Что такое блок питания

Обновлено: 08.07.2024

Блок питания — важная часть любого электронного устройства. От надёжности этого узла зависит правильное и длительное функционирование всей системы. В статье мы выясним, что такое блоки питания (БП), для чего нужны и какие бывают.

Определение и назначение

Согласно техническому определению, блок питания — это электрическое устройство, предназначенное для формирования напряжений питания. БП — вторичный источник электропитания.

Открываем техдокументацию и читаем. Вторичный источник электропитания преобразует параметры электроэнергии основного источника электроснабжения, например, промышленной сети в электроэнергию с параметрами, необходимыми для работы вспомогательных устройств.

Делаем вывод: назначение блока питания — обеспечение устройств, работающих от электроэнергии, напряжением с заданными параметрами, необходимыми для их функционирования.

Важно! Если прибору требуется несколько разных напряжений (например, ПК), то блок питания имеет несколько выходных каналов — каждый на свою величину.

блок питания

Виды блоков питания и их различия

По конструктивному исполнению все БП бывают двух типов:

Первый тип, как можно догадаться из его названия, встраивается в устройство, которое он питает. Подавляющее большинство бытовой техники имеет встраиваемые так называемые собственные блоки питания. Их задача — преобразовать сетевое напряжение 220 В 50 Гц в одно или несколько необходимых для работы устройства.

встроенный БП

Полезно! Внутренним будет считаться и БП в компьютере, хотя он и сделан как отдельный съёмный модуль.

Внешний БП представляет собой отдельный модуль в собственном корпусе. Питание с такого модуля подаётся на устройство по кабелю. Обычно такое решение применяют для малогабаритной аппаратуры и аппаратуры с низким энергопотреблением.

А теперь интересный вопрос — зарядка на мобильный телефон или смартфон — это блок питания или зарядное устройство? Для многих — зарядное устройство. Тогда дополнительный вопрос — БП для ноутбука — это блок питания или зарядное устройство? И здесь мнение будет однозначным — и то и другое.

Тогда почему у телефона только зарядник? Кто из нас не работал с разряженным смартфоном, воткнутым в розетку? Да все работали, когда очень надо, а батарея села. Таким образом, и зарядник мобильника, и БП ноутбука — два в одном — это и блок питания, и зарядное устройство.

2 блока питания

А вот, например, с аккумуляторным шуруповёртом всё иначе. У него именно зарядное устройство, а не блок питания, поскольку рабочий ток оно обеспечить шуруповёрту не может.

блок питания для шуруповерта

То же самое можно сказать и про автомобильное зарядное устройство — зарядить аккумулятор автомобиля оно может, но обеспечить стартеру необходимый для пуска двигателя ток — нет.

Просмотренные БП бывают 4 видов:

  • со стабилизацией напряжения;
  • со стабилизацией тока;
  • со стабилизацией напряжения и тока;
  • без стабилизации.

Первый вид обеспечивает заданное стабильное выходное напряжение, которое не зависит от входного, если величина последнего не выходит за допустимые пределы или устройство не потребляет мощность большую, чем может выдать БП. В противном случае простые источники выходят из режима стабилизации, а то и из строя, более «умные» аварийно отключают устройство и отключаются сами, не допуская поломки. Большинство новых блоков питания собрано по схеме со стабилизацией напряжения.

БП светодиодной ленты

Блоки питания со стабилизацией тока подключают к устройствам, которым нужен стабильный ток. При изменении потребляемой мощности такой блок меняет величину напряжения так, чтобы проходящий через него ток остался неизменным.

БП для питания светодиодов

Схемы со стабилизацией напряжения и тока часто внедряют в лабораторные блоки питания и автомобильные зарядники. При увеличении потребляемой мощности нагрузкой такой БП поддерживает установленное напряжение, а ток растёт. Когда ток, пройдя через питаемое устройство, достигнет установленного значения, источник начинает держать его (ток) на заданном уровне, при необходимости снижая напряжение.

Лабораторный БП

И наконец, четвёртый вид — без стабилизации — подключают к устройствам, некритичным к величине питающих напряжений. Выходное напряжение в них напрямую зависит от величины входного.

Ну и в завершение поделим блоки питания по принципу работы:

  • трансформаторные;
  • импульсные;
  • с гасящим конденсатором.

Рассмотрим принцип работы каждого типа блоков питания подробнее.

Устройство трансформаторного блока питания

До недавнего времени блоки питания этого типа использовались в подавляющем большинстве электронных механизмов. Посмотрим, как выглядит схема простейшего трансформаторного БП.

схема трансформаторного блока питания

Источник состоит из трансформатора T1, выпрямителя VD1, простейшего стабилизатора VT1, R2, VD2 и сглаживающего фильтра С2, С3, С4. Трансформатор здесь основной узел. Его задача понизить или повысить напряжение первичного источника до необходимой величины. В нашем примере трансформатор понижающий — он преобразует сетевое 220 В в 7 В, необходимых для работы следующих узлов.

Трансформатор имеет две или более индуктивно связанные обмотки. На одну из обмоток, называемую первичной, подаётся напряжение первичного источника. Протекающий по ней переменный ток намагничивания создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции переменный магнитный поток в магнитопроводе создаёт во всех остальных обмотках ЭДС индукции.

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Важно! Трансформаторы могут работать только с напряжениями переменного тока. Если первичный источник выдаёт постоянный ток, то применяют другие типы преобразователей величины напряжения. К примеру, импульсные.

Пониженное переменное напряжение поступает на двухполупериодный выпрямитель, собранный по мостовой схеме. В результате его работы оно преобразуется в постоянное пульсирующее. Первичный фильтр, состоящий из конденсатора С2, сглаживает пульсации, превращая пульсирующее напряжение в постоянное.

Выпрямленное и сглаженное — поступает на простейший параметрический стабилизатор, который поддерживает выходное на заданном уровне (в нашем примере 5 В) даже при небольших колебаниях величины напряжения первичного источника. Оно дополнительно сглаживается конденсаторами С3, С4 и поступает на нагрузку. Если стабилизация не нужна, то блок питания будет состоять только из трансформатора, выпрямителя и сглаживающего фильтра.

Схема БП без стабилизации

Достоинства и недостатки трансформаторного блока питания большая масса и габариты, катастрофически увеличивающиеся с мощностью; металлоёмкость (магнитопровод и обмотки с относительно большим числом витков);

Устройство и работа импульсного блока питания (ИБП)

Принцип работы такого блока питания в корне отличается от принципа действия трансформаторной конструкции. Здесь входное напряжение сначала преобразуется в постоянное, затем в переменное импульсное высокой (порядка десятков кГц) частоты, а уже после этого понижается при помощи импульсного трансформатора и снова выпрямляется.

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Важно! Импульсные БП бывают и повышающими. Кроме того, они могут работать с первичными источниками постоянного тока. При этом схема первичного выпрямителя из схемы исключается.

Структурная схема

Структурная схема простейшего импульсного блока питания

В приведённой схеме напряжение первичного источника выпрямляется при помощи мостового выпрямителя, сглаживается и поступает на импульсный трансформатор через электронный ключ, собранный на транзисторе.

Узел G представляет собой генератор с изменяемой скважностью. Он периодически открывает ключ, и на первичную обмотку трансформатора поступают импульсы, наводящие ЭДС во вторичных обмотках. После разнополярное импульсное напряжение (уже приведённое к необходимой величине) снова выпрямляется, сглаживается и поступает на нагрузку.

Особый интерес представляет обмотка 4 с отдельным выпрямителем, напряжение с которой поступает обратно в блок питания. Это обмотка стабилизации. Далее, с неё подаётся на блок стабилизации BS, который управляет скважностью задающего генератора.

В зависимости от напряжения на этой обмотке скважность (длительность импульсов относительно пауз) генератора автоматически изменяется в ту или иную сторону, а значит, и изменяется выходное напряжение на всех обмотках, поддерживая их на заданном уровне при колебаниях величины входного.

Полезно. Существуют схемы импульсных БП без обратной связи, а значит, источников питания без стабилизации напряжения. Такие блоки питания, например, часто используют в недорогих компактных люминесцентных лампах.

Схема импульсного блока питания

Все приведённые схемы импульсных блоков питания являются простейшими и, конечно, не годятся для серьёзного оборудования. Для примера посмотрим, из чего состоит блок питания персонального компьютера.

Состав БП компьютера

Сначала обратим внимание на сетевой фильтр, который устраняет импульсные помехи по сети первичного источника. Дальше — снова выпрямитель и управляемый генератор (инвертор). Только он двухтактный, что существенно повышает КПД источника и его выходную мощность. Потом — всё тот же импульсный трансформатор, но не один, а два. Один основной, второй маломощный и управляется отдельным генератором. Его задача — создание дежурного питания, когда основной БП и сам ПК выключены.

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Почему импульсные трансформаторы мощностью до 500 Вт такие маленькие? Дело в том, что размеры магнитопровода, а значит, и трансформатора зависят от частоты, при которой он работает. Чем выше частота, тем меньший магнитопровод можно использовать. Работай он на частоте 50 Гц, то был бы размером с силикатный кирпич.

Дальше необходимые для работы напряжения с основного трансформатора поступают на выпрямители, сглаживающие конденсаторы и снова фильтры, подавляющие высокочастотные помехи. Есть, конечно, и узел стабилизации, который дополнительно является блоком защиты от перегрузки и короткого замыкания. Этот же узел следит за наличием и величиной всех выходных напряжений. Если хотя бы одно из них выйдет за допустимые пределы, материнской плате будет подана команда экстренной остановки системы.

С узлом регулировки оборотов вентилятора всё понятно. Этот узел измеряет температуру на силовых элементах блока питания и по показателям регулирует обороты вентилятора. Это существенно снижает шум от работы БП при сохранении необходимой степени охлаждения. Этот же блок поднимет тревогу, если вентилятор внезапно остановится.

Габариты и вес. Если мы собрали блок питания мощностью 500 Вт для ПК по трансформаторной схеме, то он бы занял всё место в корпусе ПК. Про вес лучше вообще не упоминать — он бы был неподъёмным. Собранные же на трансформаторах небольших размеров ИБП получаются компактными и лёгкими. Большой диапазон питающих напряжений и частоты. Любой ПК легко запустится и будет отлично работать, скажем, в США, где напряжение в розетках 100–127 В при частоте 60 Гц. Высокий КПД. Коэффициент полезного действия ИБП исключительно высок и может достигать 98 %. Для вторичных источников питания это очень много. Схемы на трансформаторах обычно ограничиваются КПД 70 % и менее. высокочастотные электромагнитные помехи и помехи по линиям питания.

Устройство и работа блока питания с гасящим конденсатором

Это самый простой тип блоков питания. В него включены: конденсатор, выпрямитель и стабилизатор. Вот и весь БП.

схема БП с гасящим конденсатором

В принципе, он мало отличается от трансформаторной схемы, но самого трансформатора здесь нет. Его роль исполняют неполярные высоковольтные конденсаторы. Как они гасят излишек электроэнергии? Дело в том, что в цепях переменного тока конденсатор представляет собой реактивное сопротивление. На нём падает часть напряжения, остальная его часть, величина которой зависит от ёмкости конденсаторов, поступает на выпрямитель, сглаживается конденсатором C3, стабилизируется простейшим параметрическим стабилизатором и поступает на нагрузку.

Стабилитрон VD2 защищает последующие цепи БП от перенапряжения в случае, если нагрузка окажется отключенной. Тогда стабилитрон откроется, войдёт в режим стабилизации, и напряжение на выходе выпрямителя останется на допустимом уровне.

Резистор R2 служит для безопасности конструкции. Он разряжает конденсаторы С1, С2, как только мы выдернем вилку питания БП из розетки. В противном случае нас может ударить током, даже если мы просто возьмёмся за контакты вилки.

низкая нагрузочная способность, которая обычно составляет десятки миллиампер; Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Основным недостатком такой схемы будет отсутствие гальванической развязки с первичным источником питания. Это означает, что при работе от электросети все элементы, включая элементы питаемого оборудования, будут под опасным для жизни напряжением.

Как подобрать для питания конкретной нагрузки

Предположим, нам необходимо запитать какую-то конструкцию или готовый механизм. Как подобрать подходящий БП? Для этого учитываем три основных критерия:

  • необходимое для прибора напряжение;
  • потребляемый прибором ток;
  • наличие или отсутствие стабилизаторов тока или напряжения.

Пусть нам нужно питать низковольтный светодиодный прожектор. Рассчитан он, как указал производитель, на напряжение 12 В, потребляемая мощность 7 Вт.

Сначала рассчитываем потребляемый осветителем ток: 7 : 12 = 0,58 А. Как правило, осветительные приборы требуют стабилизации тока. Значит, нам нужен БП со стабилизатором тока на 580 А. Попробуем найти такой источник питания в интернете. Вот он. Ток стабилизации, правда, на 20 мА больше положенного, но это некритично, поскольку найти источник на точно заданный ток невозможно.

БП

Теперь запитаем магнитолу. Точно так же рассчитываем, читаем на шильдике или измеряем ток на максимальной громкости. Предположим, 8А. Напряжение электропитания бортовой сети автомобиля нам известно — 12–14 В. Какая стабилизация нужна? В принципе, никакой — в автомагнитоле есть встроенный стабилизатор. Важно, чтобы БП выдавал 12–14 В и обеспечивал ток до 10 А (с запасом). Это составит 140 Вт.

БП со стабилизатором

В принципе, ничего плохого не будет, если мы возьмём 12-вольтовый БП со стабилизацией напряжения. Но найти сейчас в продаже БП без стабилизатора достаточно сложно.

Для питания светодиодной ленты, конечно, мы выберем БП соответствующей мощности со стабилизатором напряжения 12 или 24 В (зависит от типа используемой ленты).

Импульсный, с трансформатором или гасящим конденсатором? От последнего лучше сразу отказаться — очень опасно. Но если БП будет встроен в прибор, и его никто не будет разбирать, то останется на крайний случай. При этом, конечно, питаемое устройство должно быть маломощным.

Ну а импульсный или трансформаторный — тут решать каждому индивидуально. Если потребляемые токи большие, лучше предпочесть импульсные приборы, поскольку трансформаторные большего размера и веса. Малое потребление? Подойдёт и трансформаторный, особенно если он уже лет 5 валяется на чердаке без дела.

Единственное, выбирая импульсный БП, не следует забывать про электромагнитные помехи и помехи по цепям питания, которые он создаёт. Если в помещении есть оборудование, чувствительное к электромагнитным помехам, то, конечно, нужно выбирать трансформаторную конструкцию.

Вот мы и выяснили, что такое блок питания и для чего служит. Каких типов и видов бывают и чем отличаются друг от друга. Теперь мы без проблем подберём БП для своих целей.


Содержание

Подбираем БП по мощности

Как бы просто это не звучало, но для того, чтобы определить мощность будущего блока питания, необходимо сложить потребляемую мощность всех компонентов ПК и сделать небольшой запас, на случай каких-либо изменений или модернизации. Также следует учесть один момент, который заключается в том, что блоки питания от не именитых брендов часто завышают свои характеристики, или указанная мощность БП рассчитана при максимальной нагрузке. Таким образом, если БП будет работать на пике мощности постоянно, это, несомненно, приведет к уменьшению его срока службы и может привести к различным сбоям в питании. Если при выборе вы все же отдали предпочтение малоизвестному бренду, следует покупать БП с запасом мощности хотя бы в полтора раза, а лучше в два раза. Добавлю, что мощность БП следует подбирать из значений номинального потребления всех компонентов ПК, а не пиковых значений. Для покрытия пикового энергопотребления мы как раз и берем БП с запасом мощности.

Что касается реальных цифр, следует сказать, что для офисного ПК или компьютера для бытовых задач хватит БП с мощностью до 400 Вт. Что касается современных ПК для игр, часто приходится использовать БП с мощностью 800-900 Вт и более. При выборе блока питания рекомендую также не забывать о потреблении энергии систем охлаждения и всевозможных декоративных подсветках. Для вашего удобства в интернете можно найти специальный калькулятор для расчета.

Энергоэффективность и КПД

КПД определяет соотношение потребляемой мощности БП к реальной выходной его мощности. Для облегчения задачи выбора «правильного» для вас БП существует специальная стандартизация Energy Star. Если я не ошибаюсь, последняя версия этого стандарта 4.0, но насколько я знаю, обновления в этой версии стандарта было довольно давно. В любом случае, сейчас этот стандарт заключается в следующих требованиях и маркировках:

  • 80 Plus. В таких БП эффективность составляет не ниже 80%
  • 80 Plus Bronze. Самый распространенный тип, эффективность не ниже 82%
  • 80 Plus Silver. В этом стандарте КПД составляет не менее 85%
  • 80 Plus Gold. В этом типе КПД превышает 87%
  • 80 Plus Platinum. Это самые эффективные устройства с КПД не менее 90%

Эта небольшая деталь крайне важна при выборе и на нее точно следует опираться. Конечно, покупать БП без этой сертификации вообще не стоит. А оптимальным решением по цене и эффективности могут стать блоки с маркировкой 80 Plus Bronze. Эти блоки на сегодняшний день являются самими распространенными. К примеру, если вы приобретаете БП с мощностью 800 Вт со стандартом 80 Plus Bronze, его реальная выходная мощность составит 656 Вт.

Форм-фактор и типы подключения

Не стоит забывать о том, что существуют разные форм-факторы БП, это сделано для совместимости с различными типами корпусов ПК. Самым распространенным типом БП и корпусов для них являются устройства с маркировкой ATX. Но еще существуют БП с другими форм-факторами SFX, TFX и EPS. Эта характеристика обязательно будет указана на БП.


Также обращаю ваше внимание на то, что существует два типа подключения оборудования к БП.

Стандартный тип. В этом типе все разъемы для подключения оборудования уже стационарно установлены и их нельзя поменять. То есть провода с разъемами буквально впаяны в БП. Это классическое и самое распространенное решение. Такие БП бывают с разными разъемами для ЦПУ (к примеру, на 4 или 8 контактов), а также могут отличаться по разъемам для материнских плат (на 24 контакта и на 20 контактов для старых моделей или серверных плат). Также на такие БП могут быть абсолютно со всеми возможные разъемы. Обычно используется самые распространенные современные разъемы, но все же перед покупкой стоит этот момент проверить.

Модульный тип. Это более дорогое решение, обычно используется в ПК с прозрачной крышкой корпуса. В таком типе устройства к БП подключается только то оборудование, которое установлено в ПК в данный момент. Таким образом, можно избежать лишнего нагромождения неиспользуемых проводов.



Что такое PFC

PFC – это система, обеспечивающая автоматическую коррекцию выходной мощности в зависимости от входящих изменений в токе. Очень полезная и необходимая функция, особенно при использовании дорогостоящего оборудования. Также стоит знать, что система PFC делится на два типа: PPFS, APFC.

PPFS – это пассивная система, обычно применяется в более дешевых моделях БП, такая система обладает небольшой способностью сглаживания токов.

APFC – это активная система, уже более дорогая, поскольку она выполнена на отдельной плате, и по сути является еще одним питающим элементом. Такая система может сглаживать большие перепады в токе и обеспечивает стабильную выходную мощность и ток.

Применяем знания на практике

Исходя из вышеизложенной базовой информации, можно приступить к выбору блока питания. Для начала определяемся с форм-фактором и типом подключения БП. Затем подбираем мощностью будущего БП, исходя из суммарного энергетического потребления вашего оборудования опираясь на запас и КПД (стандартизацию Energy Star). Также можно обратить внимание на охлаждение блока питания. Здесь чем больше лопасти вентилятора, тем меньше производят они шума и лучше охлаждают. Также есть модели БП с пассивным охлаждением, в таких моделях для отвода тепла используется большой алюминиевый радиатор.

Ну, а на этом все, надеюсь, публикация была полезна для вас. Спасибо, что дочитали статью до конца. Также можете посетить мой блог на сайте. Там вы найдете еще больше различных статей и обзоры разных устройств.

Блок питания – это устройство, которое используется для создания напряжения, необходимого для работы компьютера, из напряжения домашней электросети. В России блок питания (в дальнейшем просто БП) преобразует переменный электрический ток домашней электрической сети напряжением 220 В и частотой 50 Гц в заданный постоянный ток. В разных странах стандарты домашней электросети отличаются. В США, к примеру, в дома обычных жителей подаётся переменный ток напряжением 120 В и частотой 60 Гц.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.

Виды блоков питания и их различия.

Существуют два основных вида блоков питания: трансформаторные и импульсные. Ниже будут рассмотрены их устройства и различия, а также преимущества и недостатки.

Трансформаторный блок питания и его устройство.

Этот вид блока питания является классическим и, одновременно, простейшим. Ниже представлена его схема с двухполероудным выпрямителем:

Что такое блок питания.

Важнейшим элементом этого вида БП является понижающий трансформатор (вместо которого может быть использован автотрансформатор). Первичная обводка этого элемента как раз и рассчитана на входящее сетевое напряжение. Ещё одна важная деталь такого БП – это выпрямитель. Он выполняет функцию преобразования переменного напряжения в однонаправленное и пульсирующее постоянное. В подавляющем большинстве случаев используются однополупериодный выпрямитель или двухполупериодный. Первый состоит из одного диода, а последний из четырёх диодов, которые образуют диодный мост. В некоторых случаях могут использоваться и другие схемы этого элемента, например, в трёхфазных выпрямителях или выпрямителях с удвоенным напряжением. Последней важной деталью трансформаторного БП является фильтр, который сглаживает пульсации, создающиеся выпрямителем. Обычно эта деталь представлена конденсатором с большой ёмкостью.

Габариты трансформатора. Из базовых законов электротехники выводится следующая формула:

В этой формуле n – это число витков на 1 вольт, f – частота переменного тока, S – площадь сечения магнитопровода, B – индукция магнитного поля в магнитопроводе.

Формула описывает не мгновенное значение, а амплитуду B!

Практически величина индукции магнитного поля (B) ограничена гистерезисом в сердечнике. Это приводит к перегревам трансформатора и потерям на перемагничивании.

Если частота переменного тока(f) равна 50 Гц, то изменяемыми параметрами при конструировании трансформатора остаются только S и n. На практике используется такая эвристика: n (в значении от 55 до 70) / S в см^2

Увеличение площади сечения магнитопровода (S) приводит к повышению габаритов и веса трансформатора. Если же понижать значение S то этим повышается значение n, что в трансформаторах небольшого размера приводит к снижению сечения провода (в противном случае обмотка не поместится на сердечнике)

При увеличении значения n и уменьшения площади сечения происходит значительное увеличении активного сопротивления обмотки. В трансформаторах с малой мощностью на это можно не обращать внимания, поскольку ток, проходящий через обмотку, невелик. Однако, при повышении мощности ток, проходящий через обмотку, увеличивается, а это вместе с высоким сопротивлением обмотки приводит к рассеиванию значительной тепловой мощности.

Всё вышесказанное приводит к тому, что стандартной частоте 50 Гц трансформатор большой мощности (необходимой для питания компьютера) может быть сконструирован только как устройство, имеющее большой вес и габариты.

В современных БП идут по другому пути – увеличивания значения f, которое достигается использованием импульсных блоков питания. Такие БП намного легче и в значительной степени меньше по габаритам, чем трансформаторные. Также импульсные БП не столь требовательны к входному напряжению и частоте.

Преимущества трансформаторных БП

  • Простота изделия;
  • Надёжность конструкции;
  • Доступность элементов;
  • Отсутствие создаваемых радиопомех.

Недостатки трансформаторных БП

  • Большой вес и габариты, которые увеличиваются вместе с мощностью;
  • Металлоёмкость;
  • Необходимость компромисса между снижением КПД и стабильностью выходного напряжения.

Импульсный БП и его устройство.

Ниже представлена схема одноконтактного импульсного БП (эта схема является простейшей):

Что такое блок питания.

Фактически блоки питания импульсного вида являются инверторной системой. В этом БП входящая в него электроэнергия сначала выпрямляется (т. е. образуется постоянный электрический ток), а после этого преобразуется в прямоугольные импульсы определённой частоты и скважности. После этого эти прямоугольные импульсы на трансформатор (в случае если конструкция БП включает в себя гальваническую развязку) или же сразу на выходной ФНЧ (в случае если отсутствует гальваническая развязка). Из-за того, что в импульсных БП с ростом частоты повышается эффективность работы трансформатора и в значительной степени снижается требование к сечению сердечника, в них могут применяться гораздо более малогабаритные трансформаторы чем в классических решениях.

В большинстве случаев сердечник трансформатора импульсного вида может быть выполнен из ферримагнитных материалов, в отличии от низкочастотных трансформаторах, в которых используется электротехническая сталь.

Стабилизация напряжения в импульсных блоках питания обеспечивается путём отрицательной обратной связи. Она позволяет поддерживать выходное напряжение на относительно постоянном уровне. Такая связь может быть сконструирована различными способами. В случае наличия в конструкции БП гальванической развязки чаще всего используют способ использования связи посредством одной из выходных обмоток трансформатора или же способ оптрона. Скважность на выходе ШИМ-контроллера зависит от сигнала обратной связи, который, в свою очередь, зависит от выходного напряжения. В том случае, если развязка в БП не предусмотрена, используется обычный резистивный делитель напряжения. Благодаря этому импульсные блоки питания могут поддерживать стабильное выходное напряжение.

Как работает блок питания компьютера

Большинство рассказов про блоки питания начинается с подчеркивания их важнейшей и чуть ли не главенствующей роли в составе компьютера. Это не так. БП — просто один из компонентов системы, без которого она не будет работать. Он обеспечивает преобразование переменного напряжения из сети в необходимые для работы ПК стабилизированные напряжения. Все блоки можно разделить на импульсные и линейные. Современные компьютерные блоки выполнены по импульсной схеме.

Линейные блоки питания

Сетевое напряжение поступает на первичную обмотку трансформатора, а со вторичной мы снимаем уже пониженное до нужных пределов переменное напряжение. Далее оно выпрямляется, следом стоит фильтр (в данном случае нарисован обычный электролитический конденсатор) и схема стабилизации. Схема стабилизации необходима, так как напряжение на вторичной обмотке напрямую зависит от входного напряжения, а оно только по ГОСТу может меняться в пределах ±10 %, а в реальности — и больше.

Схема линейного источника питания

Основные достоинства линейных блоков питания — простая конструкция и низкий уровень помех (поэтому аудиофилы часто используют их в усилителях). Недостаток таких БП — габариты и невысокий КПД. Собрать БП мощностью 400 и более Вт по такой схеме возможно, но он будет иметь устрашающие размеры, вес и стоимость (медь нынче дорогая).

Импульсные блоки питания

Далее в тексте сократим название «импульсный источник питания» до ИИП. Такие блоки питания более сложны, но гораздо более компактны. Для примера на фото ниже показана пара трансформаторов.


Слева — отечественный сетевой с номинальной мощностью 17 Вт, справа — выпаянный из компьютерного БП мощностью 450 Вт. Кстати, отечественный еще и весит раз в 5 больше.

В ИИП сетевое напряжение сначала выпрямляется и сглаживается фильтром, а потом опять преобразуется в переменное, но уже гораздо более высокой частоты (несколько десятков килогерц). А затем оно понижается трансформатором.

Схема компьютерного импульсного источника питания

Так выглядит плата вживую:


Фильтр

Фильтр в блоке питания двунаправленный: он поглощает разного рода помехи: как созданные самим БП, так и приходящие из сети. В самых бюджетных БП предприимчивые китайцы вместо дросселей распаивали перемычки (или, как их называют ремонтники, «пофигисторы»), а конденсаторы не ставили вообще. Чем это плохо: помехи будут влиять на другую аппаратуру, подключенную к данной сети, а напряжение на выходе получится с «мусором». Сейчас таких блоков уже немного. Встречается также экономия на размерах: фильтр как бы есть, но работать он будет кое-как.

Фильтр работает эффективнее, когда он находится как можно ближе к источнику помех. Поэтому часть фильтра зачастую располагают прямо на сетевой розетке.


На картинке изображен фильтр в минимальной комплектации. F1 — предохранитель, VDR1 — варистор, N1 — термистор, Х2 — Х-конденсатор, Y1 — Y-конденсаторы, L1 — синфазный дроссель. Резистор R1 служит для разряда конденсатора Х2.

Схема входного вильтра для подавления помех

Еще одна опасная для жизни пользователей экономия — когда вместо специальных Х- и Y-конденсаторов ставят обычные. Впрочем, встречается она редко. Автор видел такое всего один раз и очень давно. Экономия очень незначительна, а риск для пользователей очень велик, так как, например, Y-конденсаторы подключаются одной «ногой» на фазу, а другой — на корпус. В случае пробоя конденсатора можно получить опасное для жизни напряжение на корпусе.

Корректор коэффициента мощности

Не будем вдаваться в подробности, поскольку статьи на эту тему уже были: раз и два. Скажем только, что корректор коэффициента мощности должен быть во всех компьютерных БП, желательно активного типа (A-PFC).

Плюсы корректора:
1) Снижается нагрузка на сеть.
2) Повышенный диапазон входного напряжения (чаще всего, но не всегда).
3) Улучшение работы инвертора.

Минусы:
1) Увеличивается сложность конструкции, соответственно, снижается надежность.
2) Возможны проблемы при работе с UPS.

Преобразователь

Обычно используется мостовая или полумостовая схема. Чаще всего встречается полумост. На картинке ниже он изображен в упрощенном виде.


Как видно по схеме, транзисторы открываются поочередно с небольшой задержкой, чтобы не случилось ситуации, когда оба окажутся открыты. В таком случае получаем на первичной обмотке переменный ток высокой частоты, а на вторичной — уже пониженный до нужной величины.

В топовых блоках применяются резонансные преобразователи (LLC), которые имеют более высокий КПД, но они технически сложнее.

Выпрямление и стабилизация выходных напряжений

На выходе БП имеется четыре напряжения:
1) 12 В — отвечает за питание процессора, видеокарты, HDD, вентиляторов.
2) 5 В — питание логики материнской платы, накопителей, USB.
3) 3,3 В — питание оперативной памяти.
4) -12 В — считается атавизмом и не используется в современных компьютерах.

По способу выпрямления и стабилизации блоки можно поделить на четыре группы:

1) Выпрямление с помощью диодов Шоттки (полупроводниковый прибор, у которого при прямом включении падение напряжения будет в три-четыре раза меньше, чем у обычных кремниевых), групповая стабилизация.

Схема установки диодной сборки в ИИП

Внешне их можно определить по двум крупным дросселям. На одном — три обмотки (12 В, 5 В и тонкий провод -12 В).

Дроссель групповой стабилизации

Второй имеет меньший размер. Это отдельная стабилизация канала 3,3 В. Сейчас такие БП часто встречаются в основном в бюджетном сегменте. Например:

Вот, например, фото такого блока. Очень бюджетно:


2) Выпрямление с помощью диодов Шоттки, раздельная стабилизация на магнитных усилителях. Внешне их можно отличить по наличию в выходных цепях трех крупных дросселей. Данная схема в современных БП не используется: ее вытеснили более производительные решения. Пик такой схемотехники — начало 2000-х годов.

3) Выпрямление канала 12 В с помощью диодов Шоттки. Напряжения 5 В и 3,3 В получают из 12 В с помощью преобразователей DC-DC. Развитие электроники позволило производить недорогие и эффективные преобразователи такого рода. БП будет ненамного эффективнее обычных с групповой стабилизацией (так как нагрузка на низковольтные каналы небольшая), но стабильность напряжений выше.

4) Канал 12 В — синхронный выпрямитель на MOSFET (полевой транзистор с изолированным затвором), остальные напряжения получают при помощи преобразователей DC-DC.

Часто транзисторы расположены на обратной стороне платы, а радиаторы выведены вверх. В данном случае видим четыре PSMN8R3-40YS

Это наиболее эффективная и точная, но и более сложная схемотехника. В соответствии с ней делают все топовые блоки питания. Отклонения выходных напряжений у таких блоков укладываются в один-два процента при допустимых 5 %.

Дежурный источник питания

Представляет из себя маломощный ИИП с напряжением на выходе 5 В. Он работает все время, пока БП подключен к сети. Обеспечивает питание микросхем внутри блока и питание логики на материнской плате, а также подает питание на порты USB при выключенном компьютере.

Дежурка на TNY177. Ниже трансформатора виден выпрямитель на диоде (D22).

Супервизор

Микросхема обеспечивает функционирование основных защит в блоке (превышения выходных напряжений, превышение выходного тока и прочее), управляет включением и выключением блока по сигналам с материнской платы.

Супервизор Sitronix ST9S313A. Видны зеленый (PC_ON) и серый (Power Good) провода.

Теперь вы представляете, как обстоит дело со схемотехникой в наши дни. А что нас ждет в будущем? В мае 2020 года компания Интел выпустила новый ATX12VO (12 V Only) Desktop Power Supply Disign Guide в котором описывает совершенно новые БП: у блока осталось только одно напряжение — 12 В. Нужные напряжения будет преобразовывать материнская плата. Дежурный источник питания с напряжения 5 В перейдет на 12 В. При этом размеры блоков АТХ остаются такими же. Это сделано для того, чтобы сохранить совместимость со старыми корпусами. Правда, пока производители не торопятся переходить на этот формфактор.

Читайте также: