Какие главные требования предъявляются к компьютерным сетям

Обновлено: 07.07.2024

Требования, предъявляемые к сетям

При организации и эксплуатации сети важными требованиями при работе являются следующие:

2-надежность и безопасность;

3-расширяемость и масштабируемость;

5-поддержка разных видов трафика;

Производительность

Производительность – это характеристика сети, позволяющая оценить, насколько быстро информация передающей рабочей станции достигнет до приемной рабочей станции.

На производительность сети влияют следующие характеристики сети:

2-скорость передачи данных;

3-метод доступа к каналу;

Если производительность сети перестает отвечать предъявляемым к ней требованиям, то администратор сети может прибегнуть к различным приемам:

1-изменить конфигурацию сети таким образом, чтобы структура сети более соответствовала структуре информационных потоков;

2-перейти к другой модели построения распределенных приложений, которая позволила бы уменьшить сетевой трафик;

3-заменить мосты более скоростными коммутаторами.

Но самым радикальным решением в такой ситуации является переход на более скоростную технологию. Если в сети используются традиционные технологии Ethernet или Token Ring, то переход на Fast Ethernet, FDDI или 100VG-AnyLAN позволит сразу в 10 раз увеличить пропускную способность каналов.

С ростом масштаба сетей возникла необходимость в повышении их производительности. Одним из способов достижения этого стала их микросегментация. Она позволяет уменьшить число пользователей на один сегмент и снизить объем широковещательного трафика, а значит, повысить производительность сети.

Первоначально для микросегментации использовались маршрутизаторы, которые, вообще говоря, не очень приспособлены для этой цели. Решения на их основе были достаточно дорогостоящими и отличались большой временной задержкой и невысокой пропускной способностью. Более подходящими устройствами для микросегментации сетей стали коммутаторы. Благодаря относительно низкой стоимости, высокой производительности и простоте в использовании они быстро завоевали популярность.

Таким образом, сети стали строить на базе коммутаторов и маршрутизаторов. Первые обеспечивают высокоскоростную пересылку трафика между сегментами, входящими в одну подсеть, а вторые передают данные между подсетями, ограничивали распространение широковещательного трафика, решали задачи безопасности и т. д.

Виртуальные ЛВС (VLAN) обеспечивают возможность создания логических групп пользователей в масштабе корпоративной сети. Виртуальные сети позволяют организовать работу в сети более эффективно.

Надежность и безопасность

Надежность и отказоустойчивость. Важнейшей характеристикой вычислительных сетей является надежность. Повышение надежности основано на принципе предотвращения неисправностей путем снижения интенсивности отказов и сбоев за счет применения электронных схем и компонентов с высокой и сверхвысокой степенью интеграции, снижения уровня помех, облегченных режимов работы схем, обеспечение тепловых режимов их работы, а также за счет совершенствования методов сборки аппаратуры.

Отказоустойчивость – это такое свойство вычислительной системы, которое обеспечивает ей как логической машине возможность продолжения действий, заданных программой, после возникновения неисправностей. Введение отказоустойчивости требует избыточного аппаратного и программного обеспечения. Направления, связанные с предотвращением неисправностей и отказоустойчивостью, основные в проблеме надежности. На параллельных вычислительных системах достигается как наиболее высокая производительность, так и, во многих случаях, очень высокая надежность. Имеющиеся ресурсы избыточности в параллельных системах могут гибко использоваться как для повышения производительности, так и для повышения надежности.

Следует помнить, что понятие надежности включает не только аппаратные средства, но и программное обеспечение. Главной целью повышения надежности систем является целостность хранимых в них данных.

Безопасность - одна из основных задач, решаемых любой нормальной компьютерной сетью. Проблему безопасности можно рассматривать с разных сторон – злонамеренная порча данных, конфиденциальность информации, несанкционированный доступ, хищения и т.п.


Обеспечить защиту информации в условиях локальной сети всегда легче, чем при наличии на фирме десятка автономно работающих компьютеров. Практически в вашем распоряжении один инструмент – резервное копирование (backup). Для простоты давайте называть этот процесс резервированием. Суть его состоит в создании в безопасном месте полной копии данных, обновляемой регулярно и как можно чаще. Для персонального компьютера более или менее безопасным носителем служат дискеты. Возможно использование стримера, но это уже дополнительные затраты на аппаратуру.

Легче всего обеспечить защиту данных от самых разных неприятностей в случае сети с выделенным файловым сервером. На сервере сосредоточены все наиболее важные файлы, а уберечь одну машину куда проще, чем десять. Концентрированность данных облегчает и резервирование, так как не требуется их собирать по всей сети.

Экранированные линии позволяют повысить безопасность и надежность сети. Экранированные системы гораздо более устойчивы к внешним радиочастотным полям.

Прозрачность

Прозрачность – это такое состояние сети, когда пользователь, работая в сети, не видит ее.

Коммуникационная сеть является прозрачной относительно проходящей сквозь нее информации, если выходной поток битов, в точности повторяет входной поток. Но сеть может быть непрозрачной во времени, если из-за меняющихся размеров очередей блоков данных изменяется и время прохождения различных блоков через узлы коммутации. Прозрачность сети по скорости передачи данных указывает, что данные можно передавать с любой нужной скоростью.

Если в сети по одним и тем же маршрутам передаются информационные и управляющие (синхронизирующие) сигналы, то говорят, что сеть прозрачна по отношению к типам сигналов.

Если передаваемая информация может кодироваться любым способом, то это означает, что сеть прозрачна для любых методов кодировок.

Прозрачная сеть является простым решением, в котором для взаимодействия локальных сетей, расположенных на значительном расстоянии друг от друга, используется принцип Plug-and-play (подключись и работай).

Прозрачное соединение. Служба прозрачных локальных сетей обеспечивает сквозное (end-to-end) соединение, связывающее между собой удаленные локальные сети. Привлекательность данного решения состоит в том, что эта служба объединяет удаленные друг от друга на значительное расстояние узлы как части локальной сети. Поэтому не нужно вкладывать средства в изучение новых технологий и создание территориально распределенных сетей (Wide-Area Network – WAN). Пользователям требуется только поддерживать локальное соединение, а провайдер службы прозрачных сетей обеспечит беспрепятственное взаимодействие узлов через сеть масштаба города (Metropolitan-Area Network – MAN) или сеть WAN. Службы Прозрачной локальной сети имеют много преимуществ. Например, пользователь может быстро и безопасно передавать большие объемы данных на значительные расстояния, не обременяя себя сложностями, связанными с работой в сетях WAN.

Поддержка разных видов трафика

Для разделения сети на сегменты используются мосты и коммутаторы. Они экранируют локальный трафик внутри сегмента, не передавая за его пределы никаких кадров, кроме тех, которые адресованы компьютерам, находящимся в других сегментах. Таким образом, сеть распадается на отдельные подсети. Это позволяет более рационально выбирать пропускную способность имеющихся линий связи, учитывая интенсивность трафика внутри каждой группы, а также активность обмена данными между группами.

Однако локализация трафика средствами мостов и коммутаторов имеет существенные ограничения. С другой стороны, использование механизма виртуальных сегментов, реализованного в коммутаторах локальных сетей, приводит к полной локализации трафика; такие сегменты полностью изолированы друг от друга, даже в отношении широковещательных кадров. Поэтому в сетях, построенных только на мостах и коммутаторах, компьютеры, принадлежащие разным виртуальным сегментам, не образуют единой сети.

Для того чтобы эффективно консолидировать различные виды трафика в сети АТМ, требуется специальная предварительная подготовка (адаптация) данных, имеющих различный характер: кадры – для цифровых данных, сигналы импульсно-кодовой модуляции – для голоса, потоки битов – для видео. Эффективная консолидация трафика требует также учета и использования статистических вариаций интенсивности различных типов трафика.

Управляемость

ISO внесла большой вклад в стандартизацию сетей. Модель управления сети является основным средством для понимания главных функций систем управления сети. Эта модель состоит из 5 концептуальных областей:

3-управление учетом использования ресурсов;

5-управление защитой данных.

Управление эффективностью

Цель управления эффективностью – измерение и обеспечение различных аспектов эффективности сети для того, чтобы межсетевая эффективность могла поддерживаться на приемлемом уровне. Примерами переменных эффективности, которые могли бы быть обеспечены, являются пропускная способность сети, время реакции пользователей и коэффициент использования линии.

Управление эффективностью включает несколько этапов:

  1. сбор информации об эффективности по тем переменным, которые представляют интерес для администраторов сети;
  2. анализ информации для определения нормальных (базовая строка) уровней;
  3. определение соответствующих порогов эффективности для каждой важной переменной таким образом, что превышение этих порогов указывает на наличие проблемы в сети, достойной внимания.

Управление конфигурацией

Цель управления конфигурацией – контролирование информации о сетевой и системной конфигурации для того, чтобы можно было отслеживать и управлять воздействием на работу сети различных версий аппаратных и программных элементов. Т.к. все аппаратные и программные элементы имеют эксплуатационные отклонения, погрешности (или то и другое вместе), которые могут влиять на работу сети, такая информация важна для поддержания гладкой работы сети.

Каждое устройство сети располагает разнообразной информацией о версиях, ассоциируемых с ним. Чтобы обеспечить легкий доступ, подсистемы управления конфигурацией хранят эту информацию в базе данных. Когда возникает какая-нибудь проблема, в этой базе данных может быть проведен поиск ключей, которые могли бы помочь решить эту проблему.

Управление учетом использования ресурсов

Цель управления учетом использования ресурсов – измерение параметров использования сети, чтобы можно было соответствующим образом регулировать ее использование индивидуальными или групповыми пользователями. Такое регулирование минимизирует число проблем в сети (т.к. ресурсы сети могут быть поделены исходя из возможностей источника) и максимизирует равнодоступность к сети для всех пользователей.

Управление неисправностями

Цель управления неисправностями – выявить, зафиксировать, уведомить пользователей и (в пределах возможного) автоматически устранить проблемы в сети, с тем чтобы эффективно поддерживать работу сети. Так как неисправности могут привести к простоям или недопустимой деградации сети, управление неисправностями, по всей вероятности, является наиболее широко используемым элементом модели управления сети ISO.

Управление неисправностями включает в себя несколько шагов:

  1. определение симптомов проблемы;
  2. изолирование проблемы;
  3. устранение проблемы;
  4. проверка устранения неисправности на всех важных подсистемах;
  5. регистрация обнаружения проблемы и ее решения.

Управление защитой данных

Цель управления защитой данных – контроль доступа к сетевым ресурсам в соответствии с местными руководящими принципами, чтобы сделать невозможными саботаж сети и доступ к чувствительной информации лицам, не имеющим соответствующего разрешения. Например, одна из подсистем управления защитой данных может контролировать регистрацию пользователей ресурса сети, отказывая в доступе тем, кто вводит коды доступа, не соответствующие установленным.

Подсистемы управления защитой данных работают путем разделения источников на санкционированные и несанкционированные области. Для некоторых пользователей доступ к любому источнику сети является несоответствующим.

Подсистемы управления защитой данных выполняют следующие функции:

1-идентифицируют чувствительные ресурсы сети (включая системы, файлы и другие объекты);

2-определяют отображения в виде карт между чувствительными источниками сети и набором пользователей;

3-контролируют точки доступа к чувствительным ресурсам сети;

4-регистрируют несоответствующий доступ к чувствительным ресурсам сети.

Совместимость

Совместимость и мобильность программного обеспечения. Концепция программной совместимости впервые в широких масштабах была применена разработчиками системы IBM/360. Основная задача при проектировании всего ряда моделей этой системы заключалась в создании такой архитектуры, которая была бы одинаковой с точки зрения пользователя для всех моделей системы независимо от цены и производительности каждой из них. Огромные преимущества такого подхода, позволяющего сохранять существующий задел программного обеспечения при переходе на новые (как правило, более производительные) модели, были быстро оценены как производителями компьютеров, так и пользователями, и начиная с этого времени практически все фирмы-поставщики компьютерного оборудования взяли на вооружение эти принципы, поставляя серии совместимых компьютеров. Следует заметить однако, что со временем даже самая передовая архитектура неизбежно устаревает и возникает потребность внесения радикальных изменений в архитектуру и способы организации вычислительных систем.

В настоящее время одним из наиболее важных факторов, определяющих современные тенденции в развитии информационных технологий, является ориентация компаний-поставщиков компьютерного оборудования на рынок прикладных программных средств.

Этот переход выдвинул ряд новых требований. Прежде всего, такая вычислительная среда должна позволять гибко менять количество и состав аппаратных средств и программного обеспечения в соответствии с меняющимися требованиями решаемых задач. Во-вторых, она должна обеспечивать возможность запуска одних и тех же программных систем на различных аппаратных платформах, т.е. обеспечивать мобильность программного обеспечения. В–третьих, эта среда должна гарантировать возможность применения одних и тех же человеко-машинных интерфейсов на всех компьютерах, входящих в неоднородную сеть. В условиях жесткой конкуренции производителей аппаратных платформ и программного обеспечения сформировалась концепция открытых систем, представляющая собой совокупность стандартов на различные компоненты вычислительной среды, предназначенных для обеспечения мобильности программных средств в рамках неоднородной, распределенной вычислительной системы.

SOHO от lang-en Small office/home office — название сегмента рынка электроники , предназначенного для домашнего использования. Как правило, характеризует устройства не предназначенные для производственных нагрузок и довольно хорошо переживающие длительные периоды бездействия.

SOHO сеть — локальная компьютерная сеть . Сеть обычно представлена одним кабинетом или комнатой. Сеть, как правило, построена по технологии Ethernet , с кабелем витая пара 5-ой категории и розетками 8P8C . Если компьютеров в сети более одного, то используются сетевые коммутаторы или повторители[1] , или сеть Wi-Fi , построенная по стандарту IEEE_802.11 c беспроводной точкой доступа .

Сеть позволяет использовать ресурсы всех компьютеров для передачи/хранения данных, а также получать доступ в сеть Интернет через один из компьютеров или сетевой шлюз. В сети SOHO можно использовать сервер для контроля доступа к сети, общего хранилища данных , а также разделять права пользователей.

Требования, предлагаемые к современным вычислительным сетям заключаются в следующем:

1. Производительность

2. Надежность и безопасность

4. Прозрачность

5. Управляемость

6. Совместимость

Рассмотрим каждое требование подробнее.

1. Производительность.

Существует несколько основных характеристик производительности сети:

1. время реакции;

2. пропускная способность;

3. задержка передачи.

Время реакции определяется как интервал времени между возникновением запроса пользователя к какой-либо сетевой службе и получением ответа на этот запрос.

Очевидно, что значение этого показателя зависит от типа службы, к которой обращается пользователь, от того, какой пользователь и к какому серверу обращается, а также от текущего состояния элементов сети – загруженности сегментов, коммутаторов и маршрутизаторов, через которые проходит запрос, загруженность сервера и тому подобное.

Пропускная способность ограничивает объем данных, переданных сетью или ее частью в единицу времени.

Пропускная способность измеряется или в битах в секунду, или в пакетах в секунду. Пропускная способность может быть мгновенной, максимальной и средней.

Средняя пропускная способность вычисляется путем распределения общего объема переданных данных на время их передачи, причем выбирается достаточно длительный промежуток времени – час, день или неделя.

Мгновенная пропускная способность отличается от средней тем, что для усреднения выбирается очень маленький промежуток времени – например, 10 мс или 1 с.

Максимальная пропускная способность – это наибольшая мгновенная пропускная способность, зафиксированная в течение периода наблюдения.

Задержка передачи определяется как задержка между моментом поступления пакета на вход какого-либо сетевого устройства или части сети и моментом появления его на выходе этого устройства. Этот параметр производительности по содержанию близок к реакции сети, но отличается тем, что всегда характеризует только сетевые этапы обработки данных, без задержек обработки компьютерами сети.

Пропускная способность и задержки передачи является независимыми параметрами, так что сеть может владеть, например, высокой пропускной способностью, но вносить значительные задержки при передаче каждого пакета.

2. Надежность и безопасность

Для оценки надежности используется:

Коэффициент готовности означает частицу времени, в течение которого система может быть использована. Готовность может улучшить путем введения избыточности в структуру системы: ключевые элементы системы должны существовать в нескольких экземплярах, чтобы при отказе одного из них функционирования системы обеспечивали другие.

Другим аспектом общей надежности является безопасность ( security ), то есть способность системы защитить данные от несанкционированного доступа.

Еще одною характеристикой надежности является отказостойкость ( faultwrance ). В сетях под отказоустойчивостью понимается способность системы спрятать от пользователя отказ отдельных ее элементов. В отказоустойчивой системе отказ одного из ее элементов приводит к некоторому снижению качества ее работы, а не к полной остановке.

3. Расширяемость и масштабируемость

Расширяемость ( extensibility ) означает возможность сравнительно легкого добавления отдельных элементов сети (пользователей, компьютеров, дополнений, служб), наращивания длины сегментов сети и замены существующей аппаратуры, более мощной. При этом принципиально важно, что легкость расширения системы иногда может обеспечиваться в некоторых достаточно ограниченных пределах.

Масштабируемость ( scalability ) значит, что сеть позволяет наращивать количество узлов и длину связей в очень широких пределах, при этом производительность сети не ухудшается. Для обеспечения масштабируемости сети придется применять дополнительное коммуникационное оборудование и специальным образом структурировать сеть.

4. Прозрачность

Прозрачность ( transparency ) сети достигается в том случае, когда сеть представляется пользователям не как множество отдельных компьютеров, связанных между собой сложной системой кабелей, а как единственная традиционная вычислительная машина с системой деления времени. Прозрачность может быть достигнута на двух разных уровнях – на уровне пользователя и на уровне программиста. На уровне пользователя прозрачность значит, что для работы с изъятыми ресурсами он использует те же команды и привычные ему процедуры, что и для работы с локальными ресурсами. На программном уровне прозрачность заключается в том, что дополнению для доступа к изъятым ресурсам нужны те же вызовы, что и для доступа к локальным ресурсам.

5. Управляемость

Управляемость сети имеет в виду возможность централизована контролировать состояние основных элементов сети, обнаруживать и решать проблемы, которые возникают при работе сети, выполнять анализ производительности и планировать развитие сети. В идеале средства управления сетями являют собой систему, которая осуществляет наблюдение, контроль и управление каждым элементом сети, – от самых простых к самим сложным устройствам, при этом такая система рассматривает сеть как единое целое, а не как разрознен набор отдельных устройств.

6. Совместимость

Совместимость значит, что сеть способна заключать в себе самое разнообразное программное и аппаратное обеспечение, то есть в ней могут сосуществовать разные операционные системы, которые поддерживают разные стеки коммуникационных протоколов, и работать аппаратные средства и дополнения от разных производителей. Сеть, которая состоит из разнотипных элементов, называется неоднородной или гетерогенной, а если гетерогенная сеть работает без проблем, то она является интегрированной. Основной путь построения интегрированных сетей – использование модулей, выполненных в соответствии с открытыми стандартами и спецификациями.

Требования, предъявляемые к современным вычислительным сетям

Потенциально высокая производительность - это одно из основных свойств распределенных систем, к которым относятся компьютерные сети. Это свойство обеспечивается возможностью распараллеливания работ между несколькими компьютерами сети. К сожалению, эту возможность не всегда удается реализовать. Существует несколько основных характеристик производительности сети:

    • время реакции;
    • пропускная способность;
    • задержка передачи и вариация задержки передачи.

    В общем случае время реакции определяется как интервал времени между возникновением запроса пользователя к какой-либо сетевой службе и получением ответа на этот запрос.

    Очевидно, что значение этого показателя зависит от типа службы, к которой обращается пользователь, от того, какой пользователь и к какому серверу обращается, а также от текущего состояния элементов сети - загруженности сегментов, коммутаторов и маршрутизаторов, через которые проходит запрос, загруженности сервера и т. п.

    Пропускная способность измеряется либо в битах в секунду, либо в пакетах в секунду. Пропускная способность может быть мгновенной, максимальной и средней.

    Средняя пропускная способность вычисляется путем деления общего объема переданных данных на время их передачи, причем выбирается достаточно длительный промежуток времени - час, день или неделя.

    Мгновенная пропускная способность отличается от средней тем, что для усреднения выбирается очень маленький промежуток времени - например, 10 мс или 1 с.

    Максимальная пропускная способность - это наибольшая мгновенная пропускная способность, зафиксированная в течение периода наблюдения.

    Чаще всего при проектировании, настройке и оптимизации сети используются такие показатели, как средняя и максимальная пропускные способности. Средняя пропускная способность отдельного элемента или всей сети позволяет оценить работу сети на большом промежутке времени, в течение которого в силу закона больших чисел пики и спады интенсивности трафика компенсируют друг друга. Максимальная пропускная способность позволяет оценить возможности сети справляться с пиковыми нагрузками, характерными для особых периодов работы сети, например утренних часов, когда сотрудники предприятия почти одновременно регистрируются в сети и обращаются к разделяемым файлам и базам данных.

    Задержка передачи определяется как задержка между моментом поступления пакета на вход какого-либо сетевого устройства или части сети и моментом появления его на выходе этого устройства. Этот параметр производительности по смыслу близок ко времени реакции сети, но отличается тем, что всегда характеризует только сетевые этапы обработки данных, без задержек обработки компьютерами сети. Обычно качество сети характеризуют величинами максимальной задержки передами и вариацией задержки . Не все типы трафика чувствительны к задержкам передачи, во всяком случае, к тем величинам задержек, которые характерны для компьютерных сетей, - обычно задержки не превышают сотен миллисекунд, реже - нескольких секунд. Такого порядка задержки пакетов, порождаемых файловой службой, службой электронной почты или службой печати, мало влияют на качество этих служб с точки зрения пользователя сети. С другой стороны, такие же задержки пакетов, переносящих голосовые данные или видеоизображение, могут приводить к значительному снижению качества предоставляемой пользователю информации - возникновению эффекта “эха”, невозможности разобрать некоторые слова, дрожание изображения и т. п.

    Пропускная способность и задержки передачи являются независимыми параметрами, так что сеть может обладать, например, высокой пропускной способностью, но вносить значительные задержки при передаче каждого пакета. Пример такой ситуации дает канал связи, образованный геостационарным спутником. Пропускная способность этого канала может быть весьма высокой, например 2 Мбит/с, в то время как задержка передачи всегда составляет не менее 0,24 с, что определяется скоростью распространения сигнала (около 300000 км/с) и длиной канала (72000 км).

    Расширяемость и масштабируемость

    Термины расширяемость и масштабируемость иногда используют как синонимы, но это неверно - каждый из них имеет четко определенное самостоятельное значение.

    Расширяемость (extensibility) означает возможность сравнительно легкого добавления отдельных элементов сети (пользователей, компьютеров, приложений, служб), наращивания длины сегментов сети и замены существующей аппаратуры более мощной. При этом принципиально важно, что легкость расширения системы иногда может обеспечиваться в некоторых весьма ограниченных пределах. Например, локальная сеть Ethernet, построенная на основе одного сегмента толстого коаксиального кабеля, обладает хорошей расширяемостью, в том смысле, что позволяет легко подключать новые станции. Однако такая сеть имеет ограничение на число станций - их число не должно превышать 30-40. Хотя сеть допускает физическое подключение к сегменту и большего числа станций (до 100), но при этом чаще всего резко снижается производительность сети. Наличие такого ограничения и является признаком плохой масштабируемости системы при хорошей расширяемости.

    Масштабируемость (scalability) означает, что сеть позволяет наращивать количество узлов и протяженность связей в очень широких пределах, при этом производительность сети не ухудшается. Для обеспечения масштабируемости сети приходится применять дополнительное коммуникационное оборудование и специальным образом структурировать сеть. Например, хорошей масштабируемостью обладает многосегментная сеть, построенная с использованием коммутаторов и маршрутизаторов и имеющая иерархическую структуру связей. Такая сеть может включать несколько тысяч компьютеров и при этом обеспечивать каждому пользователю сети нужное качество обслуживания.

    Прозрачность

    Прозрачность (transparency) сети достигается в том случае, когда сеть представляется пользователям не как множество отдельных компьютеров, связанных между собой сложной системой кабелей, а как единая традиционная вычислительная машина с системой разделения времени. Известный лозунг компании Sun Microsystems: “Сеть - это компьютер” - говорит именно о такой прозрачной сети.

    Прозрачность может быть достигнута на двух различных уровнях - на уровне пользователя и на уровне программиста. На уровне пользователя прозрачность означает, что для работы с удаленными ресурсами он использует те же команды и привычные ему процедуры, что и для работы с локальными ресурсами. На программном уровне прозрачность заключается в том, что приложению для доступа к удаленным ресурсам требуются те же вызовы, что и для доступа к локальным ресурсам. Прозрачность на уровне пользователя достигается проще, так как все особенности процедур, связанные с распределенным характером системы, маскируются от пользователя программистом, который создает приложение. Прозрачность на уровне приложения требует сокрытия всех деталей распределенности средствами сетевой операционной системы.

    Концепция прозрачности может быть применена к различным аспектам сети. Например, прозрачность расположения означает, что от пользователя не требуется знаний о месте расположения программных и аппаратных ресурсов, таких как процессоры, принтеры, файлы и базы данных. Имя ресурса не должно включать информацию о месте его расположения, поэтому имена типа mashinel: prog.c или \\ftp_serv\pub прозрачными не являются. Аналогично, прозрачность перемещения означает, что ресурсы должны свободно перемещаться из одного компьютера в другой без изменения своих имен. Еще одним из возможных аспектов прозрачности является прозрачность параллелизма, заключающаяся в том, что процесс распараллеливания вычислений происходит автоматически, без участия программиста, при этом система сама распределяет параллельные ветви приложения по процессорам и компьютерам сети. В настоящее время нельзя сказать, что свойство прозрачности в полной мере присуще многим вычислительным сетям, это скорее цель, к которой стремятся разработчики современных сетей.

    Поддержка разных видов трафика

    Особую сложность представляет совмещение в одной сети традиционного компьютерного и мультимедийного трафика . Передача исключительно мультимедийного трафика компьютерной сетью хотя и связана с определенными сложностями, но вызывает меньшие трудности. А вот случай сосуществования двух типов трафика с противоположными требованиями к качеству обслуживания является намного более сложной задачей. Обычно протоколы и оборудование компьютерных сетей относят мультимедийный трафик к факультативному, поэтому качество его обслуживания оставляет желать лучшего. Сегодня затрачиваются большие усилия по созданию сетей, которые не ущемляют интересы одного из типов трафика. Наиболее близки к этой цели сети на основе технологии АТМ, разработчики которой изначально учитывали случай сосуществования разных типов трафика в одной сети.

    Управляемость

    Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети. В идеале средства управления сетями представляют собой систему, осуществляющую наблюдение, контроль и управление каждым элементом сети - от простейших до самых сложных устройств, при этом такая система рассматривает сеть как единое целое, а не как разрозненный набор отдельных устройств.

    Хорошая система управления наблюдает за сетью и, обнаружив проблему, активизирует определенное действие, исправляет ситуацию и уведомляет администратора о том, что произошло и какие шаги предприняты. Одновременно с этим система управления должна накапливать данные, на основании которых можно планировать развитие сети. Наконец, система управления должна быть независима от производителя и обладать удобным интерфейсом, позволяющим выполнять все действия с одной консоли.

    Полезность системы управления особенно ярко проявляется в больших сетях: корпоративных или публичных глобальных. Без системы управления в таких сетях нужно присутствие квалифицированных специалистов по эксплуатации в каждом здании каждого города, где установлено оборудование сети, что в итоге приводит к необходимости содержания огромного штата обслуживающего персонала.

    В настоящее время в области систем управления сетями много нерешенных проблем. Явно недостаточно действительно удобных, компактных и многопротокольных средств управления сетью. Большинство существующих средств вовсе не управляют сетью, а всего лишь осуществляют наблюдение за ее работой. Они следят за сетью, но не выполняют активных действий, если с сетью что-то произошло или может произойти. Мало масштабируемых систем, способных обслуживать как сети масштаба отдела, так и сети масштаба предприятия, - очень многие системы управляют только отдельными элементами сети и не анализируют способность сети выполнять качественную передачу данных между конечными пользователями сети.

    Совместимость

    Совместимость или интегрируемость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение, то есть в ней могут сосуществовать различные операционные системы, поддерживающие разные стеки коммуникационных протоколов, и работать аппаратные средства и приложения от разных производителей. Сеть, состоящая из разнотипных элементов, называется неоднородной или гетерогенной, а если гетерогенная сеть работает без проблем, то она является интегрированной. Основной путь построения интегрированных сетей – использование.

    Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
    Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
    Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

    Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

    Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

    Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

    Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

    Понятие "мысленный эксперимент" придумано специально спекулянтами - релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.

    Производительность

    Главные параметры производительности:

    Время реакции в сети определяется соотношением интервала времени между созданием запроса и получением ответа от ресурса. В него также входит время подготовки запроса на клиентском компьютере, время транспортировки запроса, время обработки запроса и выдачи ответа.

    Пропускная способность показывает, какой объем данных можно передать данных за единицу времени на определенном участке сети. Пропускную способность можно измерять на любом участке сети, между двумя узлами. Из-за последовательного характера транспортировки пакетов разными участками сети, общая пропускная способность будет равная минимальной из пропускных способностей маршрута передачи. Для повышения пропускной способности, в первую очередь нужно обращать на самые медленные участки сети.

    Задержка передачи определяется как задержка между попаданием пакета на любое сетевое устройства и выходным пакетом этого устройства. Два последних параметра независимы друг от друга.

    Безопасность и надежность

    Готовонсть системы определяется тем, что система может быть использовать в любой промежуток времени. Готовность повышается с помощью введения избыточности в систему. Ключевые компоненты системы должны иметь резервный экземпляр, что бы при отказе его система использовала резерв.

    Масштабируемость и расширяемость

    Расширяемость сети достигается с помощью гибкости системы, и возможностью легкого добавлению разных компонентов в сеть. Увеличение длины сегментов и тд. Масштабируемость определяется расширением сети, при которой производительность не ухудшается.

    Поддержка разного рода трафика

    Сеть должна уметь обращаться с мультимедийным трафиком. Такой трафик требует маленькой задержки. Также сеть должна уметь комбинировать разного рода трафика без проседания производительности. Должна быть реализована централизованная система контроля компонентов сети. Уметь решать проблемы и анализировать нетипичные ситуации.

    Совместимость

    Совместимость определяется возможность работать с разнообразным ПО и аппаратным обеспечением, с разными операционными системами, протоколами и тд. На сегодня ethernet может похвастаться отличной совместимостью.

    Читайте также: