж для обработки результатов и вовсе нужен самый обыкновенный ПК (ну или сервер. ну или ЦОД).

Квантовый компьютер на 50 кубит, разработанный IBM Research в Цюрихе.​

Окей, с железом понятно, но что с софтом?

Принцип работы с квантовым компьютером, по идее, не должен сильно отличаться от работы с компьютером классическим, но, тем не менее, стандартные инструменты из знакомой всем электроники не применимы, равно как и классическая логика и информатика.

С целью решения этой проблемы в 2017 году был описан язык промежуточного представления OpenQASM (ОпенКАЗМ) - Open Quantum Assembly Language (Открытый квантовый язык ассемблера), представляющий собой по сути аналог языка ассемблера из классической электроники.

Ассемблер (сборщик) - это программа-преобразователь, транслирующая код программы из языка ассемблера в машинный язык, который понимает непосредственно процессор.

Программирование под ассемблер представляет собой весьма нетривиальную задачу, так как требует от разработчика не только досконального знания архитектуры и команд процессора, но и умения работать с физической памятью.

Большинство программистов используют языки высокого уровня, которые затем транслируются в язык ассемблера компилятором.

К счастью, авторы позаботились и о языке высокого уровня, создав на основе QASM целый фреймворк. Встречайте - Qiskit.

̶В̶а̶ш̶а̶ ̶q̶i̶s̶k̶i̶t̶ ̶к̶у̶п̶и̶л̶а̶ ̶б̶ы̶.̶.̶.̶ Логотип проекта - схематичное представление сферы Блоха (способ представления состояний кубита в виде точек на сфере). ​ А вот так выглядит сама сфера Блоха. "Точка на сфере по оси z вверх соответствует значению 1 классического бита, вниз - значению 0.​

Qiskit содержит в себе инструменты для создания квантовых программ (цепей), состоящий из нескольких подпроектов:

  • Terra позволяет создавать квантовые цепи, которые по сути и являются квантовыми программами. Квантовая цепь - это последовательность квантовых вентилей, являющихся аналогом вентилей-операторов из классической логики. Например, здесь есть аналоги логического И (умножения) и ИЛИ (сложение) с поправкой на квантовые законы. Например, самый базовый квантовый вентиль Хадамард (H) при вычислении обеспечивает одинаковую вероятность получить значение 0 и 1.
  • Aqua. Проект-ретранслятор, позволяющий преобразовывать классические алгоритмы в квантовые. В настоящий момент он поддерживает ограниченный набор инструментов для работы с ИИ, химией, оптимизацией и финансами. В перспективе позволит программистам и даже просто пользователям без специальных знаний создавать квантовые алгоритмы.
  • Aer. Симулятор квантового компьютера, который может быть запущен на любом обычном компьютере, но не забывайте, что добавление нового кубита требует увеличения классических вычислительных мощностей в два раза. Aer позволяет понять, насколько ничтожны "силы" вашего ПК, потому что уже при значении в 4-5 кубитов производительность падает практически до нуля, делая симуляцию очень медленной или вовсе невозможной.
  • Ignis. Подпроект, работающий с "шумами". Помним о том, что любое измерение вызывает возмущения в квантовой системе и ошибки. По сути этот проект призван бороться с ошибками.

Кубит невозможно "хранить" в обычных условиях при комнатной температуре. Соответственно, каждый кубит - крошечный и очень холодный объект, работающий при температуре, близкой к абсолютному нулю - лежит в своем собственном "холодильнике", изолированный от внешнего мира. К сожалению, в настоящий момент не существует способов взаимодействия с кубитом без вмешательства в его хрупкую натуру, что неизбежно приводит к шумам, что, в свою очередь, ведет к ошибкам в вычислениях.

Да-да, ошибки - сквозная тема и боль любого квантового программиста настоящего и даже будущего.

Любой желающий уже может сесть и начать пробовать писать простенькие квантовые алгоритмы. Мощностей обычных домашних ПК хватит на 3-4-кубитную цепь, чего уже достаточно для осуществления квантовой телепортации.

К счастью, добрые дяди из корпорации IBM предоставляют бесплатный доступ в порядке очереди к настоящим квантовым компьютерам (до 15 кубитов) и к симулятору (до 32 кубитов). Для регистрации достаточно принять пользовательское соглашение, заполнить простенькую анкету, указав в ней Institution (например, Amateur Quantum Boy) и цель использования, свое имя и имейл.

Если совершенно не хочется (или не умеется) писать свой код, то всегда можно воспользоваться туториалами, которые любезно лежат прямо под ногами.

В качестве инструмента используются обычные Jupyter-ноутбуки, знакомые любителям языка python.

В этих "ноутбуках" текстовые описания перемежаются с готовыми кусками кода, которые выполняются прямо там, без необходимости писать или читать код где-либо еще, а затем переносить в исполняемую среду. Все лежит и запускается на месте.

Единственное по-настоящему нужное в данном случае умение - это знание английского языка. Но не спеши расстраиваться, если не знаешь английский. В продолжении я подробно и со скриншотами опишу, как таки осуществить квантовую телепортацию. А для тех, кто не хочет ждать и самостоятельно пройдет базовый туториал, вот схема для телепортации:

Статья просто призвана обратить внимание на то, что существует такая вот перспективная область. Она весьма сложна в понимании. Первая версия этого материала состояла почти целиком из матана и физики с графиками и формулами, но я, не являясь специалистом в данной области, не мог все нормально объяснить, потому что чем глубже ты опускаешься, тем труднее что либо понять. Поэтому я решил просто коротко описать текущее состояние и показать, какие есть инструменты для работы. Ну и основной посыл - эта технология ближе к применению, чем может показаться со стороны, она уже потихоньку используется. Просто применение может быть не таким, каким его ждут

Я *немножко* разочарован, потому что 95% моих знакомых, как и я, знаем упомянутое в статье (возможно, исключая то, что есть публичный компьютер-пробник).

Про разработки от Google: ред.

В сентябре публикация компании ненадолго появлялась на сайте NASA.

А что бы ты хотел увидеть?

Я пришёл раздавать квантовую жвачку и надирать квантовые задницы, и жвачка у меня уже кончилась. Поехали разбирать написанное.

Если очень просто, то это устройство, в основе работы которого лежат явления квантовой механики.

Туннельный транзистор, спинтронные устройства и ещё ряд устройств тоже используют явления КМ, но квантовыми вычислителями не являются
Отличным примером может служить всем известный кот Шрёдингера.

Парадокс кота Шрёдингера был придуман как раз таки для того, чтобы показать абсурдность идеи квантовой суперпозиции. Не задумывались, почему он называется парадоксом?
Любое квантовое явление не есть факт, а есть вероятность того, что оно случится.

То есть, квантовая запутанность - это вероятность, а не факт?
Измерение неизбежно ведет к ошибкам, потому что любое вмешательство в квантовую систему вызывает "возмущения" (шумы), искажающие полученные данные.

Само измерение - это штука нужная, важная и ошибок оно не даёт. К ошибкам приводят декогеренция и дефазировка. В определённом, грубом смысле их можно назвать "паразитным измерением", осуществляемым со стороны окружения (стенок прибора, волокна и тд). Видимо, эту мысль и закладывал автор.
(если не все)

Не все
Квантовая же криптография позволяет построить такую зашифрованную систему, которая всегда узнает, если ее попытаются прослушать

Квантовая криптография не есть производная от квантовых вычислений. Там даже принципы разные. Это независимая область квантовых технологий и квантовые компьютеры здесь не причём, ну вот вообще никак.
Вращение по оси z вверх соответствует значению 1 классического бита

Ничего подобного. Классическому значению 1 соответствует точка на северном полюсе, 0 — на южном. Остальное - суперпозиция.
Хадамард

Общепринятым в русском является вариант "Адамар"
Соответственно, каждый кубит - крошечный и очень холодный объект, работающий при температуре, близкой к абсолютному нулю - лежит в своем собственном "холодильнике", изолированный от внешнего мира.

Представляю, как удивится автор этого текста, когда узнает, что обычный фотон с обычной поляризацией, кои летают миллиардами рядом - это тоже кубит.

Туннельный транзистор, спинтронные устройства и ещё ряд устройств тоже используют явления КМ, но квантовыми вычислителями не являются

Если очень просто

Парадокс кота Шрёдингера был придуман как раз таки для того, чтобы показать абсурдность идеи квантовой суперпозиции

Какой бы абсурдной она не была, но используется.

квантовые компьютеры здесь не причём

Опять же, с повсеместным распространением КК классическая криптография умрет, так что КК все таки имеют к этому отношение

очка на северном полюсе, 0 — на южном

Куда же упирается ось z.

"Адамар"

Извини, но та лекция, которую я слушал, была на английском, так что я не знаком с общепринятой терминологией на русском языке, но согласен, моя недоработка. Материал на русском, так что надо было "дожать".

В целом, некоторые придирки я понимаю, потому что они исходят (по моему предположению) из более глубинного понимания темы, чем у меня. Собственно, я не специалист в этой области, а лишь имел возможность познакомиться с этой сферой, а затем решил поделиться. Некоторые же выглядят как придирки ради придирок.

Какой бы абсурдной она не была, но используется.

Так суперпозиция и не абсурдная, это вполне себе экспериментально доказанный феномен. Другой вопрос, что котик - не самая лучшая иллюстрация, несмотря на то, что она ушла в народ. Это всё равно, что, говоря про авиацию, приводить в пример драконов.

Опять же, с повсеместным распространением КК классическая криптография умрет, так что КК все таки имеют к этому отношение

Ну, это ещё вилами на воде писано, но речь не об этом. Вы пишете, что квантовая криптография делается с помощью квантовых компьютеров. Это ошибка.

Куда же упирается ось z.

Вы пишете "вращение по оси z вверх". Я говорю, вращение тут не причём, до тех пор, пока не рассматривается эволюция во времени или вентиль. Всё проще - состояние кубита - это просто точка на сфере.

Некоторые же выглядят как придирки ради придирок.

Камон, такая была всего одна)

А если серьёзно, текст ваш, вам и карты в руки, моё дело указать на ошибки. Замечу, однако, что большинство из описанных ошибок работают против целей, ради которых написан этот материал, а именно целей просвещения. Мне не раз приходилось исправлять людям неверное понимание некоторых квантовых вещей, которое начиналось со слов "А я вот читал в одном месте. ".
Не стоит пренебрегать нюансами, многие из них формируют квантовое мировоззрение на глубинных уровнях. Взять тот же парадокс кота Шрёдингера. Вопрос суперпозиции состояний макрообъектов до сих пор является предметом спора, разделившего физиков на несколько лагерей и экспериментального конца ему пока не видно (я про интерпретации).
Я не из тех, кто любит говорить "Миша всё фигня, давай по новой". Ищите информацию, пишите, мы с вами по одну сторону баррикад. А мой провокационный тон призван лишь добавить эмоциональной мотивации к исправлению пробелов. Ну и плюсики собрать, куда уж без этого.

Я понял:) Первая версия материала потому и заглохла, что ответ на каждый следующий вопрос лишь порождал еще больше вопросов. Я решил пожертвовать глубиной, что привело к некоторым ошибкам

Добавил несколько замечаний по твоим комментариям

Так объяснение пар. Шрёдингера как раз в том, что создание подобного механизма коллапсирует всю волновую функцию и состояние кота становится классической механикой. Странно приводить это в роли примера.

И да, и нет. Такое объяснение этого парадокса принято сторонниками копенгагенской интерпретации. Мультиверсщики коллапс не признают, а считают, что вместо этого вселенная раздваивается на две части, в каждой из которых состояние классическое. В канонической дираковской квантовой механике, однако, вопрос интерпретаций не возникает - там просто используется проекционный оператор. Добавлю лишь, что вопрос интерпретаций пока находится за пределами физики.

Здравствуйте. А если создать "подвижный" код из двух спаренных фотонов. На базе принципа Паули. И иметь таким образом квантовый компьютер "холодного" типа. Извиняюсь. Чушь.? Можно же построить такой компьютер?

Не понимаю, о чем вы, но попытаюсь догадаться
А если создать "подвижный" код из двух спаренных фотонов.

Вероятно, речь идёт о запутанной паре фотонов. Это довольно хрупкая вещь, с ней сложно проводить какие либо операции, поэтому от идеи фотонных кубитов отказались.
На базе принципа Паули.

Принцип запрета Паули? Он про фермионы. Фотоны же - это бозоны, на них этот принцип не распространяется
И иметь таким образом квантовый компьютер "холодного" типа. Извиняюсь.

Это я извиняюсь. Это всё, что я понял из вопроса)

То есть если я сейчас составлю программку и встану в очередь, то какая-то морозная частичка из Мельбурна сможет мне взломать страничку бывшей на вк?

Тебе понадобится квантовый компьютер помощнее, но это было бы возможно, хоть и идет в разрез с пользовательским соглашением, которое ты принимаешь перед использованием ;)

Читайте также: