Что такое протоколы компьютерных сетей

Обновлено: 04.07.2024

Интернет очень большой и комплексный. Но на базовом уровне это всего лишь связь между различными компьютерами (не только персональными). Эта связь представляет из себя сетевые протоколы передачи данных — набор правил, который определяет порядок и особенности передачи информации для конкретных случаев.

Протоколов большое множество. Про основные из них рассказано далее.

IP — Internet Protocol

Протокол передачи, который первым объединил отдельные компьютеры в единую сеть. Самый примитивный в этом списке. Он является ненадёжным, т. е. не подтверждает доставку пакетов получателю и не контролирует целостность данных. По протоколу IP передача данных осуществляется без установки соединения.

Основная задача этого протокола — маршрутизация датаграмм, т. е. определение пути следования данных по узлам сети.

Популярная версия на текущий момент — IPv4 с 32-битными адресами. Это значит, что в интернете могут хранится 4.29 млрд адресов IPv4. Число большое, но не бесконечное. Поэтому существует версия IPv6, которая поможет решить проблему переполнения адресов, ведь уникальных IPv6 будет 2 ^ 128 адресов (число с 38 знаками).

TCP/IP — Transmission Control Protocol/Internet Protocol

Это стек протоколов TCP и IP. Первый обеспечивает и контролирует надёжную передачу данных и следит за её целостностью. Второй же отвечает за маршрутизацию для отправки данных. Протокол TCP часто используется более комплексными протоколами.

UDP — User Datagram Protocol

Протокол, обеспечивающий передачу данных без предварительного создания соединения между ними. Этот протокол является ненадёжным. В нём пакеты могут не только не дойти, но и прийти не по порядку или вовсе продублироваться.

Основное преимущество UDP протокола заключается в скорости доставки данных. Именно поэтому чувствительные к сетевым задержкам приложения часто используют этот тип передачи данных.

FTP — File Transfer Protocol

Протокол передачи файлов. Его использовали ещё в 1971 году — задолго до появления протокола IP. На текущий момент этим протоколом пользуются при удалённом доступе к хостингам. FTP является надёжным протоколом, поэтому гарантирует передачу данных.

Этот протокол работает по принципу клиент-серверной архитектуры. Пользователь проходит аутентификацию (хотя в отдельных случаях может подключаться анонимно) и получает доступ к файловой системе сервера.

Это не только система доменных имён (Domain Name System), но и протокол, без которого эта система не смогла бы работать. Он позволяет клиентским компьютерам запрашивать у DNS-сервера IP-адрес какого-либо сайта, а также помогает обмениваться базами данных между серверами DNS. В работе этого протокола также используются TCP и UDP.

NTP — Network Time Protocol

Не все протоколы передачи нужны для обмена классического вида информацией. NTP — протокол для синхронизации локальных часов устройства со временем в сети. Он использует алгоритм Марзулло. Благодаря нему протокол выбирает более точный источник времени. NTP работает поверх UDP — поэтому ему удаётся достигать большой скорости передачи данных. Протокол достаточно устойчив к изменениям задержек в сети.

Последняя версия NTPv4 способна достигать точности 10мс в интернете и до 0,2мс в локальных сетях.

SSH — Secure SHell

Протокол для удалённого управления операционной системой с использованием TCP. В SSH шифруется весь трафик, причём с возможностью выбора алгоритма шифрования. В основном это нужно для передачи паролей и другой важной информации.

Также SSH позволяет обрабатывать любые другие протоколы передачи. Это значит, что кроме удалённого управления компьютером, через протокол можно пропускать любые файлы или даже аудио/видео поток.

SSH часто применяется при работе с хостингами, когда клиент может удалённо подключиться к серверу и работать уже оттуда.

Терминология компьютерной сети Протоколы

Сетевой протокол — это набор программно реализованных правил общения компьютеров, подключенных к сети. Практически это "язык", на котором компьютеры разговаривают друг с другом. В настоящее время стандартом стало использование только протокола TCP/IP. В предыдущих версиях Windows по умолчанию устанавливалось несколько протоколов, обычно это NetBEUI, NWLink IPX/SPX, TCP/IP.

  • NetBEUI.
    Компактный и эффективный протокол для взаимодействия в малых сетях (до 200 компьютеров). Используется в самых разнообразных системах: Microsoft LAN Manager, Windows 3.1/3.11 for Workgroups/95/98/NT 4.0, IBM PCLAN, LAN Server и т. п. В Windows 2000 и старше применяется новая спецификация этого протокола, которая получила название NetBIOS Frame Protocol (NBFP). NetBEUI (NBFP) не требует никаких дополнительных настроек. Если нужно быстро создать сеть и вы не чувствуете себя уверенными в понимании дополнительных настроек, которых, например, требует протокол TCP/IP, то включите протокол NBFP. Вы получите простую и весьма быстро функционирующую локальную сеть.
  • NWLink IPX/SPX.
    Если в сети есть серверы Novell NetWare, то этот протокол необходим для организации с ними связи. В противном случае данный протокол следует исключить из числа используемых в системе.
  • TCP/IP.
    Основной рекомендуемый протокол как для больших сетей предприятий и малых офисов, так и для соединения домашних компьютеров в частную сеть. В отличие от других протоколов требует ряда предварительных настроек.

Примечание
He следует использовать в сети больше служб и протоколов, чем требуется для нормальной работы в конкретной ситуации. Во-первых, при этом будут непро-изводительно использоваться ресурсы компьютера. Во-вторых, любая допол-нительная служба и неиспользуемый протокол — это еще один "вход" в систему, который надо защищать. Поэтому проще не предоставлять дополнительных возможностей хакерам, чем постоянно следить за обнаруживаемыми в этих службах уязвимостями, устанавливать необходимые обновления и т. п.

Модель OSI

С целью систематизации часто используется модель OSI, условно разбивающая сетевое взаимодействие на семь уровней.
Знание уровней OSI обычно требуется при сдаче тех или иных сертификационных экзаменов, но на практике такое деление потеряло свое значение. Если первые три уровня еще можно достаточно хорошо вычленить при анализе того или иного сетевого проекта, то классифицировать функциональность оборудования по остальным уровням достаточно сложно. В маркетинговых целях часто указывают в описаниях коммутаторов, что они работают, например, на уровне 4 или 7. На практике это означает только, что при реализации определенного функционала в коммутаторах производится анализ пакета данных по характеристикам, относящимся к соответствующим уровням. Например, это происходит при операциях маршрутизации группового трафика (коммутатор анализирует пакет на принадлежность той или иной программе), приоритезации пакетов и т. п.


Стек протоколов TCP/IP

Поэтому принято говорить, что существуют уровни протокола IP, а на каждом уровне — различные варианты специальных протоколов. Весь этот набор протоколов называют стеком протоколов TCP/IP.

Протоколы UPD, TCP, ICMP

IPv6

Бурное развитие Интернета привело к тому, что параметры, заложенные при создании протоколов IP, стали сдерживать дальнейшее развитие глобальной сети. Поэтому многочисленные группы постоянно разрабатывают возможные модификации данного протокола. Наиболее "признанной" на данный момент разработкой считается проект группы IETF (Internet Engineering Task Force, проблемная группа проектирования Интернета), который называют IPv6 (другие проекты объединяют общим названием IP Next Generation или IPng).
К основным особенностям данного проекта относятся:

Хотя большинство участников Интернета поддерживает разработку этого протокола, однако реальное внедрение данной разработки потребует длительного времени и существенных инвестиций, поскольку влечет за собой модернизацию большого количества уже установленного оборудования.
Поддержка протокола IPv6 заложена в операционные системы Windows, начиная с Windows ХР. Чтобы ее включить в Windows XP, необходимо выполнить команду ipv6 install. Но использование ipv6 пока еще не имеет практического значения. По разным оценкам нехватка адресного пространства протокола IPv4 может возникнуть не ранее чем через 5—10 лет. Это достаточный срок для разработки уже следующей спецификации протокола IP.

Параметры TCP/IP протокола
IP-адрес

Каждый компьютер, работающий по протоколу TCP/IP, обязательно имеет IP-адрес— 32-битное число, используемое для идентификации узла (компьютера) в сети. Адрес принято записывать десятичными значениями каждого октета этого числа с разделением полученных значений точками. Например: 192.168.101.36.
IP-адреса уникальны. Это значит, что каждый компьютер имеет свое сочетание цифр, и в сети не может быть двух компьютеров с одинаковыми адресами. IP-адреса распределяются централизованно. Интернет-провайдеры дела ют заявки в национальные центры в соответствии со своими потребностями Полученные провайдерами диапазоны адресов распределяются далее между клиентами. Клиенты сами могут выступать в роли интернет-провайдера и распределять полученные IP-адреса между субклиентами и т.д. При таком способе распределения IP-адресов компьютерная система точно знает "pacположение" компьютера, имеющего уникальный IP-адрес; ей достаточно переслать данные в сеть "владельца". Провайдер в свою очередь проанализирует пункт назначения и, зная, кому отдана эта часть адресов, отправит инфор мацию следующему владельцу поддиапазона IP-адресов, пока данные не поступят на компьютер назначения.
Выделение диапазона адресов осуществляется бесплатно, но организация получившая адреса, должна реально подтвердить их использование через oп ределенный промежуток времени.
Для построения локальных сетей организаций выделены специальные диапа зоны адресов. Это адреса Ю.х.х.х, 192.168.х.х, Ю.х.х.х, с 172.16.х.х по 172.31.х.х, 169.254.Х.Х. Пакеты, передаваемые с указанных адресов, не маршрутизируются (иными словами, не пересылаются) через Интернет, поэтому в различных локальных сетях компьютеры могут иметь совпадающие адреса из указанных диапазонов. Для пересылки информации с таких компьютеров в Интернет и обратно используются специальные программы, "на лету" заменяющие локальные адреса реальными при работе с Интернетом. Иными словами, данные в Сеть пересылаются от реального IP-адреса. Этот процесс происходит "незаметно" для пользователя. Такая технология называется трансляцией адресов .

Групповые адреса

Если данные должны быть переданы на несколько устройств (например, просмотр видео с одной Web-камеры на различных компьютерах или одновременное разворачивание образа операционной системы на несколько систем), то уменьшить нагрузку на сеть может использование групповыхрассылок.
Для этого компьютеру присваивается еще один IP-адрес из специального диапазона: с 224.0.0.0 по 239.255.255.255, причем диапазоны 224.0.0.0— 224.0.0.255 и 239.0.0.0—239.255.255.255 не могут быть использованы в приложениях и предназначены для протоколов маршрутизации3 и т. п. Назначение адресов групповой рассылки производится соответствующим программным обеспечением.
Если коммутатор имеет функции работы с групповыми рассылками (поддержка IGMP snoophing, P1M DM/PIM SM), то передаваемые на адреса групповой рассылки данные будут поступать только на те порты, к которым подключены устройства, подписавшиеся на соответствующие рассылки. В результате сетевой трафик может быть существенно снижен по сравнению с вариантом передачи таких данных каждому устройству сети независимо.

Распределение IP-адресов сети малого офиса

В сетях предприятий обычно задействованы диапазоны IP-адресов, выделенные для локального использования. Часть адресов закрепляется статически, часть— раздается динамически с помощью DHCP (Dynamic Host Configuration Protocol, динамический протокол конфигурации сервера).

Статические адреса закрепляются:

  • за шлюзом, для которого обычно используют адрес ххх.ххх.ххх.1, но это традиция, а не правило;
  • за серверами DNS, DHCP, WINS;
  • за контроллерами домена;
  • за серверами сети (например, централизованные файловые ресурсы, почтовый сервер и т. п.);
  • за станциями печати, имеющими непосредственное подключение к сети;
  • за управляемыми сетевыми устройствами (например, сетевыми переключателями, SNMP-управляемыми источниками аварийного питания и т. п.).

Рабочие станции традиционно используют динамические адреса. При этом часть динамических адресов выдается для локального использования, а часть предназначается для внешних клиентов, "гостей" сети.

Примечание
Обычно для компьютеров, получающих гостевые адреса, устанавливаются определенные ограничения прав доступа к внутренним ресурсам.

Для упрощения администрирования сети рекомендуется выработать план распределения диапазона адресов и предусмотреть в нем некоторый запас для будущего развития информационной системы.

Маска адреса

Понятие подсети введено, чтобы можно было выделить часть IP-адресов одной организации, часть другой и т. д. Подсеть представляет собой диапазон IP-адресов, которые считаются принадлежащими одной локальной сети. При работе в локальной сети информация пересылается непосредственно получателю. Если данные предназначены компьютеру с IP-адресом, не принадлежащим локальной сети, то к ним применяются специальные правила для вычисления маршрута пересылки из одной сети в другую. Поэтому при использовании протокола TCP/IP важно знать, к какой сети принадлежит получатель информации: к локальной или удаленной.
Маска— это параметр, который "сообщает" программному обеспечению о том, сколько компьютеров объединено в данную группу ("подсеть"). Маска адреса имеет такую же структуру, как и сам IP-адрес: это набор из четырех групп чисел, каждое из которых может быть в диапазоне от 0 до 255. При этом чем меньше значение маски, тем больше компьютеров объединено в данную подсеть. Для сетей небольших предприятий маска обычно имеет вид 255.255.255.x (например, 255.255.255.224). Маска сети присваивается компьютеру одновременно с IP-адресом.

Так, сеть 192.168.0.0 с маской 255.255.255.0 (иначе можно записать 192.168.0.0/24) может содержать хосты с адресами от 192.168.0.1 до 192.168.0.254. Адрес 192.168.0.255 — это адрес широковещательной рассылки для данной сети. А сеть 192.168.0.0 с маской 255.255.255.128 (192.168.0.0/25) допускает адреса от 192.168.0.1 до 192.168.0.127 (адрес 192.168.0.128 используется при этом в качестве широковещательного).
На практике сети с небольшим возможным числом хостов используются интернет-провайдерами (с целью экономии IP-адресов). Например, клиенту может быть назначен адрес с маской 255.255.255.252. Такая подсеть содержит только два хоста. При разбиении сети организации используют диапазоны локальных адресов сетей класса С. Сеть класса С имеет маску адреса 255.255.255.0 и может содеражать до 254 хостов. Применение сетей класса С при разбиении на VLAN в условиях предприятия связано с тем, что протоколы автоматической маршрутизации используют именно такие подсети.
При создании подсетей в организации рекомендуется придерживаться следующего правила: подсети, относящиеся к определенному узлу распределения, должны входить в одну сеть. Это упрощает таблицы маршрутизации и экономит ресурсы коммутаторов. Например, если к данному коммутатору подключены подсети 192.168.0.0/255.255.255.0, 192.168.1.0/255.255.255.0, 192.168.3.0/255.255.255.0, то другому коммутатору достаточно знать, что в этом направлении следует пересылать пакеты для сети 192.168.0.0/255.255.252.0.
Эта рекомендация несущественна для сетей малых и средних организаций, поскольку ресурсов современных коммутаторов достаточно для хранения настроек такого объема.

После того как компьютер получил IP-адрес и ему стало "известно" значение маски подсети, программа может начать работу в данной локальной подсети. Чтобы обмениваться информацией с другими компьютерами в глобальной сети, необходимо знать правила, куда пересылать информацию для внешней сети. Для этого служит такая характеристика IP-протокола, как адрес шлюза.

Шлюз (Gateway, default gateway)

Шлюз (gateway)— это устройство (компьютер), которое обеспечивает пересылку информации между различными IP-подсетями. Если программа определяет (по IP-адресу и маске), что адрес назначения не входит в состав локальной подсети, то она отправляет эти данные на устройство, выполняющее функции шлюза. В настройках протокола указывают IP-адрес такого устройства.
Для работы только в локальной сети шлюз может не назначаться.
Для индивидуальных пользователей, подключающихся к Интернету, или для небольших предприятий, имеющих единственный канал подключения, в системе должен быть только один адрес шлюза — это адрес того устройства, которое имеет подключение к Сети. При наличии нескольких маршрутов (путей пересылки данных в другие сети) будет существовать несколько шлюзов. В этом случае для определения пути передачи данных используется таблица маршрутизации.

Таблицы маршрутизации

Организация может иметь несколько точек подключения к Интернету (например, в целях резервирования каналов передачи данных или использования более дешевых каналов и т. п.) или содержать в своей структуре несколько IP-сетей. В этом случае, чтобы система "знала", каким путем (через какой шлюз) посылать ту или иную информацию, используются таблицы маршрутизации (routing). В таблицах маршрутизации для каждого шлюза указывают те подсети Интернета, для которых через них должна передаваться информация. При этом для нескольких шлюзов можно задать одинаковые диапазоны назначения, но с разной стоимостью передачи данных: информация будет отсылаться по каналу, имеющему самую низкую стоимость, а в случае его выхода из строя по тем или иным причинам автоматически будет использоваться следующее наиболее "дешевое" подсоединение.
Таблицы маршрутизации имеются на каждом устройстве, использующем протокол IP. Администраторы в основном работают с таблицами маршрутизации коммутирующего оборудования. Настройка таблиц маршрутизации компьютеров имеет смысл только в случае наличия нескольких сетевых адаптеров, подключенных к различным сегментам сети. Если у компьютера есть только одна сетевая карта (одно подключение к Интернету), таблица маршрутизации имеет наиболее простой вид: в ней записано, что все сигналы должны отправляться на шлюз, назначенный по умолчанию (default gateway).

Просмотреть таблицу маршрутизации протокола TCP/IP можно при помощи команды route print. С помощью команды route можно также добавить новый статический маршрут (route add) или постоянный маршрут— route add -p (маршрут сохраняется в настройках после перезагрузки системы).
Покажем на примере, как можно использовать модификации таблицы маршрутизации. Предположим, что на компьютере имеются две сетевых карты, одна из которых непосредственно подключена к Интернету (имеет реальный адрес), а вторая используется для работы во внутренней сети (локальный адрес). Доступ в Интернет производится по умолчанию через шлюз в локальной сети. В этом случае таблица маршрутизации, отображаемая по команде route print, выглядит примерно так:


Проверим путь прохождения пакетов на адрес Интернета, например 109.84.231.210, с помощью команды tracert:
tracert 109.84.231.210 -dВ итоге получаем примерно такую картину (листинг ограничен первыми четырьмя узлами):


Предположим, что мы хотим изменить путь прохождения пакетов к выбранному нами хосту, направив информацию через вторую сетевую карту (а не через шлюз по умолчанию). Для этого с помощью команды route add нужно добавить желаемый нами маршрут:
route add 109.84.231.210 mask 255.255.255.255 195.161.192.2
В команде мы указали, что хотим назначить новый маршрут не для диапазона адресов, а только для конкретного значения (поэтому маска — 255.255.255.255). Кроме того, явно указали адрес сетевого интерфейса, через который нужно пересылать пакеты.
После исполнения данной команды (на экран система не выводит никаких итогов операции) изменения можно просмотреть через таблицу маршрутизации.

По сравнению с исходным вариантом таблица маршрутизации дополнилась одной строкой, которая приведена в данном примере (остальные строки не изменились ).

Проверяем новый путь прохождения сигналов:
Трассировка маршрута к 109.84.231.210 с максимальным числом прыжков 30

1 1ms 1ms 1ms 195.161.192.1
2 23 ms 22 ms 23 ms 195.161.94.137
3 23 ms 23 ms 23 ms 195.161.94.5

.
Видно, что пакеты пересылаются уже через другой интерфейс.
Эти изменения маршрутизации действуют до перезагрузки системы или до подачи обратной команды: удаления записей маршрутизации. Для восстановления параметров маршрутизации достаточно подать команду, указав тот маршрут, который требуется удалить:

route delete 109.84.231.210

При этом обычно можно не указывать параметры маски и интерфейса (если они однозначно определяются по вводимому в команде адресу).

Примечание
На практике встречаются ситуации, когда изменение параметров маршрутизации в операционной системе Windows не сразу "отрабатывалось" корректно. Иногда после операций над таблицей маршрутизации для достижения успеха нужно было программно отключить и вновь включить тот сетевой интерфейс, для которого выполнялась настройка.

Понимание правил маршрутизации важно не только при построении маршрутов в Интернете, — задаче, которую вряд ли придется решать администраторам сетей некрупных предприятий. На практике для выделения обособленных участков локальной сети (например, по соображениям безопасности) достаточно широко используются виртуальные сети . А для того чтобы обеспечить избранный доступ в такие сети, администраторы должны уметь написать правильную таблицу маршрутизации для соответствующей VLAN.

Понимание работы сетей на базовом уровне имеет очень важное значение для каждого администратора сервера или веб-мастера. Это необходимо для правильной настройки ваших сервисов в сети, а также легкого обнаружения возможных проблем и решения неполадок.

В этой статье мы рассмотрим общие концепции сетей интернета, обсудим основную терминологию, самые распространенные протоколы, а также характеристики и предназначение каждого из уровней сетей. Здесь собрана только теория, но она будет полезна начинающим администраторам и всем интересующимся.

Основные сетевые термины

Перед тем как обсуждать основы сети интернет, нам нужно разобраться с некоторыми общими терминами, которые часто используются специалистами и встречаются в документации:

Вы можете найти намного больше терминов, но здесь мы перечислили все самые основные, которые будут встречаться чаще всего.

Уровни сетей и модель OSI

Обычно, сети обсуждаются в горизонтальной плоскости, рассматриваются протоколы сети интернет верхнего уровня и приложения. Но для установки соединений между двумя компьютерами используется множество вертикальных слоев и уровней абстракции. Это означает, что существует несколько протоколов, которые работают друг поверх друга для реализации сетевого соединения. Каждый следующий, более высокий слой абстрагирует передаваемые данные и делает их проще для восприятия следующим слоем, и в конечном итоге приложением.

Существует семь уровней или слоев работы сетей. Нижние уровни будут отличаться в зависимости от используемого вами оборудования, но данные будут передаваться одни и те же и будут иметь один и тот же вид. На другую машину данные всегда передаются на самом низком уровне. На другом компьютере, данные проходят все слои в обратном порядке. На каждом из слоев к данным добавляется своя информация, которая поможет понять что делать с этим пакетом на удаленном компьютере.

Модель OSI

Так сложилось исторически, что когда дело доходит до уровней работы сетей, используется модель OSI или Open Systems Interconnect. Она выделяет семь уровней:

  • Уровень приложений - самый верхний уровень, представляет работу пользователя и приложений с сетью Пользователи просто передают данные и не задумываются о том, как они будут передаваться;
  • Уровень представления - данные преобразуются в более низкоуровневый формат, чтобы быть такими, какими их ожидают получить программы;
  • Уровень сессии - на этом уровне обрабатываются соединения между удаленным компьютерами, которые будут передавать данные;
  • Транспортный уровень - на этом уровне организовывается надежная передача данных между компьютерами, а также проверка получения обоими устройствами;
  • Сетевой уровень - используется для управления маршрутизацией данных в сети пока они не достигнут целевого узла. На этом уровне пакеты могут быть разбиты на более мелкие части, которые будут собраны получателем;
  • Уровень соединения - отвечает за способ установки соединения между компьютерами и поддержания его надежности с помощью существующих физических устройств и оборудования;
  • Физический уровень - отвечает за обработку данных физическими устройствами, включает в себя программное обеспечение, которое управляет соединением на физическом уровне, например, Ehternet или Wifi.

Как видите, перед тем, как данные попадут к аппаратному обеспечению им нужно пройти множество слоев.

Модель протоколов TCP/IP

Модель TCP/IP, еще известная как набор основных протоколов интернета, позволяет представить себе уровни работы сети более просто. Здесь есть только четыре уровня и они повторяют уровни OSI:

  • Приложения - в этой модели уровень приложений отвечает за соединение и передачу данными между пользователям. Приложения могут быть в удаленных системах, но они работают как будто бы находятся в локальной системе;
  • Транспорт - транспортный уровень отвечает за связь между процессами, здесь используются порты для определения какому приложению нужно передать данные и какой протокол использовать;
  • Интернет - на этом уровне данные передаются от узла к узлу по сети интернет. Здесь известны конечные точки соединения, но не реализуется непосредственная связь. Также на этом уровне определяются IP адреса;
  • Соединение - этот уровень реализует соединение на физическом уровне, что позволяет устройствам передавать между собой данные не зависимо от того, какие технологии используются.

Эта модель менее абстрактная, но мне она больше нравиться и ее проще понять, поскольку она привязана к техническим операциям, выполняемым программами. С помощью каждой из этих моделей можно предположить как на самом деле работает сеть. Фактически, есть данные, которые перед тем, как будут переданы, упаковываются с помощью нескольких протоколов, передаются через сеть через несколько узлов, а затем распаковываются в обратном порядке получателем. Конечные приложения могут и не знать что данные прошли через сеть, для них все может выглядеть как будто обмен осуществлялся на локальной машине.

Основные протоколы интернета

Как я уже сказал. в основе работы сети лежит использование нескольких протоколов, которые работают один поверх другого. Давайте рассмотрим основные сетевые протоколы интернет, которые вам будут часто встречаться, и попытаемся понять разницу между ними.

Есть еще очень много других протоколов, но мы рассмотрели только сетевые протоколы, которые больше всего важны. Это даст вам общие понятия того, как работает сеть и интернет в целом.

Выводы

В этой статье мы рассмотрели основы сетей и протоколов, которые используются для организации их работы. Конечно, этого совсем недостаточно, чтобы понять все, но теперь у вас есть определенная база и вы знаете как различные компоненты взаимодействуют друг с другом. Это поможет вам понимать другие статьи и документацию. Если вас серьезно заинтересовали основы сети интернет, то тут не хватит нескольких статей. Вам нужна книга. Обратите внимание на Камер Д. Сети TCP/IP. Принципы, протоколы и структура. В свое время я ее прочитал и мне очень понравилось.

На завершение видео про модель OSI:

Сетевой протокол — набор правил, позволяющий осуществлять обмен данными между составляющими сеть устройствами, например, между двумя сетевыми картами ( рис. 6.1).

Иллюстрация к понятию Сетевой протокол


Рис. 6.1. Иллюстрация к понятию Сетевой протокол

TCP/IP

Стек протоколов TCP / IP — это набор протоколов, его название происходит от двух наиболее важных протоколов, являющиеся основой связи в сети Интернет . Протокол TCP разбивает передаваемую информацию на порции (пакеты) и нумерует их. С помощью протокола IP все пакеты передаются получателю. Далее с помощью протокола TCP проверяется, все ли пакеты получены. При получении всех порций TCP располагает их в нужном порядке и собирает в единое целое. В сети Интернет используются две версии этого протокола:

IP-адреса стандарта IPv6 имеют длину 128 бит и поэтому в четыре раза длиннее, чем IP-адреса четвертой версии. IP-адреса версии v6 записываются в следующем виде:X:X:X:X:X:X:X:X, где X является шестнадцатеричным числом, состоящим из 4-х знаков(16 бит), а каждое число имеет размер 4 бит. Каждое число располагается в диапазоне от 0 до F. Вот пример IP-адреса шестой версии: 1080:0:0:0:7:800:300C:427A. В подобной записи незначащие нули можно опускать, поэтому фрагмент адреса: 0800: записывается, как 800:.

Для взаимодействия сетевых устройств друг с другом необходимо, чтобы у передающего устройства был IP - и MAC -адреса получателя. Набор протоколов TCP / IP имеет в своем составе специальный протокол, называемый ARP (Address Resolution Protocol — протокол преобразования адресов), который позволяет автоматически получить MAC - адрес по известным IP -адресам

DHCP-протокол

Распределением IP -адресов для подключения к сети Интернет занимаются провайдеры, а в локальных сетях – сисадмины. Назначение IP -адресов узлам сети при большом размере сети представляет для администратора очень утомительную процедуру. Поэтому для автоматизации процесса разработан протокол Dynamic Host Configuration Protocol ( DHCP ) , который освобождает администратора от этих проблем, автоматизируя процесс назначения IP -адресов всем узлам сети.

FTP протокол

FTP протокол передачи файлов со специального файлового сервера на компьютер пользователя. Установив связь с удаленным компьютером, пользователь может скопировать файл с удаленного компьютера на свой или скопировать файл со своего компьютера на удаленный.

POP протокол

POP стандартный протокол получения почтового соединения. Серверы POP обрабатывают входящую почту, а протокол POP предназначен для обработки запросов на получение почты от клиентских почтовых программ.

SMTP протокол

IP адрес по протоколу IPv4

Одной из самых важных тем при рассмотрении TCP / IP является адресация IP . Адрес IP — числовой идентификатор , приписанный каждому компьютеру в сети IP и обозначающий местонахождение в сети устройства, которому он приписан. Адрес IP - это адрес программного, а не аппаратного обеспечения. IP - адрес узла идентифицирует точку доступа модуля IP к сетевому интерфейсу, а не всю машину.

IP - адрес — сетевой (программный) адрес узла в компьютерной сети, построенной по протоколу IP .

Каждый из 4х октет десятичной записи IP адреса может принимать значение в диапазоне от 0 до 255 и в теории такой адрес в десятичной форме записи может быть в диапазоне от 0.0.0.0 до 255.255.255.255. IP адрес - двоичное число, но для человека вместо записи в 32 бит 11000000.10101000.00000000.00000001 удобнее запись в 4 байта вида 192.168.0.1.

Задание 1. Определить IP адрес вашего ПК

Узнать свой собственный IP адрес вы можете, если запустите в ОС Windows XP на выполнение команду Пуск – Программы – Стандартные – Командная Строка и наберете в ней ipconfig ( рис. 6.2).

IP адрес вашего ПК в десятичной системе счисления


Рис. 6.2. IP адрес вашего ПК в десятичной системе счисления

Ту же команду можно выполнить в командной строке Windows 7 ( рис. 6.3).

Здесь мы видим IP в двух версиях: IPv4 и IPv6


Рис. 6.3. Здесь мы видим IP в двух версиях: IPv4 и IPv6

Задание 2 (скринкаст). Перевод чисел из двоичной системы в десятичную и наоборот

При работе с IP -адресами может возникнуть необходимость перевода двоичных чисел в десятичные и наоборот. Это можно сделать, например, так, как учат в школе:

101101102 = (1•2 7 )+(0•2 6 )+(1•2 5 )+(1•2 4 )+(0•2 3 )+(1•2 2 )+(1•2 1 )+(0•2 0 ) = 128+32+16+4+2 = 18210 Но, удобнее это делать на Windows -калькуляторе. Выполните в Windows -7 команду Пуск-Программы-Стандартные-Калькулятор, потом Вид-Программист ( рис. 6.4 и 5).

Читайте также: