Asrock uefi разгон оперативной

Обновлено: 03.07.2024

Какие характеристики определяют скорость работы оперативной памяти

Скорость работы компьютера зависит от объёма оперативной памяти. А насколько быстро она сама даёт записывать и считывать данные, покажут эти характеристики.

Эффективная частота передачи данных

Скорость работы памяти зависит от количества операций передачи данных, которые можно провести за одну секунду. Чем выше эта характеристика, тем быстрее работает память.

Формально скорость измеряется в гигатрансферах (GT/s) или мегатрансферах (MT/s). Один трансфер — одна операция передачи данных, мегатрансфер — миллион таких операций, гигатрансфер — миллиард.

Но почти всегда скорость указывают в мегагерцах или гигагерцах — производители решили, что покупателям так будет понятнее. Если на вашу планку памяти нанесена, например, маркировка DDR4‑2133, то её скорость передачи данных — 2 133 MT/s или 2 133 МГц.

Модуль памяти с частотой 2 133 МГц и рабочим напряжением 1,2 В. Фото: Wikimedia Commons

Но эффективная частота передачи данных памяти DDR вдвое выше её тактовой частоты. Собственно, DDR — это double data rate, удвоенная скорость передачи данных.

В таких модулях данные за каждый такт передаются дважды: импульс считывается и по фронту сигнала, и по его спаду, то есть один цикл — это две операции. Таким образом, реальная частота, на которой работает память DDR-2666 — 1 333 MT/s или 1 333 МГц.

Если у вас установлены планки памяти с разной частотой, то система будет работать на наименьшей из них. Конечно же, материнская плата должна поддерживать эту частоту.

Тайминги

CAS‑тайминги (Column Access Strobe) — это задержки в процессе работы оперативной памяти. Они показывают, сколько тактов нужно модулю памяти для доступа к битам данных. Чем ниже тайминги, тем лучше.

По сути, память — это прямоугольная таблица, которая состоит из ячеек в строках и столбцах. Чтобы получить доступ к данным, нужно найти правильную строку, открыть её и обратиться к ячейке в определённом столбце.

Обычно тайминги записываются в таком формате: 15‑17‑17‑39. Это четыре разных параметра:

  • Собственно, CAS Latency — задержка сигнала между отправкой адреса столбца в память и началом передачи данных. Отражает время, за которое будет прочитан первый бит из открытой строки.
  • RAS to CAS Delay — минимальное количество тактов между открытием строки памяти и доступом к её столбцам. По сути, это время на открытие строки и чтение первого бита из неё.
  • RAS Precharge Time — минимальное количество тактов между подачей команды предварительной зарядки (закрытием строки) и открытием следующей строки. Отражает время до считывания первого бита памяти из ячеек с неверной открытой строкой. В этом случае неверную строку нужно закрыть, а нужную — открыть.
  • DRAM Cycle Time tRAS/tRC — отношение интервала времени, в течение которого строка открыта для переноса данных, ко времени, в течение которого завершается полный цикл открытия и обновления строки. Этот параметр отражает быстродействие всей микросхемы памяти.

Если у оперативной памяти высокая тактовая частота и большие тайминги, она может работать медленнее, чем вариант с меньшей частотой, но и более низкими таймингами. Вы можете разделить тактовую частоту на CAS Latency (первое число в строке таймингов) и понять, сколько инструкций в секунду способна выполнить память. Это позволит оценить, насколько она быстрая.

Напряжение

В документации к оперативной памяти вы можете увидеть много различных параметров: напряжение контроллера (SOC), тренировки памяти при запуске системы (DRAM Boot), источника опорного напряжения (Vref) и так далее. Для разгона важен в первую очередь SOC. Он зависит от класса памяти — нормой считаются Intel® XMP‑Ready: Extreme Memory Profiles for Intel® Core™ Processors, DDR2 DIMM / SODIMM такие значения:

  • DDR2 — 1,8 В;
  • DDR3 — 1,5 В;
  • DDR4 — 1,2 В.

Также для каждого класса памяти есть пиковые значения напряжений, которые при разгоне превышать не стоит:

  • DDR2 — 2,3 В;
  • DDR3 — 1,8 В;
  • DDR4 — 1,5 В.

При повышении частоты оперативной памяти потребуется увеличенное напряжение. Но чем оно выше, тем больше риск преждевременного выхода модулей из строя.

Оперативная память бывает одно-, двух- и четырехранговой. Ранг — это число массивов из микросхем памяти, распаянных на одном модуле. Ширина одного массива (банка), как правило, равна 64 битам, в системах с ЕСС (кодом коррекции ошибок) — 72 бита.

Одноранговые модули (single rank) обычно включают 4 или 8 чипов на одной планке. Двухранговые (double rank) — 16 таких чипов. Четырехранговые (quad rank) — 32 чипа, и такой формат встречается достаточно редко.

Обычно этот показатель помечается буквой в названии: S (single) — одноранговая, D (double) — двухранговая, Q (quad) — четырехранговая.

Одноранговые чипы обычно дешевле и имеют больше перспектив для разгона. Двухранговые модули изначально работают с большей производительностью, но прирост при разгоне будет меньше.

Любую ли оперативную память можно разогнать

Это зависит в первую очередь от материнской платы. Если она поддерживает оверклокинг (разгон), то, скорее всего, и с разгоном памяти проблем не будет.

Материнские платы на базе чипсетов B350, B450, B550, X370, X470, X570 для процессоров AMD поддерживают разгон, на А320 — нет. На этой странице вы сможете уточнить, есть ли возможность оверклокинга у вашей модели.

Для систем с процессорами Intel для оверклокинга подходят платы на чипсетах Х- и Z‑серий. Модели из линеек W-, Q-, B- и H‑серий разгон не поддерживают. Уточнить данные по вашей материнской плате можно здесь.

Считается, что оперативная память Samsung обеспечивает наиболее высокий прирост при разгоне. Прирост производительности чипов Hynix и Micron будет меньше.

Подчеркнём: речь идёт именно о чипах. Некоторые бренды, например Kingston или Crucial, могут выпускать память на чипах Samsung, Hynix или Micron.

Вопрос лишь в том, зачем вам разгонять память. Если вы таким образом хотите ускорить сёрфинг в интернете, то вряд ли достигнете заметных результатов. А вот для повышения FPS в играх, ускорения обработки фото в Adobe Lightroom и видео в Adobe AfterEffects или Premiere разгон оправдан — можно «выжать» рост производительности на 15–20%.

Отметим также, что у процессоров AMD Ryzen частота оперативной памяти связана с частотой внутренней шины, которой соединяются два блока ядер. Поэтому для систем на базе AMD разгон напрямую влияет на производительность центрального процессора.

Но в любом случае гарантия производителей не распространяется на память, параметры которой вы изменили. Так что любой разгон вы делаете на свой страх и риск.

Как подготовиться к разгону оперативной памяти

Чтобы добиться результата и не навредить компьютеру, выполните эти шаги.

Почистите компьютер

Любой разгон ведёт к повышению температуры комплектующих. Чтобы система охлаждения эффективно справилась с этим, проведите генеральную уборку внутри системного блока или ноутбука. На этой странице вы найдёте инструкцию для ноутбука, с ПК всё окажется даже проще: комплектующие на виду, разбирать системный блок легче.

Установите ПО

Эти утилиты расскажут о характеристиках вашей системы и помогут протестировать её после разгона. Вам точно потребуется программа для определения параметров памяти и бенчмарк для тестов. Рекомендуем такие варианты ПО:

    — пожалуй, самая популярная в среде оверклокеров утилита для определения параметров памяти. Цена — от 26 долларов в год. — небольшая бесплатная программа, которая поможет уточнить характеристики памяти и системы в целом. — также показывает параметры системы и включает бенчмарки для тестирования. На официальном сайте есть платные варианты и бесплатные демоверсии. — бесплатная утилита, поможет выставить оптимальные параметры разгона оперативной памяти для систем на базе AMD Ryzen. Также ПО включает бенчмарк для тестирования памяти, который подходит и для систем на базе процессоров Intel. — бесплатный бенчмарк для тестирования стабильности системы: он хорошо нагружает и процессор, и оперативную память. При использовании нужно выбрать вариант Blend, чтобы добиться значительной нагрузки на память. — бенчмарк, в котором вы найдёте больше данных и алгоритмов для проверки. Для работы программы потребуется флешка — на неё вы запишете образ диска с тестами. Затем нужно загрузить компьютер с флеш‑накопителя (выставить в BIOS / UEFI загрузку с USB) и запустить тесты. Бесплатной версии достаточно для разгона ОЗУ.

Найдите свежую версию BIOS / UEFI материнской платы

Обновите программное обеспечение материнской платы перед разгоном. Загрузить свежий BIOS / UEFI можно с сайта производителя.

Как правило, новые версии работают стабильнее, в них меньше ошибок и факторов риска. К тому же старые прошивки некоторых моделей плат могут не поддерживать разгон памяти, а новые — уже включают эту функцию.

Как разогнать оперативную память в BIOS

Разгон в BIOS — самый универсальный способ. Он требует много усилий и времени, так как подбирать параметры приходится вручную. Порой на достижение оптимальных характеристик может уйти день‑другой. Но работает всегда — разумеется, если ваша материнская плата поддерживает оверклокинг. Главное — не увеличивать напряжение выше пиковых значений и не игнорировать ошибки в тестах стабильности системы.

Определите характеристики оперативной памяти

В Thaiphoon Burner нажмите Read и выберите нужный модуль памяти. Характеристики показываются отдельно для каждого из них.

Всем доброго времени!

Каким бы мощным "сегодня" не был ваш ПК (ноутбук), "завтра" - может потребоваться его апгрейд или "точечная" настройка для повышения производительности.

И должен заметить, что про разгон ЦП или видеокарты многие пользователи хотя бы краем уха где-то и слышали, а вот про память - знают лишь некоторые.

Собственно, сегодняшняя заметка как раз будет про разгон памяти: всё самое основное (+ типовые вопросы) и как это выполняется.

На всякий случай напоминаю, что за "эксперименты" над своими железками - ответственность полностью на вас (даже если вы их делаете по моей заметке (всегда есть фактор "случайности". ) ).

Теперь ближе к делу.

Важно!

Если после разгона ПК не включается, или начал появл. синий экран (а такое бывает, если вы выставите слишком высокие частоты для вашего железа) — сбросьте настройки BIOS/UEFI, вынув на 2-5 мин. батарейку (на мат. плате).

Как выглядит батарейка на мат. плате

Как выглядит батарейка на мат. плате

ускорение ПК

Выжимаем доп. производительность за счет памяти

Что даст разгон, и стоит ли это делать

Вопрос интересный. Многое здесь, конечно, зависит от ваших "железок": архитектуры ЦП (процессора), возможности мат. платы, типа ОЗУ.

Те же +15-25% при работе с каким-нибудь WinRAR, играми, редакторами и пр. - получить достаточно реально.

WinRAR - сравнение до разгона памяти и после

WinRAR - сравнение до разгона памяти и после (скрин 1)

WinRAR - сравнение до разгона памяти и после-2

WinRAR - сравнение до разгона памяти и после (скрин 2)

Кстати, если вы пользуетесь APU (встроенной видеокартой) — то разгон ОЗУ может увеличить весьма неплохо кол-во FPS (речь идет о десятках процентов!).

Vega 11 — что дает разгон памяти

Vega 11 — что дает разгон памяти (тест в FurMark)

Т.е. как видите, повышение частоты ОЗУ весьма положительно сказывается на общем быстродействии (правда, сколько "циферок" добавиться конкретно у вас — без тестирования сказать довольно сложно).

Как бы там ни было, если вы хотите "выжать" из ПК что-нибудь еще — смысл попробовать "поиграться" с памятью точно есть.

Примечание : напоминаю, что разгон вы выполняете на свой страх и риск.

Хотя отмечу, что "игры" с памятью безопаснее, чем разгон ЦП или видеокарты.

Что порекомендую перед разгоном ОЗУ (есть ведь еще способ!)

Не могу не отметить один важный момент , про который обязательно стоит сказать всем, кто собирается "гнать" память.

Дело в том, что на многих ПК/ноутбуках средне-ценового сегмента часто по умолчанию установлена лишь одна плашка памяти (и, разумеется, задействован одноканальный режим работы) .

Слоты под плашки ОЗУ

Установка плашки памяти

Результаты теста на скриншоте (на ноутбуке была установлена вторая плашка памяти)

Результаты теста на скриншоте (на ноутбуке была установлена вторая плашка памяти)

CPU-Z (режим работы ОЗУ). Dual — двухканальный

CPU-Z (режим работы ОЗУ). Dual — двухканальный

Спецификация материнской платы

Спецификация материнской платы

Как производится разгон, и тест системы после (пару примеров)

Если у вас достаточно современная мат. плата и ОЗУ, то весь процесс разгона памяти для вас будет сводиться к выбору соответствующего XMP профиля в настройках BIOS / UEFI (в противном случае частоту , вольтаж , и тайминги придется выставлять вручную, что отнимает больше времени (и не всегда просто подобрать оптимальные значения)) .

В заметке я "остановлюсь" на первом варианте, как на наиболее предпочтительном для широкой аудитории (в примере ниже платы ASRock, Gigabyte, MSI).

Важно!

По поводу ноутбуков : далеко не во всех устройствах есть возможность гнать память (опции изменения частоты работы ОЗУ просто-напросто может не быть в BIOS).

Чаще всего такая опция есть только в производительных игровых ноутбуках.

ASRock

ASRock UEFI — загружаем XMP профиль

ASRock UEFI — загружаем XMP профиль

После этого вы сразу заметите как частота памяти (frequency) и вольтаж (voltage) были увеличены (в моем случае DDR4-2400 --> DDR4-3200, 1.200V --> 1.350V).

Значения частоты и вольтажа поменялись!

Значения частоты и вольтажа поменялись!

Не забудьте сохранить настройки после произведенных изменений (клавиша F10 / Save And Exit).

MSI — меняем частоты памяти

MSI — меняем частоты памяти

Во всплывшем окне выбрать один из профилей.

Выбор профиля

После также сохранить настройки, нажав на клавишу F10. После перезагрузки компьютера — ОЗУ будет работать на "новой" повышенной частоте.

Gigabyte

Рекомендую сразу же после входа в BIOS (UEFI) переключиться в классическое меню (нажав по ссылке "Classic" в верхней части окна).

Настройка BIOS (UEFI) на примере Gigabyte AB350-Gaming

Настройка BIOS (UEFI) на примере Gigabyte AB350-Gaming

Далее в разделе "M.I.T" в строке "X.M.P" укажите один из профилей (в моем случае первый).

Раздел MIT — загружаем XMP

Раздел M.I.T — загружаем XMP

После, также, как и на др. платах, сохраните настройки (F10).

Тестирование

Для начала откройте диспетчер задач (Ctrl+Shift+Esc) , вкладку "Производительность / Память" : в строке скорость будет представлена текущая частота (после разгона это значение должно вырасти).

Если у вас не Windows 10 — вместо диспетчера задач можете воспользоваться спец. утилитами для просмотра характеристик.

Диспетчер задач - память

Диспетчер задач - память / Windows 10

Вообще, стоит отметить, что после того, как частота ОЗУ по умолчанию была изменена (тем более, если вы вручную указали даже больше, чем стояло в XMP профиле) — компьютер/ноутбук далеко не всегда может вести себя стабильно.

  1. Как выполнить стресс-тест процессора и системы в целом (с помощью AIDA 64);
  2. Стресс-тест видеокарты: проверка на надежность и стабильность (с помощью FurMark).

FurMark — стресс-тест в действии (крутится бублик)

FurMark — стресс-тест в действии (крутится бублик)

Разумеется, во время выполнения тестов не должно появляться синих экранов, зависаний, перезагрузок и пр. Если это происходит — значит вероятнее всего ваше оборудование не держит завышенные частоты. Попробуйте их несколько снизить , а потом заново провести тесты.

Как разогнать оперативную память и зачем это делать

После установки оперативная память работает на минимальной частоте. Купив планку ОЗУ с тактовой частотой 2400 МГц, можно с удивлением обнаружить, что она функционирует на 1600 МГц.

Зачем добиваться максимальной производительности оперативной памяти

Чем больше МГц, тем выше пропускная способность чтения и записи, больше операций выполняется за одну секунду. Архивация файлов с помощью WinRAR происходит на 40% быстрее. В этом обзоре наглядно показано, как влияет разгон Kingston HyperX FURY на скорость обработки информации.

Чтобы сэкономить себе время на поиски оптимального тайминга, можно воспользоваться программой «Drum Calculator for ryzen». ОЗУ, работающая с минимальным таймингом и максимальной частой, больше нагружает процессор, что отражается на количестве FPS в играх. Пример использования калькулятора и удачного разгона здесь.


А здесь можно посмотреть детальное и полномасштабное тестирование изменения частот и таймингов с приростом 6–14 FPS.

Совместимость

Оперативная память работает на частоте самого медленного модуля. Если установлено несколько планок разных производителей или серий, может возникнуть конфликт совместимости, тогда операционная система не запустится.

Чтобы выжать из железа максимум, надо устанавливать модули памяти из одной серии. В этом обзоре показана разница между двухканальным и одноканальным режимом работы ОЗУ.


В двухканальном режиме необходимо устанавливать планку через один слот. Тут продемонстрирована комплексная работа планок оперативки из одной серии.

Правила разгона

Не все материнские платы поддерживают разгон. Китайские «ноунеймы» в особенности любят блокировать возможность увеличить производительность вручную, оставляя только автоматическое поднятие частот.

Turbo Boost — это всегда разгон в щадящем режиме, протестированный производителем и максимально безопасный. Чтобы получить производительности на 5–10% больше, потребуется поработать ручками. Контроллер памяти процессора не даст разогнать оперативную память выше собственных параметров частоты.

Спасительная кнопка отката

Вывести из строя оперативную память, меняя частоту — невозможно. Со слишком высокими параметрами ПК просто не запустится. Если после нескольких загрузок все еще появляется «синий экран смерти», необходимо сбросить настройки на заводские параметры. Делается это с помощью перемычки «CLR CMOS», на некоторых материнках он подписан, как «JBAT».


Настройка частоты и тайминги памяти

Есть два способа разгона — автоматический и ручной. Первый вариант безопасен, второй позволяет добиться большей производительности, но есть риск сбоя ОС и физического повреждения ОЗУ. Для увеличения частоты оперативной памяти используется BIOS.

Автоматическая настройка

Специальное программное обеспечение «Extreme Memory Profiles» для процессоров Intel позволяет быстро настроить уже готовые профили разгона. У фанатов AMD есть свой софт от MSI. Применяя автоматические настройки, мы получаем оптимальные параметры задержки.

Разгон серверной ОЗУ

Рассмотрим автонастройки частоты на примере материнской платы x79 LGA2011 с процессором Intel Xeon E5-2689. Серверная оперативная память — 2 планки Samsung по 16 Gb с частотой 1333 MHz, работающие в двухканальном режиме, тайминг — 9-9-9-24.


Путь к разгону лежит через BIOS, вкладка «Chipset», раздел «Northbridge» — параметры северного моста.


Выбираем настройку «DDR Speed». Параметр «Auto» меняем на «Force DDDR3 1600». Сохраняем, перезагружаемся. Запускаем тест в программе AIDA 64, выбрав в меню «Сервис» задачу «Тест кэша и памяти», затем жмем «Start Benchmark».


В синтетическом тесте скорость чтения, записи и копирования увеличилась почти на 20%. «Memory Bus» поднялся до 800 MHz, тайминг — 11-11-11-28.

Возвращаемся в BIOS, ставим «Force DDDR3 1866».


При таких настройках прирост производительности достигает 39%. Процессор разогнался автоматически с 2600 MHz до 3292,5 MHz, прирост CPU составил 26%, параметры тайминга — 12-12-12-32.

Разгон с помощью профиля XMP от MSI

В современные планки ОЗУ устанавливается SPD-чип с предустановленными профилями разгона, позволяя увеличивать частоту до 3200 MHz. Для разгона такой оперативки выбираем функцию «XMP» в BIOS.


Опускаемся вниз, не трогая остальные настройки, указываем «Профиль 1». Сохраняем изменения, тестируем в Benchmark.


Ручная настройка

Включаем компьютер. Для перехода в BIOS нажимаем клавишу «F1» или «Delete» — в зависимости от материнки. Переходим в раздел, отвечающий за центральный процессор и оперативную память, ищем строку с параметром частоты ОЗУ.

Если в BIOS есть пункт «MB Intelligent Tweaker (M.I.T.)», нажимаем «Ctrl + F1» в главном меню — должна появиться еще одна категория с настройками. В ней находим строку «System Memory Multiplier».

Если пункта M.I.T. нет, скорей всего, используется «AMI BIOS». Ищем вкладку «Advanced BIOS Features», переходим к параметру «Advanced DRAM Configuration».

Если установлен «UEFI BIOS», нажимаем «F7» — раздел «Advanced Mode», переходим к вкладке «Ai Tweaker», изменяем частоту, используя выпадающее меню «Memory Frequency».

Метод научного тыка

Теперь рассмотрим подробнее, как разогнать частоту, тайминг. Сразу «давить на газ» не стоит, параметр частоты увеличиваем плавно. Для сохранения нажимаем «F10», перезагружаемся и смотрим результаты с помощью теста Benchmark в AIDA 64 или в другой программе. Универсальных параметров разгона ОЗУ нет, данные ниже предоставлены для ориентира.


Параметр «System Memory Multiplier» позволяет разогнать ОЗУ, изменяя множитель. При изменении частоты, автоматически меняются и базовые тайминги.


Поиграв с вариациями частоты, переходим к нижней строчке «DRAM Timing Control», выставляем тайминги, переключившись с режима «Auto» на желаемые параметры.


Управление временем

Высокая частота и низкие тайминги позволяют увеличить производительность, высокие тайминги и высокая частота — снижают ее. Тайминги или задержка — это количество тактовых импульсов для выполнения операций ОЗУ. Уменьшаем значения с минимальным шагом — 0,5. Получив повышение показателей производительности, можно продолжить, снизив время отклика. Подбирать правильные настройки придется методом проб и ошибок.


Повысить производительность оперативки можно, увеличивая напряжение с помощью параметра «Voltage Setting», безопасно 1.2–1.35 В, максимум — 1.6 В. С этим пунктом стоит быть очень острожным, электричество — не игрушки, есть риск спалить ОЗУ и потерять гарантию.

Увеличение частоты оперативной памяти с помощью готовых профилей — самый простой и быстрый способ получить желаемую производительность. Вариант с ручными настройками больше подходит энтузиастам, для которых дополнительный прирост быстродействия на дополнительные 10–15% — дело принципа.

Текст ниже предполагает, что вы прочли ФАК по процессорам Sandy Bridge и поняли что в нем написано, а так же знакомы с основами разгона этих процессоров.

Для начала разберемся с названием статьи. В моем понимании разгон «правильный», когда он сделан с сохранением функций энергосбережения процессора. Это значит, что в бездействии или во время небольшой нагрузки (просмотр фильмов, ползание в интернете и т.д.) частота и напряжение процессора должны уменьшаться (технология EIST и C1E), а его неиспользуемые блоки отключаться (C-states).

Теперь переходим ко второму ключевому слову в названии: ASRock. Чем отличились ее матери на этот раз? Тем, что в зависимости от типа нагрузки «пляшет» напряжение процессора. Например, во время работы четырех потоков Linpack-а напряжение равно 1,36 В, а во время работы одного потока — всего 1,28 В. При разгоне падение напряжения на 0,08 В приведет к гарантированному зависанию компьютера. Это вынуждает владельцев ASRock фиксировать напряжение на максимальном уровне, делая разгон «неправильным».

Сначала я думал, что виноват Turbo Boost, но после его отключения напряжение продолжало прыгать. В результате раскопок удалось выяснить, что виноваты C-states. Ядра, переведенные в одно из C-состояний, понижают напряжение процессора, даже если одно из ядер полностью загружено работой, например Linpack-ом. Отключение EIST и C1E в UEFI ситуацию не исправляет.

Теперь, когда известен источник проблемы, появляется второй вариант разгона: отключить C-states и вместо режима fixed задействовать режим offset, с его помощью увеличивая или уменьшая напряжение. Зачем уменьшать? Это еще один сюрприз от ASRock. Увеличивая множитель, UEFI заодно увеличивает VID и может с этим перестараться. Влиять на величину изменения VID напрямую не получается, потому что настройка Additional Turbo Voltage не работает. Зачем добавили этот муляж я не понимаю, видимо для понта. Смотрите как много у нас настроек! Ну а то что часть из них не работает никто и не заметит, правда?

После отключения всех C-states нужно подобрать значение LLC, что бы напряжение оставалось постоянным при любых нагрузках. В качестве нагрузок можно использовать WinRAR (низкая), Prime95 (средняя) и Linpack (высокая). Все три приложения позволяют указать количество потоков. Не нужно подбирать LLC на максимальном множителе, что бы во время подбора не поймать «синяк». Например, я использовал 43x, хотя процессор может работать на 45x (неудачный экземпляр попался).

После подбора LLC выставляем максимальный множитель и подбираем напряжение изменяя offset. Если вам попался удачный экземпляр процессора, не уменьшайте напряжение слишком сильно. Да, его максимальное значение UEFI увеличивает, но минимальное, которое используется во время простоя, всегда остается постоянным, в моем случае примерно 1,00 В. Если его понизить слишком сильно, то процессор будет зависать во время простоя.

Теперь настало время проверить, а был ли смысл отказываться от фиксированного напряжения. Что важнее для энергосбережения: C-states или пониженное напряжение? К сожалению у меня нет прибора для измерения мощности, поэтому сравнение двух вариантов разгона я буду проводить на основе температуры процессора. Чем меньше температура, те выше энергоэффективность. Это конечно неточный и геморройный способ, но лучше чем ничего. Во время тестов вентилятор процессорного кулера был отключен. Использовалась current (текущая) температура, рассчитываемая C-Temp.

Мои настройки для варианта разгона Fixed. Активны CPU С-states и package С-states. Фиксированное напряжение 1,38 В.

Мои настройки для варианта разгона Offset. Все С-states отключены. Во время нагрузки напряжение поднимается до тех же 1,38 В и падает в простое до примерно 1,02 В.

1-й тест: режим простоя.

Запущен видеопроигрыватель, который загружает одно ядро процессора на 20%.

Парковка ядер отключена Парковка ядер включена
Fixed 39° 38°
Offset 37,5° 37,5°



Высокая эффективность кулера, который обдувается вытяжным вентилятором корпуса, мешает сравнению. :) Но все же в условиях простоя выгоднее использовать режим offset. Все ядра используют множитель х16. Вред от декодирования видео на повышенном напряжении 1,38 В превышает пользу от C-states.

2-й тест: однопоточное приложение.

Запущена демка HTML5 Fish Bowl с отключенным аппаратным ускорением (что бы греть процессор, а не видеокарту). Демка загружает одно из ядер процессора на 100%.

Парковка ядер отключена Парковка ядер включена
Fixed 48° 48°
Offset 53,5° 53,5°



Неожиданно уверенную победу одерживает режим fixed. Оба варианта почти все время проводят со множителем 45x и максимальным напряжением. Но в fixed варианте три ядра обесточены и сладко спят в C6.

Ну и наконец маленькое резюме. На мамках ASRock «правильного» разгона не получится, придется чем-то жертвовать. Я пока выбрал режим offset, потому что компьютер большую часть времени проводит в простое, а использовать парковку ядер не хочется, с ней у меня были проблемы.

Обновление от 30.05.2012.

После выпуска компанией ASRock новой версии UEFI 2.10 «правильный» разгон стал возможен.

Во время проведения тестирования последней доступной версией UEFI BIOS для ASRock B550 PG Velocita была P1.20 от 24 августа 2020 года. Позже – 29.10.2020 – вышла версия P1.50 с поддержкой AMD AGESA Combo-AM4 V2 1.1.0.0, но на ней плату нам протестировать уже не удалось. Из особенностей дизайна оболочки выделим точно такой же стиль оформления, как и у самой платы. Стартовый режим и даже открывающийся раздел BIOS можно выбрать в его настройках, а по-умолчанию запускается информационный раздел Main.


Что интересно, упрощённого режима BIOS EZ Mode здесь нет, только расширенный или основной. Это вполне логично, ведь тем, кто покупает такие платы, нужны все их настройки и возможности, а не их базовый набор в мультяшном оформлении.

Следующий раздел BIOS предназначен для разгона процессора и оперативной памяти и называется OC Tweaker. Здесь доступны любые настройки двух основных компонентов, от которых зависит производительность платформы, а также предусмотрено сразу десять слотов для хранения разных вариантов настроек.



Из этого основного раздела BIOS можно «провалиться» в подраздел с настройками оперативной памяти, где в удобном виде представлены прошитые в модули профили и даже выводится информация о производителе микросхем.



Самих настроек, как и полагается на платформе AMD, огромное количество, есть все необходимые параметры для того, чтобы выжать из модулей максимум производительности при максимуме стабильности. В общем, Ryzen DRAM Calculator в руки и вперёд.



В отдельном подразделе собраны регулировки напряжения и настройки режимов их стабилизации. Для ядра процессора и SoС предусмотрено по пять уровней LLC, а справа выводится схематичный график степени стабилизации напряжений.


Пожалуй, самый масштабный раздел BIOS – Advanced, куда вошли все настройки процессора, чипсета и контроллеров платы. Далее мы просто приведём скриншоты этих настроек.
















Следующий основной раздел – Tool. Здесь собраны пять утилит для обслуживания и настройки платы, в числе которых регулировка подсветки и обновление BIOS.


Раздел с мониторингом и настройкой режимов работы вентиляторов вряд ли позволяет желать чего-то большего.



Каждый из подключенных к плате вентиляторов может быть настроен индивидуально вручную, либо работать в автоматическом режиме в одном из трёх профилей настроек или на максимальной скорости. Плюс все вентиляторы можно настроить разом по единому алгоритму.


Далее остаются разделы с параметрами безопасности, загрузки и сохранения настроек.




Проверка стабильности, оверклокерского потенциала и производительности материнской платы ASRock B550 PG Velocita была проведена в закрытом корпусе системного блока при температуре в помещении от 24,5 до 25 градуса Цельсия. Конфигурация тестового стенда состояла из следующих комплектующих:

Тестирование было проведено под управлением операционной системы Microsoft Windows 10 Pro (20H2 19042.610) с установкой следующих драйверов:

  • чипсет материнской платы AMD Chipset Drivers – 2.10.13.408 от 20.10.2020;
  • драйверы видеокарты NVIDIA GeForce – 456.71 WHQL от 07.10.2020.

Стабильность системы при разгоне мы проверяли стресс-утилитой Prime95 29.4 build 8 и другими бенчмарками, а мониторинг проводился с помощью HWiNFO64 версии 6.33-4280.

Перед тестированием приведём характеристики платы с помощью утилиты AIDA64 Extreme.


Первый тест мы традиционно проводим при автоматических настройках BIOS, и ASRock B550 PG Velocita не стала исключением. Только XMP оперативной памяти был активирован – она работала на штатных 3,6 ГГц при напряжении 1,35 В. В свою очередь, процессор работал на частотах от 3,5 до 4,57 ГГц.


Автоматические настройки BIOS ASRock B550 PG Velocita подобраны достаточно хорошо – после двух последовательных циклов теста Small FFTs Prime95 температура процессора не превысила 68 градусов Цельсия при напряжении в нагрузке не выше 1,120 В и уровне TDP около 142 ватт.

Автоматические настройки BIOS (AVX выключены)

Автоматические настройки BIOS (AVX выключены)

Температуры цепей VRM утилиты мониторинга не фиксируют, но их радиаторы во время стресс-теста были едва тёплыми. Сразу же хотим обратить ваше внимание на нестабильность напряжения под нагрузкой (зелёный график мониторинга) – она не держится ровно в определённом значении, а «плавает» от 1,105 до 1,125 В.

Для проверки разгона процессора на плате ASRock B550 PG Velocita мы зафиксировали LLC CPU на максимальном первом уровне, сделав то же самое и с LLC для SoС. Сначала добились от процессора стабильных 4,2 ГГц по всем ядрам при напряжении в BIOS 1,200 В, которое по данным мониторинга в нагрузке просаживалось до 1,163 В, то есть на 3,1%, что довольно много. Максимальная температура процессора при этом достигла 72 градусов Цельсия.

Далее мы добились от процессора стабильности на фиксированной частоте 4,3 ГГц по всем ядрам при напряжении в BIOS 1,31875 В.


При этом в нагрузке напряжение снижалось до 1,275 В, то есть более чем на 3,3%. И это на максимальном уровне LLC.

Разгон до 4,3 ГГц при 1,31875 В (AVX выключены)

Разгон до 4,3 ГГц при 1,31875 В (AVX выключены)

Однако самое интересное, что при менее агрессивном уровне LLC 2 напряжение CPU снижалось всё до тех же 1,275 В, то есть между двумя этими режимами стабилизации на нашей конфигурации и с нашим процессором не было выявлено никакой разницы. А вот при LLC 3 стабильности достичь уже не удавалось, значит алгоритм стабилизации напряжения на силовой цепи ASRock B550 PG Velocita хотя и не лучший из плат с AMD B550, но всё же работает. Добавим, что температура процессора при таком разгоне достигала 85,5 градуса Цельсия.


Отдельно нужно отметить, что при неудачном подборе таймингов плата просто не стартует. Ни с третьего раза, ни с шестого — автоматического включения с настройками по умолчанию не предусмотрено. Приходится каждый раз сбрасывать CMOS через перемычку, что очень неудобно. Как раз и вспоминается кнопка сброса CMOS на панели ввода-вывода, которой здесь нет.

Ну что же, осталось проверить производительность ASRock B550 PG Velocita в сравнении с другой платой на AMD B550.

Производительность системы на ASRock B550 PG Velocita мы сравним с такой же конфигурацией, ранее собранной на плате Gigabyte B550 Vision D, где процессор разогнан до тех же 4,3 ГГц, а оперативная память работала на идентичных 3,6 ГГц с дополнительно настроенными таймингами.



















ASRock B550 PG Velocita оказалась быстрее в бенчмарке WinRAR, HandBrake и 3DMark Time Spy, но разница небольшая (просто на ASRock чуть лучше настроена память). В тесте кодирования EZ CD Audio Converter двукратное преимущество Velocita над Vision D объясняется новой версией конвертера и использованием оптимального числа CPU-потоков для кодирования (чего мы, к сожалению, не сделали в прошлый раз). В остальном производительность двух этих плат одинакова.

Материнская плата ASRock B550 PG Velocita проявила себя как добротный образец среднего ценового диапазона на наборе системной логики AMD B550. Разработчики оставили пользователю возможность самостоятельно дооснастить плату и не стали перегружать данную модель ни модулями Wi-Fi, которые нужны не всем, ни контроллером Thunderbolt, заметно увеличивающим конечную стоимость продукта. Зато у «итальянского ускорения» есть мощная и хорошо охлаждаемая силовая цепь для разгона любых вышедших и будущих процессоров AMD, поддержка памяти с частотой до 5,1 ГГц, ультра-быстрый порт M.2 и просто быстрый такой же порт с радиаторами, а также самый современный PCI-Express 4.0, усиленный алюминиевой оболочкой. Сюда же добавим достойный звук, исчерпывающее количество портов USB, средства мониторинга, управление семью вентиляторами и подсветку.

Ещё интереснее конечному пользователю и, в частности, оверклокеру, плата могла бы стать с более точным алгоритмом стабилизации напряжения на ядре процессора, где просадки в более чем 1,5-2% нежелательны, если не сказать недопустимы. Россыпь термодатчиков по текстолиту так же не помешала бы, как и отображение изменённых настроек BIOS перед выходом. Ну и кнопкой Clear CMOS на интерфейсной панели желательно наделять не только флагманскую B550 Taichi, но и такие платы, как Velocita – так ускорять плату было бы гораздо быстрее и удобнее, чем через перемычку на плате.

По совокупности характеристик и стоимости ASRock B550 PG Velocita должна найти своего покупателя, а будь её стоимость не выше 15 тысяч рублей, она вполне могла бы стать хитом в своём классе, особенно в свете выхода новых AMD Ryzen 5хxx.

Читайте также: