Обмен информацией между человеком и компьютером можно определить как

Обновлено: 04.07.2024

Есть три основных способа организации межкомпьютерной связи :

объединение двух рядом расположенных компьютеров посредством специального кабеля ;

передача данных от одного компьютера к другому посредством модема с помощью проводных, беспроводных или спутниковых линий связи;

объединение компьютеров в компьютерную сеть

Часто при организации связи между двумя компьютерами за одним компьютером закрепляется роль поставщика ресурсов (программ, данных и т.д.), а за другим — роль пользователя этих ресурсов . В этом случае первый компьютер называется сервером , а второй — клиентом или рабочей станцией. Работать можно только на компьютере-клиенте под управлением специального программного обеспечения.

Сервер (англ. serve — обслуживать) — это высокопроизводительный компьютер с большим объёмом внешней памяти, который обеспечивает обслуживание других компьютеров путем управления распределением дорогостоящих ресурсов совместного пользования (программ, данных и периферийного оборудования).

Клиент (иначе, рабочая станция) — любой компьютер, имеющий доступ к услугам сервера.

Компьютерная сеть (англ. ComputerNetWork, от net — сеть, и work — работа) — это система обмена информацией между компьютерами.

Пользователи компьютерной сети получают возможность совместно использовать её программные, технические, информационные и организационные ресурсы.

Компьютерная сеть представляет собой совокупность узлов (компьютеров, рабочих станций и др.) и соединяющих их ветвей.

Ветвь сети — это путь, соединяющий два смежных узла.

Узлы сети бывают трёх типов:

оконечный узел — расположен в конце только одной ветви;

промежуточный узел — расположен на концах более чем одной ветви;

смежный узел — такие узлы соединены по крайней мере одним путём, не содержащим никаких других узлов.

Компьютеры могут объединяться в сеть разными способами. Способ соединения компьютеров в сеть называется её топологией .

Наиболее распространенные виды топологий сетей:

Линейная сеть (Шина). Содержит только два оконечных узла, любое число промежуточных узлов и имеет только один путь между любыми двумя узлами.

Кольцевая сеть. Сеть, в которой к каждому узлу присоединены две и только две ветви.

Древовидная сеть. Сеть, которая содержит более двух оконечных узлов и по крайней мере два промежуточных узла, и в которой между двумя узлами имеется только один путь.

Звездообразная сеть. Сеть, в которой имеется только один промежуточный узел.

Ячеистая сеть. Сеть, которая содержит по крайней мере два узла, имеющих два или более пути между ними.

Полносвязанная сеть. Сеть, в которой имеется ветвь между любыми двумя узлами.

Важнейшая характеристика компьютерной сети — её архитектура.

В современном мире, переживающем информационный бум, всё большее значение приобретает проводная связь - телефония и интернет, которая позволяет людям не только общаться друг с другом на огромном расстоянии, но и пересылать за какие-то доли секунды огромные объёмы информации.

Существует несколько типов проводных линий связи :

медная витая пара проводов

волоконно-оптическая линия связи

Самой распространённой, дешёвой и простой в монтаже и последующем техническом обслуживании является витая пара. Волоконно-оптическая линия связи, напротив, является наиболее сложной и дорогостоящей.

Несмотря на бурное развитие в последние годы всевозможных средств беспроводной связи, таких, как мобильные или спутниковые телефоны, проводная связь, видимо, будет сохранять свои позиции ещё долгое время.

Основными преимуществами проводной связи перед беспроводной являются простота устройства линий связи и стабильность передаваемого сигнала (качество которого, например, практически не зависит от погодных условий).

Прокладка проводных (кабельных) линий связи для предоставления услуг телефонии и интернет, связана со значительными материальными затратами, а также представляет собой весьма трудоёмкий процесс. Однако, несмотря на подобные сложности, инфраструктура проводной связи постоянно обновляется и совершенствуется.

Беспроводные сетевые технологии группируются в три типа, различающиеся по масштабу действия их радиосистем, но все они с успехом применяются в бизнесе.
1. PAN (персональные сети) — короткодействующие, радиусом до 10 м сети, которые связывают ПК и другие устройства — КПК, мобильные телефоны, принтеры и т. п. С помощью таких сетей реализуется простая синхронизация данных, устраняются проблемы с обилием кабелей в офисах, реализуется простой обмен информацией в небольших рабочих группах. Наиболее перспективный стандарт для PAN — это Bluetooth.
2. WLAN (беспроводные локальные сети) — радиус действия до 100 м. С их помощью реализуется беспроводной доступ к групповым ресурсам в здании, университетском кампусе и т. п. Обычно такие сети используются для продолжения проводных корпоративных локальных сетей. В небольших компаниях WLAN могут полностью заменить проводные соединения. Основной стандарт для WLAN — 802.11.
3. WWAN (беспроводные сети широкого действия) — беспроводная связь, которая обеспечивает мобильным пользователям доступ к их корпоративным сетям и Интернету.

На современном этапе развития сетевых технологий, технология беспроводных сетей Wi-Fi является наиболее удобной в условиях требующих мобильность, простоту установки и использования. Wi-Fi (от англ. wirelessfidelity - беспроводная связь) - стандарт широкополосной беспроводной связи, разработанный в 1997г. Как правило, технология Wi-Fi используется для организации беспроводных локальных компьютерных сетей, а также создания так называемых горячих точек высокоскоростного доступа в Интернет. Будущее развития телекоммуникационных услуг в немалой степени заключается в грамотном сочетании проводной и беспроводной связи, где каждый вид связи будет использоваться там, где это наиболее оптимально.

Контрольные вопросы и задания

Дайте определение компьютерной сети, серверу.

Что такое рабочая станция.

Перечислите основные типы узлов сети и опишите их.

Какие типы проводных линей связи вы знаете?

Оформите в виде таблицы типы беспроводные сетевые технологии. Таблица должна содержать два столбца (название типа и его описание).

Не забудьте зайти в раздел учебные материалы.

В 21 веке. Человек породил сверхсложные машины, вышел в космическое пространство, покорил термоядерную реакцию, научился потреблять в огромных масштабах ценности природы.

Для упрощения своей работы, человек изобрел компьютер, и на протяжении многих десятилетий взаимодействует с ним в различных аспектах своей жизни. Человек продолжает стремиться к простоте и совершенству и если сравнивать первые ЭВМ, которые занимали несколько аудиторий, с нынешними, которые можно убрать в сумочку, или даже в карман, то можно заявить о больших успехах в эволюции компьютеров. Но модернизация касается не только габаритов и мощностей компьютеров, также она качается и простоты взаимодействия между человеком и компьютером.

Появляется научное направление Человеко-компьютерное взаимодействие (HCI, human-computer interaction ), которое существует и развивается для совершенствования методов разработки, оценки и внедрения интерактивных компьютерных систем, предназначенных для использования человеком.

Основной задачей человеко-компьютерного взаимодействия является улучшение взаимодействия между человеком и компьютером, делая компьютеры более удобными и восприимчивыми к потребностям пользователей. В частности, человеко-компьютерное взаимодействие занимается:

  • методологией и развитием проектирования интерфейсов (т. е., исходя из требований и класса пользователей, проектирование наилучшего интерфейса в заданных рамках, оптимизация под требуемые свойства, такие как обучаемость и эффективность использования);
  • методами реализации интерфейсов (например, программные инструментарии, библиотеки и рациональные алгоритмы);
  • методами для оценки и сравнения таких интерфейсов;
  • разработкой новых интерфейсов и методов взаимодействия;
  • развитием описательных и прогнозируемых моделей;
  • теорией взаимодействия.

Долгосрочной задачей человеко-компьютерного взаимодействия является разработка системы, которая снизит барьер между человеческой когнитивной моделью того, чего они хотят достичь и пониманием компьютера поставленных перед ним задач.

Специалисты человеко-компьютерного взаимодействия — это, как правило, разработчики, занимающиеся практическим применением методик разработки к реальным всемирным проблемам. Их работа, зачастую, вращается вокруг разработки графических- и веб- интерфейсов.

Человеко-компьютерный интерфейс

Создание качественного человеко-компьютерного интерфейса, который можно назвать точкой связи между человеком и компьютером, есть конечная цель изучения человеко-компьютерного взаимодействия.

Обмен информацией между человеком и компьютером можно определить как узел взаимодействия. Узел взаимодействия включает в себя несколько аспектов:

Человеко-компьютерный интерфейс

Создание качественного человеко-компьютерного интерфейса, который можно назвать точкой связи между человеком и компьютером, есть конечная цель изучения человеко-компьютерного взаимодействия.

Обмен информацией между человеком и компьютером можно определить как узел взаимодействия. Узел взаимодействия включает в себя несколько аспектов:

Какие функциональные элементы входят в состав компьютера?

Из каких элементов состоят узлы компьютера?

Что такое электрические ячейки памяти и логические элементы?

Глоссарий по теме:

Микросхема-память – устройство, предназначенное для запоминания, хранения массивов информации.

Микросхема-процессор – устройство для обработки информации.

Ячейка памяти – минимальный адресуемый элемент запоминающего устройства ЭВМ. Ячейки памяти могут иметь разную ёмкость (число разрядов, длину).

Логическое устройство – это электронное устройство, реализующее функцию или систему функций алгебры логики в виде определенных уровней напряжений или токов.

Логический элемент – это электронные устройства, предназначенные для обработки информации представленной в виде двоичных кодов, отображаемых напряжением (сигналом) высокого и низкого уровня. Логические элементы реализуют логические функции И, ИЛИ, НЕ и их комбинации.

Генератор тактовых импульсов – устройство, которое генерирует электрические импульсы заданной частоты (обычно прямоугольной формы) для синхронизации различных процессов в цифровых устройствах —ЭВМ, электронных часах и таймерах, микропроцессорной и другой цифровой технике.

Основная и дополнительная литература по теме урока:

Естествознание. 11 класс: Учебник для общеобразоват. организаций: базовый уровень под ред. И.Ю. Алексашиной. – 3-е изд. – М.: Просвещение, 2017. – §40, стр. 125-125

Информатика. Базовый курс / Под ред. СВ. Симоновича. — СПб.: Питер, 2005.

Теоретический материал для самостоятельного изучения

Сложно представить современную жизнь без технологий. Каждый день мы видим компьютер у себя на столе. Но далеко не все знают, что же таится под крышкой системного блока. С основными компонентами компьютера и их предназначением вы должны были ознакомиться на уроках информатики. Сегодня мы разберемся, как работают узлы компьютера с точки зрения преобразования электрических сигналов и что является элементарными составляющими компьютера?

Компьютер - это устройство для обработки информации, которое состоит из множества элементов: видеокарты, отвечающей за работу с изображением, оперативной памяти, отвечающей за временное хранение информации, постоянной памяти, предназначенной для длительного хранения данных, устройств ввода и вывода, материнской платы, через которую соединяются в единое целое все элементы ПК.


Микросхема-память и микросхема-процессор, расположены на одной или нескольких печатных платах.

Микросхема-память состоит из множества ячеек памяти и логического устройства. В ячейки памяти записывается сигнал 1 или 0, а потом считывается информация. Ячейки памяти состоят их логических элементов.

Микросхема-процессор состоит из нескольких логических устройств и нескольких регистров памяти. В зависимости от входных сигналов процессор передает сигналы на разные устройства.

Обратимся к ячейке памяти. Как мы уже знаем в ячейке памяти могут храниться только сигналы 0 или 1. Каждый из сигналов соответствует своему напряжению. Для «1» напряжение равно от 2.5 до 4.5 Вольт. Для «0» напряжение равно от 0 до 0,2 Вольт. Стоит отметить, что ячейки памяти могут иметь разную форму, но в любом случае содержат емкости, накапливающие заряд. Заряд, в свою очередь, задает напряжение при запоминании сигнала.

Управляет работой всех элементов генератор тактовых импульсов. Частота тактовых импульсов определяет быстродействие компьютера. Тактовая частота — это количество тактов (операций) процессора в секунду.

Как правило, чем выше тактовая частота процессора, тем выше его производительность.

Логические элементы – это простейшие «кубики», составные части цифровой микросхемы, выполняющие определённые логические функции. При этом, цифровая микросхема может содержать в себе от одного, до нескольких единиц, десятков, …и до нескольких сотен тысяч логических элементов в зависимости от степени интеграции. Действие этих элементов можно понять, воспользовавшись таблицей.


Логические элементы состоят из транзисторов. Два параллельно включенных транзистора реализуют элемент ИЛИ-НЕ; два транзистора, включенных последовательно реализуют элемент И-НЕ. Транзистором называется преобразовательный полупроводниковый прибор, имеющий не менее трех выводов, предназначенный для усиления мощности электрического сигнала. Важную роль в цепи играют и диоды. Их основная задача - превращение переменного тока в постоянный. Диоды широко применяются в логических цепях, в которых необходимо обеспечить прохождение тока в нужном направлении. Диод - основной элемент всех блоков питания в нашем компьютере.

Резюме теоретической части:

Компьютер – это устройство для обработки информации, которое состоит из множества элементов: микросхем-память и микросхем-процессор, расположенных на одной или нескольких печатных платах. Микросхема-память состоит из множества ячеек памяти и логического устройства. В ячейки памяти записывается сигнал, а потом считывается информация. Ячейки памяти состоят их логических элементов. Микросхема-процессор состоит из нескольких логических устройств и нескольких регистров памяти. Управляет работой всех элементов генератор тактовых импульсов. Частота тактовых импульсов определяет быстродействие компьютера. Логические элементы – это простейшие «кубики», составные части цифровой микросхемы, выполняющие определённые логические функции. При этом, цифровая микросхема может содержать в себе от одного, до нескольких единиц, десятков, …и до нескольких сотен тысяч логических элементов в зависимости от степени интеграции. Логические элементы состоят из транзисторов. Два параллельно включенных транзистора реализуют элемент ИЛИ-НЕ; два транзистора, включенных последовательно реализуют элемент И-НЕ. Важную роль в цепи играют и диоды. Их основная задача – превращение переменного тока в постоянный. Диоды широко применяются в логических цепях, в которых необходимо обеспечить прохождение тока в нужном направлении. Диод – основной элемент всех блоков питания в нашем компьютере.

Примеры и разбор решения заданий тренировочного модуля:

1) Вставьте пропущенные слова.

1. Быстродействие компьютера определяет _____.

2. За запись сигнала и подсчет информации отвечает ______________.

Правильный вариант: Микросхема-процессор, Микросхема-память

Пояснение: 1. Микросхема-процессор состоит из нескольких логических устройств и нескольких регистров памяти. Управляет работой всех элементов генератор тактовых импульсов. Частота тактовых импульсов определяет быстродействие компьютера.

2. Микросхема-память состоит из множества ячеек памяти и логического устройства. В ячейки памяти записывается сигнал, а потом считывается информация. Ячейки памяти состоят их логических элементов.

2) Установите последовательность по мере возрастания размеров.

Первые компьютеры, Процессор, Клавиатура, Диод

Правильные варианты:

  1. Диод
  2. Процессор
  3. Клавиатура
  4. Первые компьютеры

Пояснение: 1. Размер диода до 8 мм 3. Размер клавиатуры до 500мм

2. Размер процессора до 50мм 4. Размер первых компьютеров более 17м

Содержание

Введение



Ассоциация вычислительной техники рассматривает взаимодействие человека и компьютера как «дисциплину, занимающуюся проектированием, оценкой и осуществлением работы интерактивных вычислительных систем для использования человеком, а также изучением происходящих процессов.» Важным аспектом человеко-компьютерного взаимодействия является обеспечение удовлетворения пользователей (см. Computer user satisfaction).

В связи с тем, что человеко-компьютерное взаимодействие изучается как с человеческой стороны, так и с компьютерной, то знания, полученные в ходе исследования, опираются как на человеческий фактор, так и на компьютерный. С компьютерной стороны важны технологии компьютерной графики, операционных систем, языков программирования и среды разработки. С человеческой стороны, теория коммуникации, графическое и производственное проектирование, лингвистика, социология, когнитивная психология и такие человеческие факторы как удовлетворение пользователей. Также имеет значение инженерия и проектирование. Благодаря междисциплинарному характеру человеко-компьютерного взаимодействия, люди с разным уровнем подготовки вносят вклад в его успех. Иногда человеко-компьютерное взаимодействие называют как человеко-машинное взаимодействие, так и компьютерно-человеческое взаимодействие.

Важным критерием является внимание к человеко-компьютерному взаимодействию, так как плохо разработанные интерфейсы могут стать причиной многих непредвиденных проблем. Классическим примером этого является авария на АЭС Три-Майл-Айленд, где в ходе расследования было выявлено, что, по крайне мере, частичную ответственность за катастрофу несёт на себе проектирование интерфейса. Подобным образом, аварии в авиации возникали вследствие решения производителей использовать нестандартные воздушные приборы и/или расположение штурвала. Хотя предполагалось, что новые конструкции более совершенны касательно основного человеко-компьютерного взаимодействия, пилотам было присуще «стандартное» расположение и, таким образом, концептуально хорошая идея, не повлекла желаемые результаты.

Основной задачей человеко-компьютерного взаимодействия является улучшение взаимодействия между человеком и компьютером, делая компьютеры более удобными (юзабельными) и восприимчивыми к потребностям пользователей. В частности, человеко-компьютерное взаимодействие занимается:

Долгосрочной задачей человеко-компьютерного взаимодействия является разработка системы, которая снизит барьер между человеческой когнитивной моделью того, чего они хотят достичь и пониманием компьютера поставленных перед ним задач.

Исследователи человеко-компьютерного взаимодействия занимаются развитием новых методик проектирования, проведением экспериментов с новыми аппаратными устройствами, созданием прототипов новых систем программного обеспечения, изучением новых парадигм для взаимодействия и развитием теорий и моделей взаимодействия.

Человеко-компьютерный интерфейс

Создание качественного человеко-компьютерного интерфейса, который можно назвать точкой связи между человеком и компьютером, есть конечная цель изучения человеко-компьютерного взаимодействия.

Обмен информацией между человеком и компьютером можно определить как узел взаимодействия. Узел взаимодействия включает в себя несколько аспектов:

Различия в родственных областях

Также человеко-компьютерное взаимодействие отличается от человеческого фактора меньшим акцентированием внимания на задачах и процедурах и гораздо меньшим акцентированием на физическую нагрузку, истекающую из формы дизайна устройств интерфейса (таких как клавиатура и мышь).

История

Человеко-компьютерное взаимодействие получило развитие в контексте разнонаправленных научных векторов (компьютерная графика, инженерная психология, эргономика, теория организации, когнитивная наука, информатика и многие др.)

Началом эргономической фазы человеко-компьютерного взаимодействия можно считать диссертацию Сазерленда (Sutherland, 1963), которая определила развитие компьютерной графики как науки. При этом компьютерная графика нуждалась в эргономических проектах с целью эффективного управления сложными моделями CAD/CAM систем. Исследования в этой области были продолжены в работах «Man-machine symbiosis» (Licklider, 1960), «Augmentation of human intellect» (Engelbart, 1963) и «Dynabook» (Кей и Голдберг, 1977). В результате научных исследований получили развитие те инструменты, без которых трудно представить сейчас работу с компьютером: «мышь», поэлементно-адресуемое (bitmap) отображение, «окно», метафора рабочего стола, point-and-click редакторы.

Так же проблематика производимых человеком операций за компьютером была естественным продолжением классических целей инженерной психологии, за исключением того, что новые проблемы имели существенный когнитивный, коммуникационный и интерактивный характер, ранее не рассматриваемый в инженерной психологии и способствовали продвижению, таким образом, инженерной психологии в этом направлении.

Эргономические исследования также подчёркивали связь условий работы с явлениями, вызывающими напряжение (стресс), такими, как: рутинная работа, сидячее положение, зрительное восприятие визуальных образов на дисплеях и многими другими, до этого не рассматриваемые как взаимосвязанные.

Наконец, вопрос: «как использование компьютерной техники вписывается в проектирование технологии производства?» вывел взаимодействие с компьютерами на уровень эффективной организации труда и включил даже в проблематику социального управления.

В СССР институционализация этого научного направления началась с 1958 года с обзоров американских работ в журнале «Вопросы психологии».

Принципы разработки

При оценке текущего пользовательского интерфейса или разработке нового интерфейса следует иметь в виду следующие принципы разработки:

Повторяйте итеративную разработку до тех пор, пока не создадите практичный, удобный для пользователя интерфейс.

Методологии разработки

Разнообразные методики, излагающие техники проектирования человеко-компьютерного взаимодействия, начали появляться во времена развития данной области в 1980-х годах. Большинство методик разработки произошли от модели взаимодействия пользователей, разработчиков и технических систем. Ранние методики, например, трактовали когнитивные процессы пользователей как предсказуемые и поддающиеся количественному определению, и предлагали разработчикам при проектировании пользовательских интерфейсов рассматривать результаты когнитивных исследований в таких областях как память и внимание. Современные модели имеют тенденцию акцентировать внимание на постоянной обратной связи и диалоге между пользователями, разработчиками и инженерами, и прилагать усилия к тому, что технические системы крутятся вокруг желаний пользователей, нежели желания пользователей вокруг уже готовой системы.

Разработка дисплея

Дисплей предназначен для восприятия системных переменных и для облегчения дальнейшей обработки данной информации. Перед проектированием дисплея должны быть определены задачи, выполняемые данным дисплеем(например, навигация, управление, обучение, развлечение). Пользователь или оператор должен иметь возможность обработать любую информацию, которую генерирует и отображает система, поэтому информация должна отображаться в соответствии с принципами, которые обеспечивают восприятие и понимание.

13 принципов разработки дисплея

Некоторые принципы могут показаться противоречащими друг другу, и не существует доказательства, что один принцип является более важным, чем другой. Принципы могут быть адаптированы к конкретной разработке или ситуации. Функционального баланс между принципами имеет важное значение для эффективной разработки.

Принципы, относящиеся к восприятию

1. Сделайте дисплей чётким. Читаемость дисплея является важным критерием в проектировании дисплея. Если символы или объекты отображаются нечётко, то пользователь не может эффективно их использовать.

2. Избегайте абсолютно строгих границ. Не просите пользователя определить уровень переменной на основе лишь одной сенсорной переменной (например цвет, размер, громкость). Эти сенсорные переменные могут содержать множество различных уровней.

3. Обработка сверху-вниз. Сигналы воспринимаются и толкуются в соответствии с ожиданиями, сформированными на основе более раннего опыта пользователя. Если сигнал представлен вопреки ожиданиям пользователя, то потребуется больше его представления, чтобы доказать, что сигнал был понят верно.

5. Сходства приводят к путанице. Используйте отличающиеся элементы. Похожие сигналы будут приводить к путанице. Соотношение схожих признаков к различным признакам является причиной схожести сигналов. Например, А423В9 больше похоже на А423В8, чем 92 на 93. Ненужные похожие признаки должны быть удалены, а непохожие признаки должны быть выделены.

Принципы умозрительной модели

6. Принцип изобразительного реализма. Экран должен выглядеть как переменная, которую он представляет (например, высокая температура на термометре показана высшим вертикальным уровнем). Если есть множество составляющих, то они могут быть настроены так, как они будут выглядеть в среде, где они будут представлены.

7. Принцип движущейся части. Движущиеся элементы должны двигаться по той схеме и в том направлении в каком это происходит в мысленном представлении пользователя, как оно движется в системе. Например, движущийся элемент на высотометре должен двигаться вверх с набиранием высоты.

Принципы, основанные на внимании

8. Минимизация времени доступа к информации. Когда внимание пользователя перемещается из одного места в другое в целях доступа к необходимой информации, то затрачивается много времени и усилий. Конструкция дисплея должна уменьшить данные затраты, так часто используемый источник должен находиться в ближайшей позиции. Однако не должна быть утеряна понятность.

10. Принцип большого количества ресурсов. Пользователь может более просто обрабатывать информацию с разных ресурсов. Например, зрительная и слуховая информация может быть представлена одновременно, чем представлять всю зрительную и всю аудио информацию.

Принципы памяти

11. Замените память наглядной информацией: мировое знание. Пользователь не должен сохранять важную информацию исключительно в рабочей памяти или извлекать её из долговременной памяти. Меню/перечень могут помочь пользователю упростить использование памяти. Однако, использование памяти иногда может помочь пользователю, так как избавляет от необходимости ссылаться на некоторые типы знаний в мире (например, компьютерный специалист скорее использовал бы прямые команды из памяти, чем обращался к руководству). Для эффективной разработки должны быть сбалансированы знания в голове пользователя и знания в мире.

13. Принцип совместимости. Старые особенности других дисплеев легко перенести в разработку новых дисплеев, если их разработки совместимы. Долговременная память пользователя будет срабатывать на выполнение уместных действий. В ходе разработки должен быть принят во внимание данный факт и учитывать совместимость между разными дисплеями.

Всем известно, что длительное напряжение глаз чревато утомлением и снижением зрения. Когда глаза устают, становиться трудно разглядеть мелкие детали изображения на экране, внимание рассеивается, а если заставить себя вглядеться в изображение можно ощутить неприятную резь в глазах. При этом глаза нередко начинают слезиться. Такой эффект чаще всего возникает при использовании мониторов низкого качества (либо старые «трубки» с частотой кадровой развертки менее 70 Гц). Так же, из-за не правильного освещения (при использовании ярких ламп дневного света) либо когда на экран падают солнечные лучи, это тоже заставляет зрение напрягаться.

Яркость свечения монитора следует отрегулировать так, чтобы ее уровень был минимальным, первое время будет казаться что картинка слишком тусклая, но глаза очень быстро адаптируются к такому уровню. Такая настройка монитора уменьшает утомление зрения. Однако, при низкой яркости экрана чтобы не приходилось присматриваться к тусклому изображению, освещение помещения должно быть неярким, приглушенным. Лучше всего сидеть боком у окна. Шторы или жалюзи лучше прикрывать, а общее освещение лучше выключить или сделать минимальным. Лучше всего оставить только неяркое локальное освещение, направленное на клавиатуру или документ, с которым вы работаете.

Овладение слепым методом печати – весьма полезный навык работы с клавиатурой.

Оптимальная высота стола или выдвижной полки для клавиатуры 68 – 73 см. над полом. Высоту стула и стола следует подобрать так, чтобы минимально напрягать мышцы плеч, рук и запястий. Запястья могут касаться стола перед клавиатурой. Но, ни в коем случае нельзя переносить на них хотя бы часть веса тела, то есть опираться на них. Каждая клавиатура имеет регулировку по высоте наклона. Подберите для себя наиболее удобный угол наклона.

Мышка многим кажется совсем нехитрым устройством: казалось бы, чего там необычного катай по столу ее да щелкай кнопками. Однако и тут есть правила, которые стоит неукоснительно выполнять.

Запястье держать прямо. Никогда на него не опираться, в то время как оно лежит на столе! Не изгибайте суставы запястья: оно должно лежать в естественном положении.

Не сжимайте мышку с силой. Это вызывает ненужное напряжение мышц, нарушает кровообращение и сковывает движения. Если мышь не слушается, почистите ее, либо замените.

Не работайте с мышкой с полностью вытянутой рукой. Подбирая рабочий стол, выбирайте такой, чтобы за мышкой не приходилось тянуться далеко. Для движения мышкой должно быть достаточно свободного места.

Человеко-компьютерное взаимодействие (

Человеко-компьютерное взаимодействие (HCI) — это изучение, планирование и разработка взаимодействия между людьми (пользователями) и компьютерами. Зачастую его рассматривают как совокупность науки о компьютерах, бихевиоризма, проектирования и других областей исследования. Взаимодействие между пользователями и компьютерами происходит на уровне пользовательского интерфейса (или просто интерфейса), который включает в себя программное и аппаратное обеспечение; например, образы или объекты, отображаемые на экранах дисплеев, данные, полученные от пользователя посредством аппаратных устройств ввода (таких как клавиатуры и мыши) и другие взаимодействия пользователя с крупными автоматизированными системами, такими как воздушное судно и электростанция.

Ассоциация вычислительной техники рассматривает взаимодействие человека и компьютера как «дисциплину, занимающуюся проектированием, оценкой и осуществлением работы интерактивных вычислительных систем для использования человеком, а также изучением происходящих процессов.» Важным аспектом человеко-компьютерного взаимодействия является обеспечение удовлетворения пользователей (см. Computer user satisfaction).

В связи с тем, что человеко-компьютерное взаимодействие изучается как с человеческой стороны, так и с компьютерной, то знания, полученные в ходе исследования, опираются как на человеческий фактор, так и на компьютерный. С компьютерной стороны важны технологии компьютерной графики, операционных систем, языков программирования и среды разработки. С человеческой стороны, теория коммуникации, графическое и производственное проектирование, лингвистика, социология, когнитивная психология и такие человеческие факторы как удовлетворение пользователей. Также имеет значение инженерия и проектирование. Благодаря междисциплинарному характеру человеко-компьютерного взаимодействия, люди с разным уровнем подготовки вносят вклад в его успех. Иногда человеко-компьютерное взаимодействие называют как человеко-машинное взаимодействие, так и компьютерно-человеческое взаимодействие.




Важным критерием является внимание к человеко-компьютерному взаимодействию, так как плохо разработанные интерфейсы могут стать причиной многих непредвиденных проблем. Классическим примером этого является авария на АЭС Три-Майл-Айленд, где в ходе расследования было выявлено, что, по крайне мере, частичную ответственность за катастрофу несёт на себе проектирование интерфейса. Подобным образом, аварии в авиации возникали вследствие решения производителей использовать нестандартные воздушные приборы и/или расположение штурвала. Хотя предполагалось, что новые конструкции более совершенны касательно основного человеко-компьютерного взаимодействия, пилотам было присуще «стандартное» расположение и, таким образом, концептуально хорошая идея, не повлекла желаемые результаты.

Основной задачей человеко-компьютерного взаимодействия является улучшение взаимодействия между человеком и компьютером, делая компьютеры более удобными (юзабельными) и восприимчивыми к потребностям пользователей. В частности, человеко-компьютерное взаимодействие занимается:

· методологией и развитием проектирования интерфейсов (т. е., исходя из требований и класса пользователей, проектирование наилучшего интерфейса в заданных рамках, оптимизация под требуемые свойства, такие как обучаемость и эффективность использования);

· методами реализации интерфейсов (например, программные инструментарии, библиотеки и рациональные алгоритмы);

· методами для оценки и сравнения таких интерфейсов;

· разработкой новых интерфейсов и методов взаимодействия;

· развитием описательных и прогнозируемых моделей;

Долгосрочной задачей человеко-компьютерного взаимодействия является разработка системы, которая снизит барьер между человеческой когнитивной моделью того, чего они хотят достичь и пониманием компьютера поставленных перед ним задач.

Специалисты человеко-компьютерного взаимодействия — это, как правило, разработчики, занимающиеся практическим применением методик разработки к реальным всемирным проблемам. Их работа, зачастую, вращается вокруг разработки графических- и веб-интерфейсов.

Исследователи человеко-компьютерного взаимодействия занимаются развитием новых методик проектирования, проведением экспериментов с новыми аппаратными устройствами, созданием прототипов новых систем программного обеспечения, изучением новых парадигм для взаимодействия и развитием теорий и моделей взаимодействия.

В изучении персонального информационного менеджера (ПИМ), взаимодействие человека с компьютером находится в обширной информационной среде — люди могут работать с различными формами информации, некоторые из которых компьютерные, многие — нет (к примеру доски, блокноты, стикеры, стикеры на магнитах), чтобы понять и эффективно воздействовать на желаемые изменения своего мира. В области компьютерно-поддерживаемой совместной работы (англ.)русск. акцент делается на использование вычислительных систем в поддержку совместной работы группы людей. Принципы управления командной работой расширяют сферу компьютерно-поддерживаемой совместной работы на организационном уровне и могут быть реализованы без использования компьютерных систем.

Создание качественного человеко-компьютерного интерфейса, который можно назвать точкой связи между человеком и компьютером, есть конечная цель изучения человеко-компьютерного взаимодействия.

Обмен информацией между человеком и компьютером можно определить как узел взаимодействия. Узел взаимодействия включает в себя несколько аспектов:

· Область задач: условия и цели, ориентированные на пользователя

· Область машины: среда с которой взаимодействует компьютер, то есть ноутбук студента в комнате в общежитии колледжа

· Области интерфейса: непересекающиеся области, касающиеся процессов человека и компьютера, не относящиеся к сфере взаимодействия

· Выходной поток: поток информации, который возникает в машине

· Обратная связь: узлы взаимодействия, проходящие через интерфейс, оцениваются, модерируются и подтверждаются, так как они проходят от человека через интерфейс к компьютеру и обратно.

Читайте также: